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To my family, friends & cats,





I met a traveller from an antique land

Who said: Two vast and trunkless legs of stone

Stand in the desert. Near them, on the sand,

Half sunk, a shattered visage lies, whose frown,

And wrinkled lip, and sneer of cold command,

Tell that its sculptor well those passions read

Which yet survive, stamped on these lifeless things,

The hand that mocked them and the heart that fed:

And on the pedestal these words appear:

”My name is Ozymandias, king of kings:

Look on my works, ye Mighty, and despair!”

Nothing beside remains. Round the decay

Of that colossal wreck, boundless and bare

The lone and level sands stretch far away.

–Ozymandias by Shelley





Abstract

Gaze, a significant non-verbal social signal, conveys attentional cues and provides

insight into others’ intentions and future actions. The thesis examines the intricate

aspects of gaze in human-human dyadic interaction, aiming to extract insights ap-

plicable to enhance multimodal human-agent dialogue. By annotating various types

of gaze behavior alongside speech, the thesis explores the meaning of temporal pat-

terns in gaze cues and their correlations. On the basis of leveraging a multimodal

corpus of dyadic taste-testing interactions, the thesis further investigates the rela-

tionship between laughter, pragmatic functions, and accompanying gaze patterns.

The findings reveal that laughter serves different pragmatic functions in association

with distinct gaze patterns, underscoring the importance of laughter and gaze in

multimodal meaning construction and coordination, relevant for designing human-

like conversational agents. The thesis also proposes a novel approach to estimate

gaze using a neural network architecture, considering dynamic patterns of real-world

gaze behavior in natural interaction. The framework aims to facilitate responsive

and intuitive interaction by enabling robots/avatars to communicate with humans

using natural multimodal dialogue. This framework performs unified gaze detection,

gaze-object prediction, and object-landmark heatmap generation. Evaluation on an-

notated datasets demonstrates superior performance compared to previous methods,

with promising implications for implementing a contextualized gaze-tracking beha-

vior in robotic interaction. Finally, the thesis investigates the impact of different

gaze patterns from a robot on Human-Robot Interaction (HRI). The results suggest

that manipulating robot gaze based on human-human interaction patterns positively

influences user perceptions, enhancing anthropomorphism and engagement.
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Sammanfattning

Avhandlingen undersöker nyanserade aspekter av blick som kommunikativt fenomen

i mänsklig tvåpartsinteraktion, med syftet att utvinna insikter som kan användas

för att förbättra multimodal dialog mellan människa och system. Blick är en viktig

ickeverbal social signal som förmedlar uppmärksamhet och ger inblick i andras in-

tentioner och framtida handlingar. Genom att annotera diverse varianter av blick

tillsammans med tal undersöks betydelsen hos temporala mönster i blicksignaler

och deras korrelationer. På basis av en multimodal korpus av tvåpartsinteraktioner

kretsande kring smakprovning undersöker avhandlingen relationen mellan skratt,

pragmatiska funktioner och tillhörande blickmönster. Resultaten belyser att skratt

fyller olika pragmatiska funktioner förbundna med distinkta blickmönster; däri-

genom understryks skrattets och blickens vikt i multimodal betydelsebildning och

-koordinering, vilket är relevant vid utformning av människoliknande konverserande

agenter. Avhandlingen föreslår också ett nytt tillvägagångssätt för blickestimering

genom en neuronnätsartitektur som tar hänsyn till dynamiska mönster i verkliga

blickbeteenden vid naturlig interaktion. Detta ramverk syftar till att underlätta re-

sponsiv och intuitiv interaktion genom att möjliggöra för robotar/avatarer att kom-

municera med människor genom naturlig multimodal dialog. Ramverket samman-

för blickförutsägelse, blickobjektsförutsägelse och färgdiagramsgenerering för land-

märken. Utvärdering på basis av ett annoterat dataset som presterar överlägset jäm-

fört med tidigare metoder, med lovande implikationer för utveckling av kontextual-

iserat blickspårningsbetande i robotinteraktion. Slutligen undersöker avhandlingen

betydelsen av olika blickmönster från en robot för människa-robotinteraktion (HRI).

Resultaten indikerar att manipulering av robotblick utifrån mönster i människa-

människainterkation påverkar användares upplevelser positivt samt förstärker an-

tropomorfism och engagemang.
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Chapter 1

Theoretical Foundations of Gaze
in Interaction

A Latin proverb by Marcus Tullius Cicero from the second century BC states: ‘The

face is the portrait of the mind; the eyes, its informers’ 1. The act of looking at

something or someone involves different cognitive, sensory, and motor systems in

the human body (Vickers 2011). Gaze is a form of nonverbal communication that

is used to convey a variety of social and emotional messages (Burgoon and Bacue

2003). The subtle informative cues of gaze facilitate fluent interactions among people

(Hessels 2020). Incorporating these gaze predictions into a robot can yield a better

level of engagement with humans and enable the robot to anticipate a human’s

intentions and goals (Saran et al. 2018).

Imagine you are having a conversation with a friend. When you are talking to them,

you might naturally look at them to show that you are paying attention and engaged

in the conversation. That is “gaze behavior.” Now, let’s say you are telling your friend

a funny story, and both of you burst out laughing. While you’re laughing, you might

notice that you tend to look at your friend to share the moment. That is another

aspect of gaze behavior – using your eyes to connect with someone emotionally. The

thesis researches how people use their eyes to communicate during conversations

1. https://en.wikipedia.org/wiki/Cicero

1

https://en.wikipedia.org/wiki/Cicero
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and social interactions, and to teach robots to replicate the same behaviour. This is

achieved by analyzing how people look at each other, how long they look, and when

they look away. By understanding these patterns, it is possible to teach robots to

“read” human gaze cues and respond in a more natural and human-like way.

For example, let’s say you have a robot assistant at home. Instead of just responding

to your voice commands, the robot could also understand where you’re looking and

react accordingly. If you are talking to the robot and then look at a bookshelf, the

robot might understand that you are interested in the books and offer to help you

find something to read. It is about making interactions with robots feel more like

interactions with people.

Ultimately, the goal is to create robots that can understand and respond to hu-

man gaze behavior, making them more intuitive and helpful in various situations.

Whether it is assisting with tasks at home or providing companionship, these socially

intelligent robots could make a big difference.

The thesis proposes a novel approach to predict human gaze for human-robot in-

teraction for different types of gaze in real-time. It is divided into three main parts.

First, a human-centered approach provides an in-depth understanding of gaze in

human-human interactions present via multimodal corpus studies (Chapter 2 &

Chapter 3). Secondly, an automation approach which leverages machine learning to

automatically detect gaze in human-human interaction (Chapter 4). Finally, an ex-

ploratory approach to integrate dialogue and gaze cues in human-robot interaction

(Chapter 5).

1.1 Human-Human Gaze Interaction
The world inhabited by humans is complex and rich with information. How does

everyone survive without becoming overwhelmed? We are limited in our sensory and

cognitive abilities, even though there are hundreds or thousands of objects and other

types of information visible. Thankfully, not everything that exists has a bearing on
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our immediate objectives or long-term survival. Humans have progressively evolved

techniques for choosing relevant information and learning where to attend while

discarding irrelevant visual information. The same difficulty is faced by artificially

intelligent (AI) agents as they transition from a simple digital environment to the

complex real world: how do they select crucial information from a sea of information?

Gaze has a dual functionality, comprising “a signalling function” that relays informa-

tion back into the environment, and “an encoding function” that gathers information

from other individuals. It is a vital communication cue that can convey mental and

emotional states (Mason et al. 2005), as well as the direction and object of attention

(Kuhn et al. 2008; Gobel et al. 2015). The purpose of a human-centered research

approach is to understand interactive human behaviour. While on the other hand,

the design-focused approach tend to manipulate features of the robotic gaze, i.e.,

length of fixation, and includes lab-based or field-based evaluations. Technology-

focused research aims to build the computational tools for robot eye-gaze in human

interaction. The thesis address all three designs of human gaze behaviour during

interaction.

1.1.1 Gaze in a Social Context

Social gaze can be interpreted as communicative by observers. Humans have a unique

ability, beyond that of non-human primates, to interpret others’ attention through

eye-gaze (Emery 2000). Researchers reason that the depigmentation of the human

sclera, unique among primates, has evolved for effective communication and social

interaction based on eye contact (Kobayashi and Kohshima 1997). Linguists and

psychologists have long been interested in non-verbal communication relating to

speech and gesture, including eye-gaze (Kendon 1967a; Argyle and Cook 1976a;

Goodwin 1980; Goodwin 1981), which is the focus of this work.
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Chapter 2, outlines the research on social and referential functions of eye-gaze in

dialogue and argues that these should not be treated independently, as eye-gaze

information is multifunctional. Further, it gives a brief description of the existing

multimodal corpora that include eye-gaze information (Chapter 2.3), discussing the

need for a new annotation scheme for eye-gaze. Finally, it presents our annotation

scheme and preliminary observations (refer Chapter 2.4).

Humans perceive robots differently from how they perceive other humans – even

though robots cue higher-order responses to gaze, they do not trigger the face-

specific neural pathways at very short timescales (Admoni and Scassellati 2012;

Ragni and Stolzenburg 2015). To establish gaze to indicate next speaker or a desire

to take the next turn it is important to interpret and produce interactional cues.

For example, gaze can be used to signal the beginning and end of a speaking turn

in social interaction (Ho et al. 2015a). To establish more natural dialogues with

humans, a conversational agent’s ability to direct attention to the most appropriate

target in a multimodal interaction is important (Norris 2004). Bousmalis et al. (2009)

presented cues such as head nodding and smiles, and Hunyadi (2019) used gestures

but did not include gaze while investigating the temporal patterns of non verbal

cues to study agreement and disagreement.

Previous studies tend to focus on either social functions of gaze (e.g., turn-taking or

other interaction management (Jokinen et al. 2013)) or how gaze is used in reference

resolution (Kontogiorgos et al. 2018), with few researchers combining these. Hence in

Chapter 2, we explore the social, referential and pragmatic aspects of gaze in human-

human interaction with an eye towards their future implementation in human-robot

interactions.

Argyle and Cook (1976b) showed that listeners display longer sequences of uninter-

rupted gaze towards the speaker, while speakers tended to shift their gaze towards

and away from the listener quite often. Later work has refined these observations,

with, for instance, Rossano (2013), noting that these distributional patterns are de-

pendent on the specific interactional activities of the participants; for example, a
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Figure 1.1: Illustration I

more sustained gaze is necessary in activities such as questions and stories, since

gaze is viewed as a display of attention and engagement. Brône et al. (2017a) also

found that different dialogue acts typically display specific gaze events, from both

speakers’ and listeners’ perspectives.

Unaddressed participants also display interesting gaze behaviour showing that they

anticipate turn shifts between primary participants by looking towards the projected

next speaker before the completion of the ongoing turn (Holler and Kendrick 2015a).

This may be because gaze has a ‘floor apportionment’ function, where gaze aversion

can be observed in a speaker briefly after taking their turn before returning gaze

to their primary recipient closer to turn completion (Kendon 1967a; Brône et al.

2017b).



1.1. Human-Human Gaze Interaction 6

Figure 1.2: Illustration II

1.1.2 Gaze in Referential Context

In identifying an image on display by referring to “the painting of a night sky”, our

attention is drawn automatically to Illustration I (fig. 1.1)2 but not to Illustration

II (fig. 1.2)3 even without any necessary pointing gesture. The process of identifying

application-specific entities which are referred to by linguistic expressions is called

reference resolution.

One area in which multi-modal reference resolution has been previously studied is in

the context of sentence processing and workload. Sekicki and Staudte (2018) showed

that referential gaze cues reduce linguistic cognitive load. Earlier work, Hanna and

Brennan (2007), showed that gaze acts as an early disambiguator of referring ex-

pressions in language.

Campana et al. (2002) proposed to combine the reference resolution component

of a simulated robot with eye tracking information; they intended to deploy it on

the International Space Station. However, they did not address the integration of

eye movements with speech. Also, eye-gaze information was used only in case of

inability to identify unique referenced objects. Zhang et al. (2004) implemented

2. https://www.pinterest.com/pin/717268678124480359/
3. http://www.digitalpicturezone.com/digital-photography-tips-and-tricks/taking-
photos-in-the-mid-day-sun/

https://www.pinterest.com/pin/717268678124480359/
http://www.digitalpicturezone.com/digital-photography-tips-and-tricks/taking-photos-in-the-mid-day-sun/
http://www.digitalpicturezone.com/digital-photography-tips-and-tricks/taking-photos-in-the-mid-day-sun/
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reference resolution by integrating a probabilistic framework with speech and eye-

gaze; results showed an increase in performance. They also found that reference

resolution of eye-gaze could also compensate for lack of domain modelling. Visual

input has a immediate effect on language interpretation like reference resolution.

In humans, gaze has evolved to play a central role in social communication and

interaction. Humans have highly developed visual systems and the ability to direct

their gaze in a controlled manner, which allows us to convey a wide range of social

and emotional messages through gaze behavior (Bailey et al. 2009; Harwerth et al.

1986). This is thought to have been important for the development of language,

as well as for the formation and maintenance of social relationships (Brooks and

Meltzoff 2005; Abele 1986).

1.1.3 Cultural Differences in Gaze Behaviour

Gaze behavior can vary across cultures, reflecting differences in social norms and ex-

pectations for eye contact and other aspects of gaze (McCarthy et al. 2008; Haensel

et al. 2022). In Western cultures, direct eye contact is often seen as a sign of at-

tentiveness and sincerity, while avoiding eye contact can be interpreted as a sign of

dishonesty or disinterest (Uono and Hietanen 2015; Akechi et al. 2013).

In some Asian cultures, direct eye contact is not as highly valued, and it may be

seen as impolite or aggressive to maintain eye contact for too long (Yuki et al. 2007).

Instead, these cultures may place more value on looking down or averting the gaze

in certain social situations. In some indigenous cultures, gaze can be used as a form

of nonverbal communication, and individuals may use their gaze to convey respect,

challenge, or other social messages (Matsumoto and Hwang 2016; Adetunji and Sze

2012).
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These cultural differences in gaze behavior can have important implications for social

interaction and communication, and it is important for individuals to be aware of

and respect the cultural norms and expectations for gaze in the context in which

they are communicating. While the cultural differences in gaze behavior exist, they

are not absolute and can vary within a culture based on individual differences and

situational factors.

Robots need to be sensitive to these cultural cues and adapt their gaze behavior to

align with local expectations. In conversational dynamics, the role of gaze in turn-

taking can vary across cultures. Some cultures may expect consistent eye contact

during conversations, while others may interpret constant eye contact as impolite or

confrontational (Marchesi et al. 2023). Implementing machine learning algorithms

can help robots learn and adapt their gaze behavior over time based on user interac-

tions and cultural context. This adaptive capability enables robots to improve their

cultural sensitivity and effectiveness in various settings.

1.1.4 Gaze in Decision Making

Eye-gaze plays a significant role in human decision making. Research has shown

that people pay attention to the gaze direction of others and use it as a cue to

determine demonstrate their own beliefs and intentions (Frischen et al. 2007). In

social situations, people often rely on eye-gaze to infer the emotional state and

mental state of others, and to understand social norms and expectations (McKay

et al. 2021). For example, if someone is looking at you while they are speaking,

it can signal that they are engaged and paying attention to you, while if they are

looking away, it can indicate that they are distracted or not interested. eye-gaze can

also influence our own behavior and decisions. For example, if someone is looking

at us in a certain way, it can influence our confidence levels, our perception of the

situation, and our decisions about what to do next (Smith and Krajbich 2019).
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In some species of primates, such as chimpanzees and bonobos, eye-gaze can be

used as a means of communication and to establish dominance or cooperation. In

these species, making eye contact with another individual can signal aggression or

submission, and the direction of gaze can be used to negotiate social relationships

and determine which individual is in charge (Fröhlich et al. 2016). In other species,

such as dogs, eye-gaze can play a role in communication and bonding. For example,

dogs will often look at their owners to get their attention or to understand what

is expected of them (Koyasu et al. 2020). In birds, eye-gaze can be used to assess

the dominance of potential mates or to signal readiness to mate (Dawkins 2002). In

many species, eye-gaze can also play a role in decision making by helping animals

to determine where to focus their attention and what actions to take in response to

potential threats or opportunities in their environment.

Artificial agents, such as robots and artificial intelligence systems, have been de-

signed to simulate animal or human-like behaviors, including eye-gaze. However,

compared to humans and non-human animals, the ability of artificial agents to use

eye-gaze in decision making is limited and still in its early stages of development.

Current artificial agents are capable of detecting and tracking the gaze direction of

individuals, and can use this information to make simple decisions, such as decid-

ing where to direct their attention or which objects to focus on. This is an area of

ongoing research and development, as researchers aim to develop artificial agents

that are more capable of mimicking human-like gaze behavior and decision making

(Hortensius and Cross 2018).

1.1.5 The Interaction of Gaze and other Non-Verbal Signals

During laughter, gaze behavior can provide important social cues and signals to

others, indicating a person’s level of engagement and interest in a conversation or

situation (Grammer 1990). For example, people tend to make more eye contact with

others while laughing together, which can help to build rapport and strengthen

social bonds. This can be especially true in situations where laughter is used to
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signal agreement, intimacy, or shared enjoyment (Glenn 2003). In some cases, gaze

behavior during laughter may also reflect a person’s level of comfort or discomfort

in a given social context (Gironzetti et al. 2016). People who are laughing nervously

may avoid eye contact, which can signal that they are uncomfortable or unsure

about the situation. On the other hand, people who are comfortable and confident

may engage in direct eye contact while laughing, which can be perceived as a sign

of dominance or assertiveness (Sporer and Schwandt 2007). In these cases, gaze

behavior during laughter may also play a role in establishing and maintaining power

dynamics within a group.

Laughter and gaze have an important role in managing and coordinating social

interactions. In Chapter 3, using a multimodal corpus of dyadic taste-testing in-

teractions, we explore whether laughs performing different pragmatic functions are

accompanied by different gaze patterns towards the interlocutor, both from the point

of view of the laughing participant and from the partner. Chapter 3.3, describes how

we investigate the role of gaze in laughter coordination between interactants. Our

results (as elaborated in chapter 3.4) show that laughs performing different prag-

matic functions are related to different gaze patterns, both for the laugher and her

partner, and that gaze is an important cue exploited by interactants when reciproc-

ating laughter or laughing simultaneously. We discuss our data in relation to the

literature about laughter and gaze functions in interaction, linking them to dialogic

context (ref chapter 3.5). The results stress the importance of laughter and gaze for

modeling of multimodal meaning construction and coordination in interaction, and

are therefore relevant for researchers designing human-like embodied conversational

agents.
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1.2 Gaze Estimation
The second strand of work in this thesis concerns gaze automation. Gaze estimation

evaluates human intent and interest by measuring the gaze of the human eye. The

roots of human gaze estimation and eye-tracking trace back to the 18th century

when researchers employed invasive eye-tracking techniques to observe eye move-

ments (Kar and Corcoran 2017; Khan and Lee 2019). However, with the advance-

ments in digital signal processing and computer vision, non-invasive gaze estimation

approaches have become more prevalent, leveraging unique physical characteristics

of the eye (Chennamma and Yuan, 2013). The photometric and motion character-

istics of the human eye have proven crucial in providing the necessary features for

this task (Akinyelu and Blignaut, 2020). Gaze estimation involves two key metrics:

gaze direction and point of gaze. Gaze direction is determined by the visual axis,

which deviates from the optical axis. Eye properties such as the pupil and corneal

reflection, extracted from eye regions, are utilized at the application level to ascer-

tain gaze direction. Subsequently, the gaze point is defined as the intersection of the

gaze direction and the object’s surface.

Automatic gaze analysis develop methods for estimating the position of the target

objects, by tracking the movements of the eyes (Valenti et al. 2011). An accurate

technique should be able to separate gaze while withstanding a wide range of dif-

ficulties, such as identity bias, occlusions, eye-head interplay, lighting fluctuations,

and eye registration errors. Moreover, studies have demonstrated how human gaze

follows an arbitrary trajectory when eye moves, which adds another level of diffi-

culty to gaze estimation (Alnajar et al. 2013; Saran et al. 2018). The main focus here

is to accurately identify the gaze direction on intended objects using state-of-the-

art machine learning approaches. Gaze analysis has three components: registration,

representation, and recognition.
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The identification of the eyes, or eye-related critical areas, or maybe even simply the

face, is the initial step, or registration. Eye-tracking technology is commonly used

for registration (Chung et al. 2005), employing techniques such as infrared light to

monitor the position and movement of the eyes (Ramdane-Cherif et al. 2004). The

goal is to accurately register the gaze points and track the eye movements over time.

Registration is crucial to establish a foundation for further analysis. Accurate data

captured during this stage ensures that the subsequent representations and inter-

pretations are based on reliable information. Representation involves the conversion

of raw gaze data into a meaningful and understandable format. The raw gaze data,

often in the form of coordinates or sequences of points, is processed and transformed

into visualizations or representations (Duchowski 2018). These representations may

include gaze plots, heatmaps, or gaze path diagrams, providing a visual summary of

where the person looked and for how long. By representing gaze data visually, re-

searchers and analysts can gain insights into patterns, trends, and areas of interest.

Visualization aids in the interpretation of the data and helps communicate findings

more effectively. Recognition is the final stage where the interpreted gaze data is

used to infer or recognize specific behaviors, intentions, or cognitive processes. Ad-

vanced algorithms and models are applied to analyze the gaze patterns and make

inferences about the person’s cognitive or visual attention. This may involve identi-

fying points of interest, understanding reading patterns, or recognizing emotional

states based on gaze direction. Recognition enables a deeper understanding of the

individual’s cognitive processes and behaviors. This information can be valuable in

various fields, including human-computer interaction, psychology, marketing, and

user experience design.

In chapter 4, we develop an automated system for analyzing visual scenes, by ex-

tracting gaze direction and target information in the scene simultaneously (such as

turn taking, joint attention, gaze following, gaze aversion and mutual attention) in

a natural dyadic interaction. We propose a model that utilizes the manual annota-

tion of gaze targets in a natural dialogue setting and generate simultaneous gaze
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prediction for both parties in the video, along with attention heatmaps that provide

exclusive information of the target object-of-interest in the scene, by also provid-

ing out-of scene gaze predictions. The novel tool presented can assist in automatic

extraction of gaze data for both AI/HRI applications and clinical/psychological re-

search. There is currently no single dataset that covers all of the different gaze and

scene combinations that we address in this chapter.

Currently, robotic gaze systems are reactive in nature but the proposed Gaze-

Estimation framework can perform unified gaze detection, gaze-object prediction

and object-landmark heatmap in a single scene, which paves the way for a more

proactive approach. We generated 2.4M gaze predictions of various types of gaze in

a more natural setting (GHI-Gaze). The predicted and categorised gaze data can be

used to automate contextualized robotic gaze-tracking behaviour in interaction. We

evaluate the performance on a manually-annotated data set and a publicly available

gaze-follow dataset. Compared to previously reported methods our model performs

better with the closest angular error to that of a human annotator. Existing baseline

methods and the data that was generated covers different categories of gaze. Fur-

thermore, we discuss the ethical implications and considerations of the study and

propose an implementable gaze architecture for a social robot.

The majority of classic gaze analysis models rely on customised low-level attributes

(such as colour, shape, and appearance) and specific geometrical algorithms in order

to get beyond their restrictions and handle typical unconstrained scenarios. Similar

to other computer vision tasks, gaze analysis has seen a change in methodology since

2015, with a shift towards deep learning. Over the past several years, the difficulties

related to variations in illumination, camera setup, eye-head interaction, etc., have

significantly decreased due to deep learning-based models and the availability of

massive training datasets.
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Figure 1.3: Gaze estimation approaches

1.2.1 Gaze Estimation Approaches

As discussed in the previous section, while there are many eye-gaze estimate systems

available, they are costly, unreliable, requiring human intervention, and inaccurate

in real-world applications. Additionally, certain conventional methods’ performance

is restricted by things like poor image quality and lighting. Deep Learning (DL)

based eye-gaze estimation techniques are useful in these situations because of their

high accuracy, flexibility, automation, learning from pre-existing data, and improved

decision-making. Prevalent deep learning methods have demonstrated efficacy in

enhancing performance in eye gazing applications (Sangeetha 2021). Model-based

and appearance-based techniques are the two main categories into which human

gaze estimation methodologies can be divided (Azad et al. 2006).
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1.2.2 Model-Based approaches

In order to manually regress the eye features and create a geometric model, model-

based methods essentially require specialised equipment, such as near-infrared (NIR)

cameras (Kar and Corcoran 2017). This approach is limited to confined spaces and

person-specific (Akinyelu and Blignaut 2020).

1.2.3 Appearance-Based Approaches

Due to outstanding resilience and applicability in unconstrained situations, gaze es-

timation approaches based on DL techniques have garnered significant attention in

the last ten years in the eye-tracking field. Appearance-based methods are neither en-

vironment or device-specific and do not require special equipment. These techniques

can be further classified into appearance-based methods using DL and standard

appearance-based techniques.

The ability to extract high-level gaze cues from images and the capacity to learn a

non-linear mapping function directly from the image to eye-gaze are only a couple

of the advantages that DL-based methods have over traditional appearance-based

approaches (Cheng et al., 2021; Kellnhofer et al., 2019). Due to their capacity to map

image features directly, manage large-scale datasets, and learn complex non-linear

mappings when challenged by significant head-pose variations, eye occlusions, and

lighting conditions, deep convolutional neural networks (DCNN) have been used in

nearly every DL-based gaze estimation approach.

The primary appearance-based approaches using DL, can be further subdivided

into two groups according to the quantity of subjects: single-user gaze estimate and

multi-user gaze estimation. The need for multi-user gaze estimation methodologies

is growing, even if there has been a notable change in gaze estimation strategies

towards unconstrained situations. By the end of 2021, only a small number of these

techniques had been studied, including time and space-shifting single-user gaze es-

timation.
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Multi-user gaze estimate is primarily needed in open environmental situations like re-

tail stores, public meeting places, and public arenas, as opposed to traditional single-

user gaze estimation. Therefore, it calls for reliable, high-speed, low-overhead gaze

measurement techniques. Time-sharing approaches and space-sharing approaches

comprise the two types of existing multi-user gaze estimation studies (Pathirana

et al. 2022; Zhang et al. 2019). The number of users is dispersed across a cer-

tain amount of time using the time-sharing mechanism. However, the space sharing

method processes more than one user concurrently. Owing to their limited scalabil-

ity and lack of resilience, time-shifting techniques have not received much attention

in the literature.

1.2.4 Calibration-Free Approaches

Calibration-free gaze estimation aims to determine where a person is looking without

the need for an extensive calibration procedure (Alnajar et al. 2013). Traditional gaze

estimation systems often require users to undergo a calibration process, where they

follow a set of visual targets to establish a mapping between their eye movements

and the corresponding gaze directions. Calibration-free approaches seek to eliminate

or minimize this calibration step, making gaze estimation more user-friendly and

applicable in various scenarios.

Pupil center methods estimate gaze direction based on the position of the pupil in

the eye images (Zhang et al. 2011; Wan et al. 2021). These methods often assume

a fixed relationship between the gaze direction and the position of the pupil center.

Corneal reflection methods utilize the corneal reflections (purkinje images) in the

eyes to estimate gaze direction. The relative positions of these reflections in the eye

images can be used to infer the gaze point. Meanwhile, synthetic data generation

involves training deep learning models on synthetic datasets that simulate a wide

range of gaze directions and eye appearances (Trampert et al. 2021). By training on

diverse synthetic data, models can potentially generalize well to real-world scenarios

without the need for user-specific calibration.
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1.2.5 Non-Intrusive Methods

Remote gaze estimation techniques use external sensors, such as cameras, to estim-

ate gaze direction without any physical contact with the user. These methods are

more user-friendly and applicable in various scenarios. Video-based eye tracking uses

webcams and RGB cameras to capture images or videos of the user’s face and eyes.

Computer vision algorithms analyze the images to track eye movements and estim-

ate gaze direction. This method is non-intrusive as it doesn’t require any specialized

hardware. Infrared-based eye tracking uses infrared light which is often invisible

to the human eye but can be detected by specialized cameras. These systems use

infrared light sources and cameras to capture eye movements.

Depth cameras (e.g., Kinect) provide information about the distance of objects in

the scene, by combining depth information with RGB data, these cameras can cap-

ture the three-dimensional position of the eyes and face, enabling gaze estimation

without physical contact. Integrated eye-tracking sensors are smart glasses and

head-mounted displays that come with built-in eye-tracking sensors, often based

on infrared technology. These sensors track eye movements and can estimate gaze

direction without requiring additional external cameras or sensors.

Remote photoplethysmography (rPPG) measures variations in skin color caused

by blood flow. By analyzing subtle color changes in the face, particularly around

the eyes, it’s possible to estimate heart rate and, to some extent, gaze direction.

While not as precise as dedicated eye-tracking methods, rPPG is non-intrusive and

can provide additional context. Electrooculography (EOG) measures the electrical

potential generated by eye movements. While traditional EOG involves placing elec-

trodes on the skin around the eyes, newer non-contact methods, such as using ca-

pacitive sensors, are being explored for gaze estimation.
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1.3 Human-Robot Gaze Interaction
In human-robot interaction, the robot’s gaze behavior can be used to signal its

intentions and attention, making it easier for humans to understand what the robot

is trying to communicate. For example, a robot that maintains eye contact while

speaking can signal that it is paying attention to the person and actively engaged in

the conversation. On the other hand, if the robot avoids eye contact or looks away

frequently, it can signal that it is not fully engaged or is distracted. Gaze behavior

can also be used to direct the attention of the human towards specific objects or

areas. For example, a robot that points its gaze towards an object can signal to the

human that the object is important or relevant. This can be particularly useful in

tasks where the robot needs to guide the human’s attention, such as in a museum

tour or a training scenario.

Anthropomorphism is frequently used in the domains of human-robot interaction to

enhance users comfort with machines. Assigning human characteristics to robots in

an effort to reduce the complexity of technology provides an extra measure of com-

fort (Marakas, Johnson, Palmer, 2000; Moon Nass, 1996). ”Face-to-face” interactions

are still regarded as the gold standard of communication whether communicating

with people or conversational agents, even though interactions between humans in-

volve many subtle social cues (Adalgeirsson Breazeal, 2010). Therefore, in order to

be regarded as socially intelligent partners in interactions, agents must use anthro-

pomorphic designs and a diverse range of social behaviours.

These components are used by a large number of social robots, particularly those

with human-like designs, and they enable the creation of non-verbal social beha-

viours during interactions with people (Fong, Nourbakhsh, Dautenhahn, 2003). Nu-

merous behavioural components, such as subtle facial expressions and gaze move-

ments, are crucial for contextualised human conversational contexts. The fact that

a lot of known information is stored in the non-verbal signs that are being transmit-

ted makes face-to-face interaction desirable. Nevertheless, creating and deciphering
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these cues results in increased cognitive burden, which could lengthen interaction

times. This shows that conversational agents that resemble humans and are able to

convey predictable nonverbal behaviours may facilitate social interactions in users

but may be less effective at completing tasks.

Chapter 5 investigates whether interactive behaviour can be altered by a human-like

face (a social robot) that can convey nonverbal cues as opposed to conversational

agent (a smart speaker) that does not make use of these multimodal aspects. Our

contribution is a user research in which participants engaged in conversation with a

social robot with and without gaze cues. In order to better understand the implica-

tions of the comparison, we compare the social robot’s non-verbal conduct in three

conditions and investigate whether various social eye-gaze characteristics contribute

to the observed differences.

In addition to gaze behavior, robots can use other nonverbal cues, such as head and

body movements, to enhance their communication and interaction with humans.

These cues can provide additional information about the robot’s emotional state

and intentions, making it easier for humans to understand what the robot is trying

to communicate. Gaze behavior can be artificially applied in a variety of ways to

enhance the capabilities of artificial agents and make them more effective in their

tasks.

1.3.1 Human-Robot Interaction

Gaze behavior can be used to make robots more effective in communicating and

interacting with humans. For example, a robot that can mimic human gaze patterns

can make it easier for people to understand what it is trying to communicate.
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1.3.2 Object Tracking

Gaze behavior can be used to track and identify objects in an environment. For

example, a robot equipped with gaze tracking can identify and track a moving object,

such as a ball or a person, and use that information to make decisions about what

actions to take. Multimodal perception and sensor fusion techniques have long been

established, but in recent years, there has been a surge of interest primarily driven

by the growth of smart environments and sensor networks, particularly those found

in autonomous or semi-autonomous vehicles. Various approaches to multi-sensor

data fusion can be categorized into high-level fusion (HLF), low-level fusion (LLF),

and mid-level fusion (MLF). LLF and MLF strategies involve integrating data from

different sensors to facilitate collaborative detection and tracking, ultimately leading

to the creation of shared perceptual maps. For instance, one approach (Luiten et al.

2020) combines optical flow, scene flow, stereo-depth, and 2D object detections to

track objects in 3D space, while another proposed method (Kim et al. 2021) focuses

on 2D and 3D bounding box detection to develop a more scalable fusion system.

The implementation of this system is to identify objects and individuals to facilitate

interaction for social robots (Cruces et al. 2022).

1.3.3 Attention Allocation

Gaze behavior can be used to determine where an artificial agent should direct its at-

tention. For example, an AI system equipped with gaze tracking can use information

about where a person is looking to determine which parts of an image or video to

focus on. It is an important aspect of perception and decision making, as it enables

individuals to prioritize information and attend to the most important or relevant

stimuli. Within the framework of CORTEX (Cognitive Robotics Architecture), ex-

ists a unified and dynamic working memory known as Deep State Representation

(DSR). This mechanism captures information across various levels of abstraction,
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ranging from raw perceptual data to high-level symbols and action plans. DSR serves

as a short-term dynamic representation of both internal factors like inner state and

proprioception, as well as external elements such as environmental data, objects, and

individuals within the surroundings for attention allocation (Bustos et al. 2019).

1.3.4 Emotion Recognition

Gaze behavior can be used to recognize and understand human emotions. An AI

system equipped with gaze tracking can use information about where a person is

looking to determine their emotional state and make decisions about how to respond.

An individual who is happy and engaged in a conversation might maintain eye

contact, while someone who is feeling uncomfortable or sad might avoid eye contact

or look down frequently. Similarly, changes in gaze direction and patterns can be

indicative of other emotions, such as anger, fear, or surprise.

1.3.5 Importance of Gaze in Human-Robot Interactions

1. Trust and credibility: A natural and convincing gaze behavior can help to in-

crease the trust and credibility of artificial agents in the eyes of users. By making eye

contact, nodding, and gesturing, artificial agents can convey a sense of engagement

and attentiveness that is similar to human behavior. 2. Empathy and emotional

connection: Gaze behavior can also help to create a sense of empathy and emotional

connection between users and artificial agents. By using gaze to convey emotions,

such as smiling or frowning, artificial agents can appear more human-like and foster

a stronger emotional bond with users. 3. Attention and interaction: Gaze can

also be used to direct the attention of users and facilitate interaction. For example,

an artificial agent may use gaze to signal that it is ready for a user’s input or to

indicate that it is paying attention to a user’s conversation. 4. Social cues and
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context: Gaze behavior can also provide important social cues and context that

help to guide interactions between users and artificial agents. For example, an arti-

ficial agent’s gaze behavior may change depending on the type of interaction, such

as providing information, asking a question, or providing feedback.

1.4 Experimental Evaluation of Human-Robot Gaze

Perception
The Chapter 5 of the thesis examines the role of gaze automation within social

robots, highlighting its significance in promoting more engaging, intuitive, and ef-

fective interactions between humans and robots. It emphasizes the importance of a

robot’s ability to control its gaze, encompassing aspects such as where it looks, how

it looks, and when it looks, as essential for establishing natural and meaningful com-

munication with users. Through a comprehensive review of existing literature, the

chapter emphasizes the impact of human-like behavior in robots on people’s percep-

tions, focusing particularly on the establishment of trust, rapport, and engagement

through appropriate eye contact.

The objectives of the study encompass implementing different gaze patterns in so-

cial robots, experimentally evaluating the impact of these patterns on human-robot

interaction, and analyzing how specific gaze patterns correlate with users’ percep-

tions and experiences. Through rigorous experimental investigation and analysis, the

chapter aims to shed light on the intricate dynamics of gaze behavior in human-robot

interaction, ultimately paving the way for more effective and natural interactions in

diverse contexts.

Chapter 5, investigates whether different gaze patterns from a Furhat robot can lead

to more effective, natural and engaging interactions. The results indicate that gaze

manipulations based on gaze patterns from human-human interaction positively im-

pact user perceptions compared to the neutral and random conditions. Participants
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rate the anthropomorphism and animacy of the robot in the experimental condi-

tions and the findings contribute to understanding the impact of robot gaze on user

perceptions and engagement, offering insights for the design and improvement of

interactive social robots.

Moreover, it highlights how gaze behavior serves as a potent nonverbal communic-

ation tool, enabling robots to convey intentions, emotions, and social cues, thereby

facilitating more seamless and intuitive interactions. The research aims to contribute

significantly to the field by assessing various gaze patterns and their implications on

interaction quality and engagement.





Chapter 2

An Annotation Approach for
Social and Referential Gaze in

Dialogue

This chapter of the thesis introduces an approach for annotating eye-gaze consider-

ing its social, referential and pragmatic functions in multi-modal human dialogue.

As we discussed in the previous chapter, to assess gaze patterns it is essential to

obtain quantitative temporal data in order to draw implications. This is achieved

by providing novel observations that can be executed in a machine to improve mul-

timodal human-agent dialogue. Gaze is an important non-verbal social signal that

contains attentional cues about where to look and provides information about oth-

ers’ intentions and future actions. Detecting and interpreting the temporal patterns

of gaze behaviour cues is a natural and mostly unconscious process for humans.

However, these cues are difficult for conversational agents such as robots or avatars

to process or generate. It is key to recognise these variants and carry out a successful

conversation, as misinterpretation can lead to total failure of the given interaction.

This chapter introduces an annotation scheme for eye-gaze in human-human dy-

adic interactions that is intended to facilitate the learning of eye-gaze patterns in

multi-modal natural dialogue. In this work, various types of gaze behaviour are an-

notated in detail along with speech to explore the meaning of temporal patterns in

24
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gaze cues and its co-relations. Considering that 80% of the total stimuli perceived

by the brain is visual (Kamitani and Tong 2005), gaze behaviour is complex and

challenging; hence, implementing human-human gaze cues in an avatar/robot could

improve human-agent interaction and make it more natural.

The following section of the chapter provides a detailed understanding of gaze be-

haviour in different situations by proposing an annotation paradigm to annotate

where people look and what they say during a conversation. Is it possible to predict

where a person would look when they speak based only on their eye movements?

Do we share a typical pattern of gaze when we speak and how does these patterns

evolve to affect where the attention is drawn? After annotating the conversations, an

analysis is conducted to see how eye movements relate to speech such as observing

when people start or stop looking at each other while talking, and how this relates

to what is being said. For example, looking away during a conversation could mean

someone disagrees with what is being said.

2.1 Functions of Gaze

2.1.1 Interaction of Social and Referential Functions

One of the main reasons to look into someone’s eyes is to determine their intended

goal, since the eye direction of a person reliably signifies what they are going to act

upon next. In an experiment (Phillips et al. 1992), eye contact was investigated in

young normal infants who observed adults performing actions with ambiguous or

unambiguous interpretations and found instant eye contact for ambiguous actions

but rarely with unambiguous actions.

The phenomenon of ‘eye contact effect’, moderates certain facets of concurrent/immediately

following cognitive processing (Senju and Johnson 2009). Developmental studies

demonstrate proof of preferential orienting and processing of faces by means of dir-

ect gaze from early in life. The ability of 2- to 5 day old newborns to discriminate



2.1. Functions of Gaze 26

direct and averted gaze was tested to measure the brain electrical activity to assess

neural processing of faces when accompanied by direct (as opposed to averted) eye-

gaze. The results illustrated that from birth human infants prefer to look at faces

that engage them in mutual gaze and that, from an early age, healthy babies show

enhanced neural processing of direct gaze (Farroni et al. 2002).

By the 4th week infants fixate and smile at eyes (Argyle and Cook 1976a). This

visual interaction between the newborn and caregiver plays a major role in develop-

ing attachment (Nijenhuis and Bouchard Jr. 2007). The earliest gaze behaviours act

as a foundation to build nonverbal and verbal communicative or social behaviours in

later stages (Gillberg 1998). A visual attention cueing paradigm was used to study

gaze in 2 year old children which consisted of eye movements and non-biological

movements, the results suggested that the visual attention is cued by perceived eye

movements (Chawarska et al. 2003). While on the other hand low-confidence con-

scious meta-cognitive knowledge and unconscious meta-cognitive knowledge through

eye-gaze was measured in 3-5 year old children (Ruffman et al. 2001) which estab-

lished that they were not aware of the knowledge conveyed through their eye-gaze.

Children develop an increased understanding of social information and intentions

carried through dynamic facial cues mainly changes in eye-gaze direction during

middle childhood (Mosconi et al. 2005). Hence, it becomes exceedingly important

to understand gaze behaviours for improving interactions involving robots/avatars.

2.1.2 Importance of Gaze Interaction in Dialogue

Many of the difficulties in interacting with robots/avatars have been attributed to

the “uncanny valley” effect which hypothesizes that there is a relationship between

the degree of an object’s resemblance to a human being and the emotional response

to it (Mori 2020). Several studies have been working on finding approaches that

overcome the “uncanny valley” effect, but the focus on the appearance of a robot

leaves a missing part that is the influence of non-verbal behaviour.
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Thepsoonthorn et al. (2021) conducted an experiment to determine the relationship

between the perceived human-likeness of a robot and participants’ affinity towards it.

Participants were asked to interact with a robot with different non-verbal behaviours

ranging from no non-verbal behaviour (speaking only) to a model capable of gaze,

head-nodding, and gestures. Results showed that for fixation duration there was a

biphasic relationship between affinity and human likeness, with the longest fixation

durations observed when the robot expressed non-verbal behaviours.

Terzioğlu et al. (2020) showed improvement in likeability and perceived sociability

by using interactive gaze cues alone. Hence, in the design of social robots or un-

derstanding of human-robot interactions, the multifaceted robotic visual perception

understanding of how to (and how not to) use social cues such as gaze becomes

increasingly important.

Social cues can convey social information, such as attention, interest, agreement,

dominance, and intimacy (Burgoon and Le Poire 1999). Eye contact, for example,

is often seen as a sign of engagement and interest in a conversation, while avoiding

eye contact can be seen as a sign of discomfort, dishonesty, or disinterest (Phutela

2015). Gaze can also be used as a way of signaling interest. Mutual gaze and lingering

eye contact are often seen as signs of romantic interest (Moore 2010). Researchers

have studied cognitive processing underlying gaze intend using eye tracking techno-

logy where individuals look at visual information in order to gain insight into their

thought processes and decision-making strategies (Newell and Shanks 2014).

Social eye-gaze encompasses various intentional and expressive eye movements, in-

cluding gaze aversions that may convey thoughtfulness. It also includes eye move-

ments that serve a purpose during interactions, even if not explicitly communicative,

such as when a child or a robot adjusts its view towards an object of interest, as long

as these movements might be noticed by others. However, social eye-gaze doesn’t

involve eye movements that typically go unnoticed during social interactions, like

isolated gaze actions, reflexive stabilization of one’s viewpoint (vestibulo-ocular re-

flex), or visual processing routines that don’t change the focus of the camera.
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Figure 2.1: Session in progress (Original Scene)

In this context, several types of eye-gaze used in this thesis are defined as follows: a)

Mutual gaze, often known as “eye contact” involves directing one’s gaze towards

another person’s eyes or face, with reciprocation. Gazing at someone’s face without

receiving it in return does not constitute mutual gaze. b) Referential gaze, or

deictic gaze, is when one’s gaze is directed at an object or a specific location in space.

This gaze can sometimes coincide with verbal references to the object but doesn’t

necessarily require speech. c) Joint attention involves sharing focus on a common

object. It starts with mutual gaze to establish attention, moves to referential gaze

to direct attention to the object of interest, and returns to mutual gaze to ensure

a shared experience. d) Gaze aversions are shifts of gaze away from the primary

point of focus, often a partner’s face. These aversions can occur in various directions,

influenced by the purpose behind the shift.
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Figure 2.2: Speech and Gaze Annotation Labels

2.1.3 Human-Robot Gaze Interaction

Chevalier et al. (2019) showed human and robot faces as stimuli to participants and

demonstrated higher gaze attention for human faces compared to robot faces. These

were paralleled by attention processes obtained from (Wykowska et al. 2014) event-

related potentials (ERP’s) of Electroencephalography (EEG) as well as functional

Magnetic Resonance Imaging (Ozdem et al. 2017). These prior findings indicated

that the observed critical behavioural difference is mirrored by differential patterns of

activation in the bilateral anterior temporo-parietal junction (TPJ) which is typically

involved in attentional reorienting as well as mentalizing. It is important to note

that the perceptional difference is because of lower gaze-cueing rather than the

appearance of the robot itself.

Despite, the development of the new generation perception devices such as Kinect

and gaze control systems implemented on a FACE humanoid social robot, which also

included multimodal features like field of view, proxemics, verbal and nonverbal cues

from the environment, the robot still does not direct its gaze appropriately and lacks

the gaze-coordination required for smooth interaction (Zaraki et al. 2014).
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Yun (2016) proposed a hybrid approach, a computational model for selecting a suit-

able interlocutor for robots containing gaze control and perceptual measures for

social cues in a multiparty situation. Physical space and conversational intimacy

were the two factors that were added to the model calculation for controlling for

the social gaze control effect. Although some research has been done to understand

the attention processes and their implementation in smart devices, the effects of

temporal difference between gaze cues such as joint attention, mutual attention, ref-

erential attention, gaze aversion and gaze transition in social setting of spontaneous

interactions has not been studied before (Khan et al. 2016).

2.2 Research Questions
Our motivation for designing a new type of gaze annotation is to make progress on

answering the following research questions:

• Annotation: Is it feasible to annotate eye-gaze and elements of dialogue? Is

this type of annotation useful for machine learning systems?

• Given some annotations, is it possible to predict, for example, dialogue acts,

turn-taking or reference based on eye-gaze alone?

• Are there specific gaze patterns pertaining to different speech acts, and what

influences them?

• What are the temporal patterns of gaze, and what do they look like?

• Can gaze inform or predict speech, and how does speech influence gaze?

• What are the qualitative and quantitative findings that could help build a bet-

ter model of gaze in dialogue for a conversational robot or avatar to interpret

human gaze behaviour and produce human-like gaze behaviour?

Answers to these research questions will contribute both to understanding the

cognitive neuroscience of language and to the development of improved human-

computer interaction.
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2.3 Reviewing Gaze Annotation in Multi-modal

Interaction
Research focusing on multi-modal interaction needs high quality annotation in order

to obtain a detailed view of the interaction between visual, verbal and bodily fea-

tures. A number of projects are interested in collecting and annotating video data

due to increase in its demand. The current dyadic interaction experiment proposes

a new form of annotation schema.

In the past five decades, the measurement of gaze points and eye movements with

eye-tracking techniques during online behaviour has influenced multiple areas of

research in psycholinguistics and psychology (Bhattacharyya 2018). This type of

study mainly explores eye-gaze as a measure of cognitive processing with participants

who are provided with a physical stimulus (e.g., picture or passage on a screen).

There has been significantly less attention given to the role of eye-gaze in production,

particularly in identifying the communication function of gaze and its ties to co-

occurring utterances (Ho et al. 2015b).

The CID corpus (Bertrand et al. 2006) for interactional data in French is a corpus

with single camera perspective profile view with a disadvantage of restricting access

to gaze. Camera frontal views are an unnatural environment for the conversation-

alist, losing the advantages of the traditional face-to-face setting, and limiting the

possibility of gaze-based interaction in dialogue. Corpora such as the Nottingham

Multimodal Corpus (NMMC), the Swedish Spontaneous Dialogue Corpus (Spon-

tal corpus), and the IFA dialogue video corpus (IFADV) in Dutch are examples of

multiple-angle recorded data, but they focus either on social function or only on

the referential functions (Brône and Oben 2014). In the current study, we combine

these two functions where reference is part of the interaction. This is more common

in a natural multi-modal dyadic dialogue and uses two cameras to gain access to

multiple angle interactions that allow analyses of fine-grained, reliable behavioural

features.
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In multi-modal interaction, this creates a new area of research into gaze as a directive

instrument or a disambiguation instrument and provides the opportunity to find

potential correlations between gaze, facial expressions, and gesture. The results of a

study (Jokinen et al. 2010) exploring non verbal signals for turn-taking and feedback

in direct face to face interactions revealed that the gaze, head movement, or gesture

primarily function as indexed signs linked to the whole context where they occur

rather than symbols which carry meaning.

2.4 Methods and Materials
This section describes the multi-focal and multi-modal dialogue corpus used for

annotation and presents the recording setup, task design, and annotation scheme

used to code speech and gaze.

2.4.1 Data

By using video recordings, we are able to study the interactional dynamics specific

to face-to-face dialogue along with understanding the collaborative processing and

production of language. Hence, during the recording session, participants had to

perform a collaborative task having a free range of conversations yielding natural

multi-modal interaction. The data contains explicit information of social and refer-

ential gaze since the dialogue is open ended and task requires joint attention while

performing the task.

Participants were twenty four dyads recruited from staff at the Good Housekeeping

Institute (GHI, a consumer product testing organisation in the UK1). In each session

a pair of participants taste-tested eight different types of hummus in the GHI test

kitchen (see figure 2.1), and provided ratings on a single (shared) questionnaire.

1. https://www.goodhousekeeping.com/uk/the-institute/

https://www.goodhousekeeping.com/uk/the-institute/
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They tasted and judged each product’s appearance, aroma, flavour and texture, then

provided a rating and described the product in three words by discussing with each

other and coming to an agreement. Hummus was rated on a 9-point Hedonic scale

ranging from dislike extremely to like extremely. Each session lasted for about 20-30

minutes and within this, participants organised their time themselves, e.g., deciding

how long to take for tasting and rating each hummus, switching freely, choosing

their strategies in performing the task and organising their interaction. The dia-

logues are task-directed rather than completely spontaneous. This type of dialogue

is ideal for our purposes as it allows the internal dynamics of the conversation to be

entirely free while the task creates an external trigger about which participants are

communicating, meaning that both referential and interactive aspects of gaze ought

to be present (which might not be the case in spontaneous dialogue as the topic

under discussion may not include any shared referents available to visual attention).

2.4.1.1 Recording Set-up

One important factor to be considered while annotating gaze is the duration of

gaze fixation on a respective entity. Since people switch between objects extremely

quickly the gaze behaviour may seem disorderly, so both directional and durational

information needs to be recorded for a reliable categorisation of gaze episodes. Figure

2.1 depicts the configuration of the recording. Static external cameras were fixed

with a profile and a frontal shot of each participant who sat at right angles to

each other enabling us to record a clear gaze, tracking face, hands and body from

multiple angles, resulting in a very rich representation of interaction providing access

to extensive variability of multi-modal cues.

The core data of the multi-modal video recording comes from these fixed cameras

that record the ongoing conversation, and the subjects are free to move and gestic-

ulate from where they are seated. Consent is taken from the participants to record

the complete session.
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2.4.1.2 Recording Devices

The set up required recording video from two perspectives (two cameras) and audio

signals via microphones (unidirectional microphones that pickup audio from the

respective speaker) which were worn by the participants.

• 2 fixed color cameras (JVC JY-HM360E Profesional HD camcorder, 1.56M

pixel LCOS Color Viewfinder and 920K pixel LCD Display)

• 2 microphones (Schertler Cello Microphone, Output impedance: 4.7 kOhm at

1 KHz, Frequency range: 20 - 20,000 Hz)

The fixed camera recordings and the wave-forms of the microphones were synchron-

ised prior to annotation.

2.5 Annotation

2.5.1 Annotation Tool

Data was annotated in ELAN (Berez 2007), a tool that provides a framework for

annotation of audio and video recordings. This enables us to have precise time-

alignments and hierarchically organise annotation tiers as outlined below. ELAN

records data in a stand-off XML format.

• ELAN : The audio and video files of each session are added to the software

separately, which contains profile and front shot of the participants showing the

two videos side by side, as shown in figure 2.3. The software is compatible for

using several video files along with the audio wave file. We used two video files

since each session had dyadic interactions. The video files were time aligned

to make sure the beginning of each videos were synchronized. These appear

next to each other on the left-top corner of the window right below the menu.

The audio file contains the waveform of the spoken speech and is convenient

to annotate the speech data. This file once uploaded appeared right below
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the videos. The software then has a blank space below to code the annotation

data where we encoded different different tiers separately for speech and gaze

along with the associated audio files. Because of several export options and

comparability it can be used for further statistical processing.

The synchronized videos were played to listen to the speech, then the beginning

the end of the utterance is marked accordingly and typed along the line of

the duration of the speech. The wave form file assisted in marking the onset

and offset of the utterances accurately. These were played again to double

check for errors. Speech of the dyads in each session were annotated in two

tiers as Speech1 and Speech2. Speech1 (S1) and Speech2 (S2) contains all the

utterances of participant 1 and 2 respectively during the session.

• Transcription: For the video transcription general norms and principles of

Gesprächsanalytisches Transkriptionssystem (GAT) were considered (Selting

et al. 1998). The orthographical transcription for each participant was done

in two separate tiers speech1 and speech2. These tiers contained metadata

indicating the beginning and end of the excerpt encoded with respective spoken

utterance per unit, in few occasions a short description of the interactional

context in unicode (<>) such as laughter, cough, uhm, etc.

2.5.2 Gaze Annotation

As shown in figure 2.3, gaze was annotated in six tiers.

1. Referential gaze (P1, P2) is gaze directed at an object or a location in

space. Gaze information of each participant was annotated in separate tiers,

as P1 and P2 (Participant1 and Participant2). The labels were the objects

in their shared visual field such as bowl of hummus (H), Questionnaire (Q),

breadstick (B), etc., or a location in space (Z).
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2. Joint attention (JA) is sharing attention focus on a common object (Mundy

2017). The overlap between P1 and P2 indicates where both participants are

fixating on the same thing in the shared visual field. This tier was generated by

temporal and object overlap of the P1 and P2 tiers. The excerpt was encoded

when both the participants attend to the same stimulus/fixate on a particular

object. During statistical analysis it becomes easier to understand on which

objects were the most or least fixations on.

3. Gaze1 and Gaze2 (G1, G2): For each participant, these encoded times they

were looking at their partner. Gaze1 is annotated as P2 when P1 is looking at

P2. Gaze2 is annotated as P1 when P2 is looking at P1.

4. Mutual attention (MA) is nothing but eye contact, it occurs when the gaze

of both conversationalists is drawn to each other’s face or eyes (Argyle et al.

1994). Mutual Attention is obtained by temporal overlap in G1 and G2.

5. Gaze aversions are the shifts in the the main direction of gaze that is away

from the partner’s face (Korkiakangas 2018). This was obtained by lack of

overlap in G1 and G2. This denoted P1 looking at P2, while P2 was looking

at something else, and vice versa.

Figure 2.3: ELAN Annotation
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Table 2.1: Annotation summary by duration (D). Tiers represent the various gaze
acts annotated for 11 minutes and 40 seconds. The Number of annotations, min-
imum, maximum, average, median, total Annotation duration are in seconds. An-
notation duration is a percentage of time spent on a specific gaze act during the
session.

Tiers # of Ann. Min D Max D Avg D Median D Total Ann. D Ann. D %
Speech1 157 0.29 4.32 1.13 0.87 177.68 25.37
Speech2 173 0.23 4.33 1.04 0.82 180.08 25.71
Gaze1 29 0.31 8.10 2.18 1.66 63.29 9.04
Gaze2 19 0.363 5.22 1.92 1.67 36.47 5.21
P1 232 0.23 25.91 2.69 1.56 624.15 89.11
P2 235 0.17 25.91 2.77 1.69 649.66 92.75
MA 3 1.00 1.69 1.33 1.31 4.00 0.57
JA 121 0.25 25.91 3.58 2.13 433.35 61.87

2.6 Preliminary Results
As shown in table 2.1, in the approximately 11 minutes 40 seconds of one dialogue

that has thus far been annotated, the participants had equal amounts of speech (157

versus 173 utterance events equal to 25/26% of the time each).

Interestingly, P1 spent somewhat more time looking at P2 than P2 did at P1 (9%

to 5%) and these looking events overlapped (such that the participants were looking

directly at each other) only on 3 occasions (see the MA row in table 2.1), and for

less than 1% of the total duration of the annotated interaction.

In line with Argyle and Cook (1976a) and Rossano (2012), the listener looked at

the speaker more frequently than the other way round (4.9% of the time compared

to 2.8% of the time). Further investigation of these eye-gaze events is needed to

see if they co-occur with particular dialogue acts or points where a floor change

may occur, as suggested by Brône et al. (2017b), but if so, this is potentially useful

information to a dialogue system.
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However, participants’ visual attention was far more often on one of the objects

in the shared visual field, such as the hummus or the questionnaire (P1 89%; P2

92%) with these annotations overlapping for 61% of the duration of the annotated

dialogues (JA) indicating that participants were looking at the same thing more

often than not. Interestingly, while both participants spent a lot of time looking

at both the hummus and the questionnaire (P1 H: 34%; P2 H: 36%; P1 Q: 40%;

P2 Q: 44%) they had joint attention on the questionnaire nearly twice as often as

the hummus (JA H: 20%; JA Q: 35%) showing how gaze behaviour is affected by

the particular constraints of the sharedness of the sub tasks even within a dialogue

(here, the rating is specified to be a joint action, while the tastings can be carried

out in parallel).

In terms of reference resolution, based on the intuition that to use gaze behaviour to

aid reference resolution it is necessary to look at the other participant whilst their

visual attention is on the referent, we compared the overlaps where P1 looked at P2

while P2 looked at something else, and vice versa. Interestingly, P1 looked at P2

while P2 looked at something else for 8% of the time, but the inverse was true only

4% of the time. Further investigation into how this maps to linguistic information,

for example, whether P2 was more ambiguous in their speech, is pending.

2.7 Analysis
We conducted a post-annotation qualitative and quantitative analysis. For qualit-

ative measurement, we considered the onset and offset of gaze in relation to speech,

and the numbers for quantitative analysis were exported directly from ELAN.
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Figure 2.4: Number of Annotations

2.7.1 Qualitative Analysis

The qualitative data contains excerpts (see figure 2.4) of speech segments from

ELAN. As shown in figure 2.2 the speech information of each participant is followed

by gaze tiers.

2.7.1.1 Pragmatic gaze assessment during disagreement

We assessed how the shifting of gaze on the partner helped

to check if the statement made was being accepted or not. Excerpt 1.1: referring to

the appearance of the hummus

P2: it’s got little speckles in it as well
P1: —————- H ——————-

P2: —————- H ——————-

P1: yeah, oh I put like things like that
P1: — H — P2 —- MA —————–

P2: —– H ——–MA———————

P2 : do you like things like that
P1: —- MA ——- P2———–

P2: —–MA —— H————-

P1 : added seasoning, herbs, you?
P1: ———– P2———————–

P2: ————– H———————
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P2 : I’m not so sure cause I don’t know
P1: ——–P2 ——— Q———————

P2: ——— H——– Q———————-

When P2 says “it’s got little speckles in it as well”, the gaze attention of both P1 and

P2 is on the hummus, as they are evaluating its appearance. In the next utterance,

P1 responds in favour of the appearance, during which their gaze transitions to their

partner. Their partner shows understanding by reciprocating the gaze, leading to the

establishment of Mutual Attention by the end of P2’s utterance. This is followed by

P2 asking a question to re-assess P1’s opinion, and here we can see that P1 continues

to look at P1, but P2’s gaze shifts back to the hummus, in an example of active

gaze avoidance during disagreement. P1 pursues a verbal answer by asking “you?”,

while still maintaining their gaze on their partner, which changes to looking at the

questionnaire after obtaining a negative response from P2, whose gaze attention has

either been on the hummus or the questionnaire, avoiding looking at P1.

This is one of many examples that suggests that gaze can reveal information per-

taining to negation or disagreement well before declaring it verbally.

2.7.1.2 Pragmatic gaze assessment during agreement

Excerpt 1.2: referring to the texture of the hummus

P1: plain
P1: —- Q —-

P2: —- H —-

P2: yeah, its pretty normal isn’t it
P1: — Q ———- MA ——— Q —–

P2: — H ———- MA ———- Q —-

P2 : do you like things like that
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P1: —- MA ——- P2———–

P2: —–MA —— H————-

P1 : yeah
P1: — Q —-

P2: — Q —-

While discussing about the texture of the hummus, P1 says “plain”, where the gaze

attention of P1 is on the questionnaire and P2 on the hummus. Right before P2

utters “yeah, its pretty normal isn’t it”, gaze attention is on the partner and P2

looks at P1. It is followed by an agreeing utterance from P1 “yeah”. This excerpt

shows that mutual gaze was established which reveals information about agreement

well before declaring it verbally.

2.7.1.3 Gaze Check

Excerpt 2: tasting the hummus

P1 : feel a bit of pepper in there
P1 : ——-H————P2———-

P2 : ——-H————————-

P2 : Um-m
P1 : –P2–Q–

P2 : —-H—–

In excerpt 2, the gaze from the joint attention of P1 shifts to P2 before completing

the sentence, representing a “Gaze Check” phenomenon. Here, P2 still continues

to look at the hummus while responding. But P1’s attention shifts from P2 to a

different entity after receiving agreement in response.
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2.7.1.4 Gaze Prediction

Excerpt 3: rating the hummus

P1 : like it moderately
P1 : —-Q——-P2——-

P2 : ———H————

P2 : yeah I would say like it moderately
P1 : —-P2—————H——————-

P2 : ——————Q———————-

This is another example of ‘Gaze Check’ from P1 to understand if P2 agrees to rate

the hummus, “like moderately”. Another important observation is that the gaze shift

of P1 after looking at P2, is toward the object that P2 has fixated on for the entire

duration when P1 was looking at P2. This type of gaze attention could further help

in predicting the next movement of gaze towards the intended object of interest

without any assistance from speech.

2.7.1.5 Overlapping Gaze Transition

The P1 and P2 tiers give us most of the gaze information of each participant except

Mutual Attention and attention on the partner. It is interesting to think about what

factors might influence the subsequent gaze shift. Does it depend on speech? If there

is no speech then does that mean that there is no shift in gaze at all? Here is an

example of one such phenomenon:

Excerpt 4: gaze shift in the absence of speech
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P1: —-Q———-H——–B————–H——

P2: —Q———H——–Q——B——H———

P1’s gaze attention follows P2’s just 2 ms after P2 looks at the Questionnaire. Once

P2’s attention is on Hummus, approximately 3 ms later, P1 joins again before look-

ing at the breadstick. P2 briefly focuses on the questionnaire before joining P1, and

when P2 shifts gaze, P1 continues to join. This is a very interesting pattern seen

consistently throughout the experiment, where the overlap occurs just a few milli-

seconds before joint attention.

2.7.1.6 Referential gaze

Excerpt 5: reaching for a breadstick

P1 : okay breadstick
P1 :——-B————-

P2 :———–Q———-

P2 : sure here it is
P1 :—-B————-

P2 :—-B————-

P2 : do you mind my hands on it
P1 :————B——————–

P2 :————B——————–
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The example above explains how speech can influence gaze transition. Particular

speech utterances especially ones mentioning the objects in the shared space drives

gaze attention to the particular object away from the initial point of interest. For

example, the phrase “okay breadstick”, shifted the gaze of the partner to look away

towards the location of the bowl containing breadsticks. These would enable gaze

prediction based on referential speech and gaze attention. It is also important to

note that P1 looked at the breadstick before verbally uttering the word.

2.7.2 Quantitative Analysis

The number of times the variables were annotated for different conditions is noted

here. The total annotated data (Table 4.2) contains approximately 45 minutes (2700

seconds) of 8 participants in pairs, and the annotation comprises of 1,700 spontan-

eous speech utterances and 2,300 annotations for various types of gaze. A total of

five dependant variables were measured across various gaze behaviours.

Table 2.2: Annotations summary. The tiers are Speech (S), Gaze at partner (G),
Participants referential gaze (P), Mutual Attention (MA), Joint Attention (JA).
The minimum, maximum, mean and total duration are in seconds.

Duration of annotations Number of
Tier Min Max Mean Total % annotations
S 0.15 3.98 0.97 271.61 24.97 1706
G 0.27 4.90 1.44 48.55 4.29 269
P 0.17 20.83 2.98 527.62 41.84 1529
MA 0.41 2.73 1.09 17.66 1.99 51
JA 0.15 20.43 2.90 379.56 32.08 519

As shown in Table 2.2, the fewest gaze annotations (51) were coded in mutual

attention (MA), with most in referential gaze (P: 1529). Interestingly, when we

look at the total annotation duration for each individual compared to their partner,

although there is an extremely high correlation between the amount of speech of

each participant in a dyad (r = 0.97, p < 0.001) and the amount of gaze at reference
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objects between participants (r = 0.96, p < 0.001), showing the symmetry of the

task, there is no such correlation between participants gaze patterns to each other

(r =−0.02). There were also no correlations between amount of speaking and gaze

at partner (self; r = 0.009 or other; r = 0.002).

2.7.2.1 Fixation Duration

The duration of fixation is the total amount of time participants looked at different

entities. Data from the separate tiers of Speech and Gaze were combined. Hence,

all eight participants devoid of their interaction partner were taken into account to

measure the co-relation between different entities.

Joint Attention For Joint attention, minimum and maximum fixation durations were

under 2 miliseconds to 20 seconds with a mean of 2.9 seconds. Another aspect here

is that the joint attention on one particular object did not last long (avg 2.9 sec);

instead, there was a constant gaze transition and interaction with the surroundings.

Overall the total annotation duration was approximately 380 seconds (out of 2700).

This showed that the participants spent nearly as much time (JA) looking at the

same object together, as they did looking at objects their partner was not looking

at (P, 527 seconds) with equivalent average durations, showing how coordination of

gaze is critical in a task requiring coordination with a partner in other respects, such

as coordinating on which aspect of the task was being undertaken on a moment to

moment basis.

Mutual Attention The duration of mutual attention accounted for as little as 0.4

seconds to 2.7 seconds. On average participants looked at each other for approxim-

ately one second at a time which is extremely short compared to Joint Attention

(JA) or Gaze at the partner (G). In total, the annotation duration on Mutual at-

tention was only 17.6 seconds (of 2700 seconds). Looking at the partner eye-to-eye

for an extended amount of time can lead to an uncomfortable situation. This could



2.7. Analysis 46

result in the participants spending the least amount of time making eye contact and

avoiding uncomfortable eye contact, which could be defined as “eerie mutual atten-

tion”. This is a novel observation that needs to be taken into consideration while

improving gaze interaction in robots.

Individual Attention The attention on the partner while the partner looked some-

where else accounted for 4.29% (see row G in table 4.2), for which the annotation

duration was 48.5 seconds (of 2700 seconds). Mutual attention where the participants

looked at each other was notably rare in the data.

Our annotated data, a detailed coding of gaze in conversation, adds another di-

mension in understanding multimodal dyadic interaction, showing that gaze is a

complex non-verbal mechanism that still follows a very coordinated pattern in in-

teraction upon analysis. These patterns are especially evoked in social and referential

scenarios (Somashekarappa et al. 2020). Gaze behaviours shift in split seconds; re-

searchers have been able to study these behaviours through psychological techniques,

but without large amounts of observational data.

This multi-modal corpus of transcribed speech is annotated and synchronized with

eye-gaze details as described above and is produced in ELAN (.eaf) format. It con-

tains high resolution video and audio files, and the video data is in M4V format

while the audio data in WAV-format. The corpus presented in this chapter is a

contribution to the growing quality of multi-modal research.





Chapter 3

Gaze Interaction with Laughter
Pragmatics and Coordination

Our conversations are highly coordinated, with synchronisation occurring even across

modalities (Fusaroli and Tylén 2012; Dale et al. 2013). Both laughter and gaze have

been the object of in depth independent analyses and their crucial role in managing

and coordinating interaction is not in doubt. Both gaze and laughter are perceiv-

able actions (termed visible/audible acts of meaning in Bavelas et al. 2002) which

affect the unfolding of the upcoming dialogue (Mazzocconi et al. 2020). While there

is some work on the interaction of smiles, laughter and gaze in relation to humour

(Gironzetti 2017; Brône 2020), less is known about the relation of laughter and gaze

when this is not related to humour, but rather to what we call social incongruity.

The only exception we are aware of is Romaniuk (2009), who take a micro-analytic

approach on the use of gaze to decline a laughter.

Figure 3.1: Data collection setting from Chapter 2

47
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An example of the fine coordination between laughter and gaze is presented in (1),

where we see the onset of gaze at the partner from A shortly before the onset of A’s

laughter. The onset of A’s laughter is then shortly followed by B gazing at A, just

before joining B’s laugh with her own.

(1) GHI Corpus (Somashekarappa.etal20), Pair03 (00:02:17)1

A: It's "like slightly"?..

B: yeah ((shrugs))

A: I like hummus|||<laughter>

B: yeah<laughter>
It is clear that both gaze and laughter are crucial elements to be taken into account

when implementing algorithms for Embodied Conversational Agents (ECA) (Ochs

and Pelachaud 2013; Becker-Asano and Ishiguro 2009), both for what concerns the

interpretation of the users’ dialogue acts and for what concerns their own behaviour,

in order to have ECAs more competent from a pragmatic perspective and also more

human-like in terms of emotional displays, where this is desirable.

In the current work, we aim to fill this gap by investigating the following, to our

knowledge, as yet unexplored questions. The answers are to provide insights into how

meaning is constructed in interaction across modalities, as well as provide empirical

data for the implementation of human-like ECA:

Q1 Does the laughing participant gaze at their partner, differ in terms of prob-

ability and timing, depending on the pragmatic function performed by the

laughter?

Q2 Is the interlocutor’s gaze at the partner influenced, in terms of probability and

timing, by the type of laughter produced by the partner?

Q3 Does gaze play a significant role in laughter coordination and alignment between

participants?

1. Speech that overlaps with gaze at partner is shown in bold, with continuation of gaze marked
by |||.
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The chapter is structured as follows: in Section 3.1 we briefly present a literature

review about laughter and gaze studies that constitute the background motivation of

our questions, stressing how the study of laughter and gaze is increasingly important

for ECA design. In Section 3.2 we explicitly state our hypotheses in relation to our

motivating questions presented above, while in Section 3.3 we outline the method

chosen to test them. In Section 3.4 we present our results, discussing them in Section

3.5 in the light of literature on gaze, speech turn-taking and interactional studies.

We conclude in Section 6 highlighting the importance of the insights gained from

our exploration for the implementation of human-like ECA.

3.1 Background

3.1.1 Laughter in interaction

Laughter production in conversation is not exclusively related to humour or to the

appreciation of a pleasant incongruity. Many studies, particularly in conversation

analysis, have shown its crucial role in managing conversations at several levels:

dynamics (turn-taking and topic-change), lexical (signalling problems of lexical re-

trieval or imprecision in the lexical choice), pragmatic (marking irony, disambiguat-

ing meaning, managing self-correction) and social (smoothing and softening difficult

situations or showing (dis)affiliation and marking group boundaries) (Glenn 2003;

Jefferson 1984; Mazzocconi et al. 2020).

In friendly conversation, interactants typically aim at an optimal level of coopera-

tion and equilibrium avoiding direct disaffiliation as much as possible (Pomerantz

and Heritage 2012). Nevertheless, social interactions often require the production of

speech acts that can make this equilibrium unstable or at risk (Raclaw and Ford

2017). Following Mazzocconi et al. (2020), we refer to any situation in which a clash

is perceived between the current situation and a social norm and/or comfort as a

social incongruity. Laughter, which can be used for bonding and showing friendli-

ness, often comes in handy to cope with these situations. For example, in the case of
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embarrassment or awkward silence, laughter can smooth the situation; when putting

forward a criticism, a laugh can soften the statement; or when asking a favour or

advancing a proposal, a laugh can induce benevolence from the listener (Jefferson

1984; Glenn 2003; Petitjean and González-Martínez 2015; Holt 2012).

Moreover laughter has been identified also as an attract-attention device, both in

children (Stevenson et al. 1986; Reddy et al. 2002) and adults (Pinheiro et al. 2017),

especially for its emotional salience, making therefore extremely relevant to explore

its effect on interactants’ gaze behaviour in natural conversation.

3.1.2 Gaze in interaction

The role of gaze in maintaining the conversational flow and coordinating dialogue

acts is not in doubt. While many works have argued for the importance of individual

gaze for fine regulation of turn-taking (Duncan 1972; Goodwin et al. 1980), some

scholars actually highlighted a lack of systematic relation between gaze and turn-

taking (Beattie 1978; Torres et al. 1997; De Ruiter 2005), proposing rather that gaze

might function to solicit a response (Harness Goodwin and Goodwin 1986; Bavelas

et al. 2002), which is not necessarily a speech turn (Rossano 2013). More specifically,

it has been argued that turn-taking is only a partial explanation for gaze behaviour

in conversation, and that our study of gaze has to take into account both turn-taking

and informational structure (Torres et al. 1997; Bonin et al. 2012).

Despite turn-taking not being the only function performed by gaze, and the fact

that not all turn shifts are accompanied by gaze towards the listener, it has been

consistently observed that there is a tendency for listeners to display more gaze at

the speaker during the course of dyadic interaction, while the speaker tends to direct

their gaze at the listener mainly towards the end of their speaking turn (Kendon

1967b; Duncan and Fiske 1979). In this way, when a speaker gazes at the listener

mutual gaze is attained (Goodwin et al. 1980), a brief mutual gaze-window (Bavelas

et al. 2002) is established, and a change of floor may occur, having the previous
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listener looking away as they begin their speaking turn (Somashekarappa.etal20;

Kendon 1967b; Rossano 2013). Gaze patterns to the interlocutor have also been

found to differ depending on the speech act they accompany and on their pragmatic

function (Sandgren et al. 2012; Mirenda et al. 1984; Rossano et al. 2009)

Of interest in the study of gaze in interaction is not only gaze directed at one’s

partner, but also its absence or avoidance (Rossano 2013). For example, using a

microanalytic analysis, Romaniuk (2009) observed how gaze aversion can be used

to decline laughter and terminate its relevance; while Kendrick and Holler (2017)

report that most preferred responses are produced with gaze toward the questioner,

whilst most dispreferred responses are produced with gaze aversion. Moreover, it

has been proposed that gaze aversion could also be explained (or influenced) by

social stress (Stanley and Martin 1968), with evidence from patients with social

disorders (Schneier et al. 2011). Conversely, results from other studies (Doherty-

Sneddon and Phelps 2005) suggest that cognitive load has the most impact on gaze

aversion (Glenberg et al. 1998). The latter hypothesis is based on the fact that visual

cues are an important source of information and facilitate conversation, but cause

higher cognitive load. This explanation seems to be supported by results observing

more gaze aversion in the initial phase of request formulations (Sandgren et al. 2012;

Kendon 1967b), and by speakers showing less fluency when forced to constantly look

at their listener (Beattie 1981), even though these result could also be explained by

the social stress factor.

3.1.3 Gaze and Laughter in ECA

Recently, there has been a growing research interest both on gaze and other non-

verbal expression, especially in Affective Computing community, for the implement-

ation of ECAs which are more competent from a pragmatic perspective and able

to process and produce appropriate emotional responses (Stevens et al. 2016; Bailly

et al. 2010; Lee and Marsella 2006; Niewiadomski et al. 2009). Virtual agents be-

nefit from a detailed analysis of multimodal input and output patterns observed
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during human-human interactions and from the interplay with their cognitive in-

terpretation. Bailly et al. (2010) established a basis for a context-aware eye-gaze

generator for an ECA. In order to develop an improved gaze generator we should

isolate the significant events detected in the multi-modal scene that impact the

closed-loop control of gaze. Lee and Marsella (2006) discuss the interpersonal role

of gaze in interaction to signal feedback and direct conversation flow which current

ECAs still lack. Simultaneously, in a dynamic environment, even the state-of-the-

art ECAs struggle to direct gaze attention to peripheral movements. An embodied

conversational agent should therefore employ social gaze not only for interpersonal

interaction but also to possess human attention attributes so that its eyes and facial

expression portray and convey appropriate distraction and engagement behaviours.

ECA simulations for face-face conversation are mainly dyadic and turn allocation

using gaze signals Gu and Badler 2006. Non-verbal behaviours also can help create

a stronger relationship between the ECA and user as well as allow applications to

have richer, more expressive characters. Overall, appropriate nonverbal behaviours

should provide users with a more immersive experience while interacting with ECAs,

whether they are characters in video games, intelligent tutoring systems, or customer

service applications.

Becker-Asano and Ishiguro (2009) evaluated the role of laughter in perception of

social robots and indicated that the situational context, determined by linguistic

and non-verbal cues (such as gaze) played an important role. In particular, in their

experiments, the Geminoid robot’s direct gaze at the participant while laughing

led to the perception of the robot’s laughter as “laughing at someone” rather than

“laughing with someone”. Nijholt (2002) discusses the challenges of integrating hu-

mour into ECAs, and existing integration of smiling and laughter in ECA is typically

triggered by a joke told by a user or an agent (Ding et al. 2014; Ochs and Pelachaud
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2013). El Haddad et al. (2019) looked at the mimicry of smiles and laughs between

interlocutors, which also might be used as the basis for an ECA’s behaviour. Urbain

et al. (2010) take a similar perspective, equipping ECAs with the capability to join

in with a conversational partner’s laugh.

Our work will provide empirical data useful for the implementation of systems able

to engage in multimodal interaction, profiting of the availability of cross-modal cues

(i.e. gaze and laughter).

3.2 Hypotheses
Based on the literature reviewed above, our predictions in relation to the three main

questions motivating our work are the following:

H1 Based on the social stress hypothesis of gaze aversion (Stanley and Martin

1968; Schneier et al. 2011), and on research showing that gaze aversion is

more likely when subjects are offering a dispreferred answer (Kendrick and

Holler 2017), we expect laugher gaze towards the partner to be less likely if

the laugh produced is related to social incongruity/discomfort (both around

the onset and offset of the laugh) rather than to pleasant incongruity.

H2 On the basis of studies indicating that laughter can function as an attention

getting device (Stevenson et al. 1986; Reddy et al. 2002; Pinheiro et al. 2017),

we hypothesise that interlocutors will direct their gaze at the laugher after

laughter production.

H3 Given the role of gaze in soliciting a response from one’s partner (Rossano

2013; Bavelas et al. 2002), we expect laughs where one participant joins in

with another’s laugh (joining in laughs) to be preceded by an “inviting” gaze

from their partner (as in Extract (1)). Similarly we expect the interactant

joining the laugh to gaze herself at the partner, in order to instantiate the

“gaze window” which may enable a turn shift (Bavelas et al. 2002).



3.3. Materials and methods 54

Laughable Type Laughter positioning

Pair Pleasant Social Pragmatic Friendly Isolated Antiphonal Coactive Total Minutes
03 27 19 1 5 28 20 4 52 10
07 11 10 3 1 15 4 6 25 10
15 2 5 0 0 5 2 0 7 3

Total 40 34 4 6 48 26 10 84 23
Table 3.1: Distribution of different laughter annotations across dyads and minutes
of interaction analysed.

3.3 Materials and methods

3.3.1 Corpus data

Our data consist of 23 minutes taken from three female-female dyadic interactions

from the Good Housekeeping Institute (GHI) Corpus (Somashekarappa.etal20).

The GHI corpus contains video and audio of pairs of participants discussing and

rating different kinds of hummus on a chapter questionnaire (see Figure 3.1). We

annotated the interactions for laughter and gaze as described in the following sec-

tions.

3.3.2 Laughter Annotation

Our annotations have been conducted using the software ELAN (Brugman and

Russel 2004). Coding was carried out by the first author watching and listening to

a video until a laugh occurred. The coder then marked the onset and offset of the

laugh, and, following the annotation scheme proposed in Mazzocconi et al. (2020),

annotated the laughter’s form, temporal sequence in relation to speech and others’

laughs, context of occurrence, laughable it was related to (i.e. the argument of the

laughter), and pragmatic function. In the current chapter we focus on two of these

features: (1) the type of incongruity present in the laughable, (2) the positioning of

laughter in relation to the partner’s laughter (laughter coordination).
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We assessed the agreement on laughter identification and segmentation (start-time

and end-time boundaries) using the Staccato algorithm implemented in ELAN

(Lücking et al. 2011), having two annotators marking 70% of the data. We run the

analysis with 1000 Monte Carlo Simulations, a granularity for annotation length of

10, and α = 0.05. The degree of organisation is 0.8386.

3.3.2.1 Laughable classification

Following Mazzocconi et al. (2020) we consider laughter as an event predicate, the

meaning of which is constituted by two dimensions: the laughable and arousal, which

we do not consider in the current chapter. By laughable we mean the argument

the laughter predicates about, an event or state referred to by an utterance or

exophorically (Glenn 2003). Different kinds of laughable can be distinguished based

on whether they contain an incongruity or not, and if so, which kind of incongruity

(see (Ginzburg et al. 2020) for a formal definition of incongruity). The annotation

categories are as follows:

1. Pleasant incongruity is a clash between the laughable and certain back-

ground information perceived as witty, rewarding and/or somehow pleasant.

Common examples are jokes, puns, goofy behaviour and conversational hu-

mour.

2. Social incongruity is a clash between social norms and/or comfort and the

laughable. Examples include social discomfort (e.g. embarrassment or awk-

wardness), violation of social norms (e.g., invasion of another’s space, asking

a favour), or an utterance that clashes with the interlocutor’s expectations

concerning one’s behaviour (e.g., criticism).

3. Pragmatic incongruity arises when there is a clash between what is said and

what is intended. This kind of incongruity can be identified, for example, in

the case of irony, scare-quoting, hyperbole etc. Typically in such cases laughter

is used by the speaker in order to signal changes of meaning within their own

utterance.
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4. Friendliness refers to cases where no incongruity can be identified. In many

of these cases what is associated with the laughable is a sense of closeness

that is either felt or displayed towards the interlocutor, e.g., while thanking

or receiving a pat on the shoulder.

In the current work we focus on the observation of gaze patterns accompanying

laughs related to pleasant incongruity compared to social incongruity, as these are

the most frequent kinds of laughable across contexts of interaction and languages

(Mazzocconi et al. 2020) (see also Table 3.1). These categories are also the furthest

apart in terms of pragmatic function, since pleasant incongruities are related to

something pleasant and rewarding, whilst social incongruities are related to potential

discomfort and unpleasantness.

Our dataset is therefore constituted of 74 laughs: 40 related to pleasant and 34 to

social incongruity. 60% of the data (50 laughs) were annotated by two of the authors.

The inter-annotator percentage agreement was 82%, with Krippendorff’s α = 0.69.

3.3.2.2 Laughter coordination

In our annotation we distinguish 3 classes pertinent to the sequential distribution

of the laughter in relation to laughs produced by the partner:

1. Isolated laughter: a laugh not preceded by or co-occurring with another

laughter;

2. Antiphonal laughter: a laugh shortly following a laugh from the partner,

starting during the partner’s laugh, or within one second after its offset;

3. Coactive laughter: a laugh with the same onset time as a laughter from the

interlocutor. We did not give an exact time definition for shared laughter onset,

rather we relied on annotators’ intuitions. We tested whether this intuitive

notion was appropriate by calculating inter annotator agreement, which was

high. Laughs which were considered to be coactive had a relative onset time

of less than 100ms.
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Inter-annotator agreement for this variable conducted over 60% of the data (50

laughs) reached 85.7%; Krippendorff’s α = 0.76.

3.3.3 Gaze Annotation

Following Somashekarappa.etal20empty citation as discussed in 2, the gaze

annotation was coded for four aspects:

1. Participant1 and Participant2 (P1, P2): The gaze of each participant to

an object, for example, Hummus (H), Questionnaire (Q), Breadstick (B) etc

2. Joint attention (JA): Looking at the same object, obtained by temporal

and object overlap in P1 and P2.

3. Gaze1 and Gaze2 (G1, G2): For each participant, these encoded whether

they were looking at their partner.

4. Mutual Attention (MA): Looking at each other, obtained by temporal

overlap in G1 and G2.

In the current work we explore only gaze at each other (G1, G2), leaving a more fine

grained analysis of whether the gaze reciprocity (MA), and questions about gaze to

objects including joint attention (JA), for future work.

3.3.4 Data extraction

In order to perform our analysis we made use of the ELAN Analysis Companion

(EAC) software (Andersson and Sandgren 2016) to conduct event-related analysis.

Our dependent variables is Gaze at partner (G1 and G2), both from the laugher

and to the laugher from the other participant. In order to address questions (1)

and (2) we used Laughable Type (whether a laughter was related to a pleasant or

social incongruity) as predictor (sec. 3.3.2.1; while in order to address question (3)

the predictive variable is Laughter coordination (isolated, antiphonal, or coactive)

(Sec. 3.3.2.2). Each analysis is centered either on the onset or the offset of the
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laughter. Following Andersson and Sandgren (2016) we considered a time window

of 3000 milliseconds (i.e. 1500 seconds before and after the laughter onset/offset).

We selected 10ms resolution, using a “first come first served” overlap handling and

binned the data at intervals of 100ms, rounding up any fractions to 1.

Given the type of gaze G and the type of laughable L (or the laughter coordination

classes for question (3)), the probability of gaze before or after the event for a given

time window “bin” b is calculated as follows:

Pb(G|L) = ∑N
i=1 P(gb|li)

N
(3.1)

where N is the total number of laugh events, and P(gb|l j) ∈ {0,1} is the probability

of gaze for a single bin b for a given event li.

For each of our models, reported below, we ran a mixed-effect logistic regression

in R, using the glmer function from the lme4 package (Bates et al. 2015), with

subjects as a random factor.2 The dependent variable, Gaze (either at the partner

or the laugher) was treated as a dichotomous dependent variable (present / not

present) for each 100ms bin of the time window of interest (3000ms centered around

the onset of the laugh)3

Together with Laughable Type (Q1 and Q2), and Laughter Coordination (Q3), we

considered the binary variable Time as a predictor, contrasting the time-window

preceding the laugh onset/offset (1500ms, before) to the time-window following it

(1500ms, after).

2. Including dyads as a random effect did not improve the models.
3. For any bin when gaze shift was occurring (the raw value therefore being between 0 and 1) we
rounded up the value to one.
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(a) Laugher - Laughter Onset (b) Laugher - Laughter Offset

Figure 3.2: Probability of Laugher’s gaze at Partner according to Laughable Type.
The probability of laughter duration is shown at the bottom of the figures.

(a) Partner - Laughter Onset (b) Partner - Laughter Offset

Figure 3.3: Probability of Partner’s gaze at Laugher according to Laughable Type.
The probability of laughter duration is shown at the bottom of the figures.

3.4 Results

3.4.1 Laugher’s gaze × Laughable Type

3.4.1.1 Onset laughter

Figure 3.2a shows the probability of the laugher gazing at her partner around the

onset of their own laugh depending on whether the laughter is related to a pleasant

or a social incongruity. We observe a contrasting pattern of Gaze, especially after

the onset of the laughter. The laugher is more likely to be looking at the partner

during/after a laughter related to a social incongruity than to a pleasant incongruity.
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We observe main effects of Laughable Type (CE = −0.81,SE = 0.22,z = −3.56, p <

.001.) and Time in relation to the onset of the laughter (CE =−0.70,SE = 0.20,z =

−3.51, p< .001), and a significant interaction between the two factors (CE = 1.60,SE =

0.30,z = 5.31, p < .001). While the laugher is more likely to gaze at her partner be-

fore the onset of the laughter when it is related to a pleasant incongruity (as in (2)),

the opposite is true after the onset of the laughter, when they are more likely to

gaze at her partner when the laughter is related to a social incongruity (as in (3)).

(2) Pleasant incongruity [Pair15 (00:01:25)]4

A: I quite like it ’cause I like it when

there's the little chickpeas on top|||

B: ((gazes at hummus)) yeah

A: 'cause it's quite posh <laughs>

B: ((gazes at hummus)) yeah <laughs>
(3) Social incongruity [Pair03 (00:02:59)]

A: Shall we say... No.

Ta- tasty <laughs>||||||

B: <laughs>

A: ((returns gaze at hummus))

3.4.1.2 Offset laughter

Fig. 3.2b shows the probability of the laugher gazing at the partner around the offset

of her own laugh depending on whether the laughter is related to a pleasant or a

social incongruity. We observe a significant main effect of Time (CE =−0.45,SE =

0.09,z = −5.09, p < .001), but no significant main effect of Laughable Type (CE =

0.21,SE = 0.17,z = 1.18, p = 0.23) , nor a significant interaction (CE =−0.12,SE =

0.17,z = −0.72, p = 0.47). This means that regardless of the Laughable Type, the

laugher is more likely to look at her partner before the offset of her own laughter

rather than after the offset.

4. Speech that overlaps with gaze at partner is shown in bold, with continuation of gaze marked
by |||.



3.4. Results 61

3.4.2 Partner’s gaze × Laughable Type

3.4.2.1 Onset Laughter

Figure 3.3a shows the probability of the partner gazing at the laugher at the on-

set of the laugh depending on whether the laughter was produced in relation to

a social or a pleasant incongruity. We observe a significant main effect of Time

(CE = −0.83,SE = 0.2,z = −4.13, p < .001) and Laughable type (CE = −0.99,SE =

0.22,z = −4.43, p < .001), and no significant interaction (CE = 0.31,SE = 0.35,z =

0.87, p < 0.38); meaning that the partner is more likely to look at the laugher before

the onset of the laughter, and in general more likely to look at the partner if the

laughter was related to a pleasant incongruity.

3.4.2.2 Offset Laughter

Fig. 3.3b shows the probability of the partner gazing at the laugher at the offset of

the laugh depending on whether the laughter was produced in relation to a social

or a pleasant incongruity. We observe the opposite pattern to Fig. 3.2a, with the

partner more likely to gaze at the laugher if the laugh was related to a pleasant

incongruity rather than a social one.

We observe a significant effect of Time (CE = 0.51,SE = 0.22,z = 2.27, p = 0.02),

while the main effect of Laughable Type is not significant (CE = 0.27,SE = 0.25,z =

1.07, p= 0.28). Of particular interest is the significant interaction (CE =−1.43,SE =

0.38,z=−3.71, p< .001). This shows that after the offset of the laughter the partner

is much less likely to be looking at the laugher if the laughter was related to a social

incongruity rather than a pleasant one, while the opposite pattern is observed before

the offset.



3.4. Results 62

3.4.3 Laugher’s gaze × Laughter coordination

3.4.3.1 Onset Laughter

Fig. 3.4a shows the probability of the partner looking at the laugher at the onset of

the laugh depending on whether the laugh produced was an isolated one (chosen as

reference level), an antiphonal or a coactive one. We do not observe any significant

difference in the probability of the laugher gazing at her partner before or after the

onset of the laugh (CE =−0.37,SE = 0.21,z =−1.78, p = 0.07), while we do observe

a main effect of Laughter Coordination, having isolated laughter as a reference level

(Antiphonal-Isolated: CE =−0.76,SE = 0.31,z =−2.46, p = 0.01; Coactive-Isolated:

CE = 1.24,SE = 0.25,z = 4.79, p < .001). No interaction was significant (Time ×

Antiphonal-Isolated: CE =−0.24,SE = 0.45,z =−0.54, p = 0.58; Time × Coactive-

Isolated: CE = 0.57,SE = 0.35,z = 1.63, p = 0.10).

3.4.3.2 Offset Laughter

Fig. 3.4b shows the probability of the partner looking at the laugher at the onset of

the laugh depending on whether the laugh produced was an isolated one (chosen as

reference level), an antiphonal or a coactive one. The laugher is more likely to be gaz-

ing at her partner before rather than after the offset of her own laughter regardless of

the variable Laughter Coordination (Time: CE = 1.62,SE = 0.32,z = 5.04, p < 001).

We observed gaze at the partner to be significantly more likely when the laugher

is producing an antiphonal laughter in comparison to an isolated one (Antiphonal-

Isolated: CE = 1.6,SE = 0.39,z = 4.08, p < .001), and even more likely when produ-

cing a coactive laughter (Coactive-Isolated: CE = 2.49,SE = 0.4,z = 6.19, p < .001).

We observe a significant interactions of Time and Laughter Coordination (Time ×

Antiphonal-Isolated CE = −1.62,SE = 0.46,z = −3.51, p < .001; Time × Coactive-

Isolated CE =−0.94,SE = 0.47,z =−2.0, p = 0.04).
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3.4.4 Partner’s gaze × Laughter Coordination

3.4.4.1 Onset Laughter

Fig. 3.5a shows the probability of the partner looking at the laugher at the onset of

the laugh depending on whether the laugh produced was an isolated one (chosen as

reference level), an antiphonal or a coactive one.

We observed significant main effects of all the predictors included in the model,

but no significant interactions: gaze at the laugher is more likely before the onset

of the laugh (Time: CE =−0.69,SE = 0.31,z =−2.28, p = 0.02), significantly more

likely at the onset of an antiphonal laughter than an isolated one (CE = 1.06,SE =

0.26,z = 3.81, p < .001), and even more likely before the onset of a coactive laughter

(CE = 2.22,SE = 0.29,z = 7.53, p < .001).

3.4.4.2 Offset Laughter

Figure 3.5b shows the probability of the partner gazing at the laugher at the off-

set of the laugh depending on whether the laughter was produced in relation to a

social or a pleasant incongruity. We observed a significant main effect of Time (

CE = −0.72,SE = 0.28,z = −2.55, p = .01), no significant difference between Anti-

phonal and Isolated laughter (CE = 0.14,SE = 0.27,z = 0.51, p = 0.6), but a signi-

ficant difference between Coactive and Isolated laughter (CE = 1.19,SE = 0.31,z =

3.81, p < .001). We also observe a significant interaction between Time and Laughter

Coordination (Time × Antiphonal-Isolated: CE = 1.59,SE = 0.38,z = 4.14, p < .001;

Time × Coactive-Isolated: CE = 0.89,SE = 0.43,z = 2.04, p = 0.04).
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(a) Laugher - Laughter Onset (b) Laugher - Laughter Offset

Figure 3.4: Probability of Laugher’s gaze at Partner according to Laughter Coordin-
ation. The probability of laughter duration is shown at the bottom of the figures.

(a) Partner - Laughter Onset (b) Partner - Laughter Offset

Figure 3.5: Probability of Partner’s gaze at Laugher according to Laughter Coordin-
ation. The probability of laughter duration is shown at the bottom of the figures.
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3.5 Laughter and Gaze Pragmatics
Our data show that laughter related to different types of laughables, performing dif-

ferent pragmatic functions in interaction, is characterised by different accompanying

gaze patterns both from the laugher and her partner. These observations confirm

that both laughter and gaze play a crucial pragmatic role in the unfolding of dialogue;

providing further evidence for the stance that to model gaze behaviour one needs to

consider not only turns, but also propositional content and dialogue acts performed

(Torres et al. 1997). Furthermore our results validate the laughter taxonomy pro-

posed in Mazzocconi et al. (2020) showing that laughs belonging to different classes

are produced and perceived as performing different pragmatic functions, eliciting

different multimodal behaviours from the interactants. Below we discuss our results

concerning laugher’s and partner’s gaze in relation to the type of laughable, and the

results for gaze in relation to laughter coordination between interlocutors.

3.5.1 Laugher’s gaze

We observe that the laugher is more likely to gaze at the participant before the

onset of a laughter related to pleasant incongruity rather than social incongruity,

while the opposite is true after the onset. This result clashes with our hypothesis 1,

according to which we expected an absence of gaze to the partner both before and

after the onset of a laughter related to social incongruity. Our hypothesis was based

on Stanley and Martin (1968) and Schneier et al. (2011) proposing that social stress

makes gaze aversion more likely. Kendrick and Holler (2017) also suggest that gaze

aversion is more likely while producing a dispreferred answer, which is a dialogue act

that belongs to the social incongruity laughable class in Mazzocconi et al. (2020)’s

taxonomy.
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However, we can explain this data considering that we are looking at gaze during the

laughter rather than during the laughable production (e.g. a dispreferred answer).

Most of laughs follows the production of the laughable (e.g. (Tian et al. 2016)). Our

data might therefore still be consistent with (Kendrick and Holler 2017). Indeed, we

observe a lower probability of gaze at the partner before the onset of laughter – a

time that often coincides with laughable production. We might therefore imagine a

scenario where the expression of a dispreferred answer is not accompanied by gaze

at the partner, and only while laughing the laugher looks at the partner, to monitor

that the laughter has smoothed the disagreement or the unmet expectation, having

the desired positive effect. Our data cannot therefore neither confirm nor disconfirm

the social stress hypothesis of gaze aversion. It is possible that the “social stress”

component is what influences the laugher to not look at her partner before the

onset of a laughter related to social incongruity, while at the same time being the

motivation to check her partner’s appraisal of the laughter (produced to ease the

situation) during the laughter production.

The lower probability of gaze after the onset of laughter related to pleasant incongru-

ity mirrors results reported by Gironzetti (2017), who observed a lower probability

of attention directed towards smiling facial expressions (including laughter) when

it occurred in the context of humorous exchanges in comparison to non-humorous

ones. These observations can be interpreted in the light of Becker-Asano and Ishig-

uro (2009): they observed that when their robot was directing its gaze at the partner

while laughing, the laughter was interpreted negatively as being directed at the par-

ticipant, rather than being produced cooperatively. We can therefore speculate that

the tendency to avoid looking at the partner while producing a laughter related

to pleasant incongruity is a way to disambiguate the laugher’s intention and social

attitude towards the partner.
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The opposite pattern observed before the laughter onset (i.e. higher probability of

laugher gazing at the partner when about to produce a laughter related to pleasant

incongruity), might be a result of the fact that the laugher is “careful” to assess

whether laughter is an appropriate contribution, before producing it. There are

indeed judgemental, moral, and cognitive aspects related to laughter production

(e.g., not everything can be a subject for laughter, it is silly to laugh at some things,

some laughter can be offensive for someone).

The consistency of our results with Gironzetti (2017) is interesting considering the

differences between corpora in terms of physical arrangement, data considered, and

task. Where participants were opposite each other, conversing freely (without the

goal-directed task of our study), and they also considered smiling, suggesting that

similar dynamics are at play in the multimodal integration of smiling and laughter

pragmatic processing. In our corpus, in contrast, participants are engaged in a task

which requires them to pay (and share) attention on objects on the table in front

of them, and they are seated at a 45° angle (a setting similar to the referential

communication task in (Sandgren et al. 2012)). This means that gaze at the partner

and mutual gaze are rarer than in other corpora (engagement in competing activities

allows interactants to look away from their partner more frequently (Rossano 2013)),

which leads us to speculate that when gaze at the partner instead does occur it is

specifically motivated by pragmatic functions.

3.5.2 Partner’s gaze

Partner’s gaze at the laugher is significantly more likely to occur before the laughter

onset rather than after. This is compatible with the idea of gaze being a cue for

soliciting a response (Bavelas et al. 2002; Harness Goodwin and Goodwin 1986),

and that such a response does not have to be a verbal speech turn (Rossano 2013).

The main effect of laughable type (i.e. that gaze at the laugher is more likely before

the onset of laughter related to pleasant incongruity) has to be considered together

with the data represented in Fig. 3.5a about gaze and laughter coordination. In Sec.
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3.4.4 we report that antiphonal and coactive laughs are significantly more likely to

be preceded by gaze from the partner, meaning that gaze can be interpreted as an

invitation to join in. The distribution of antiphonal laughs is though skewed towards

pleasant incongruity (pattern replicated in several corpora e.g. (Mazzocconi et al.

2020)), which therefore constitutes a confounding variable. Due to the small data set

we cannot consider such factor in our statistical modelling. We leave this exploration

to further work when a larger dataset will be available.

We also observe that after the offset of the laughter, partner is less likely to look

at the laugher if the laugh was related to social incongruity. We interpret this as

a “choice” from the partner to avoid direct gaze in order to not put extra pressure

on the laugher (who has appraised some situation or dialogue act as potentially dis-

comforting) and maybe choose to give feedback (reassuring the laugher) in another

modality, signalling that the issue should be declined as not important (Romaniuk

2009).

The higher probability of gaze at the laugher after the offset of laughter related

to pleasant incongruity, may be explained as a partner’s strategy to check whether

it would be appropriate to join the laughter. This is consistent with the results

reported in Fig. 3.2a: i.e. laughers being more likely to gaze at the partner before

the production of laughter related to pleasant incongruity. Laughing can indeed be

a “no laughing matter”: not all laughs should be reciprocated (Jefferson 1984).

Our hypothesis 2 is therefore partially invalidated in the setting of our corpus. We

do not observe a significant higher probability to look at the laughing partner after

the onset of the laughter (Fig. 3.3a), but rather before the onset. This data can be

explained considering that the participants are sitting very close, engaged in a task,

and mutual attention is already granted without the need to be signalled through

gaze. Our data, on the other hand, highlight the role of laughter to elicit a (laughter)

response from the partner (Bavelas et al. 2002).
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3.5.3 Laughter Coordination

H3 was partly confirmed: we observed higher probability of gaze from the partner

at the onset of an antiphonal or coactive laughter, but we did not observe a higher

probability of looking at the partner from the laugher preceding the production of

an antiphonal laughter. We therefore do not observe the need for a “gaze window” in

order to respond to a laughter with a laughter. It would be nonetheless interesting

in future work to control whether the laughter was produced by the participants in

turn-initial position or not, in order to see if the observations mirror the patterns

observed for speech (e.g. (Bavelas et al. 2002)). Nevertheless, our data show the

important role played by gaze in the coordination of laughter production between

participants and its role for eliciting responses from the partner, not just in terms

of speech turns (Rossano 2013). The role of gaze for laughter coordination is partic-

ularly striking in the case of coactive laughter (i.e. both interlocutors start laughing

at the same onset time), where participants seem to look at each other not only to

synchronise on the simultaneous onset but also to terminate the laughter. This kind

of gaze may not only serve the purpose of syncing the response, but also monitoring

other non-verbal cues about the partner’s disposition towards the laughable. This

is an open question for future work.





Chapter 4

Neural Network Gaze-Target
Prediction for Human-Robot

Interaction

Gaze cues, which initiate an action or behaviour, are necessary for a responsive and

intuitive interaction. Using gaze to signal intentions or request an action during

conversation is conventional as discussed in 2.3. Gaze also plays a critical role in

HRI tasks such as object recognition and manipulation, as a robot can use gaze to

direct its attention to specific objects or areas of interest in its environment. We

propose a new approach to estimate gaze using a neural network architecture, while

considering the dynamic patterns of real world gaze behaviour in natural interaction.

Humans acquire the ability to decode complicated visual information in infancy

(Zohary et al. 2022). Observed gaze is a common deictic (“pointing”) signal used

by many animals, including members of our own species, to direct action. These

reactions are reflexive and pervasive in humans; they occur in a split second, act

in a solitary state to task relevance, and seem to be the foundation for the early

growth of language and theory of mind. Basic gaze-following behaviours appear to

be shared by nonhuman animals and humans (Shepherd 2010b). Current models of

vision, which rely instead on heavy supervision, are unable to mimic such learning.

A prime example is gaze understanding, a form of early learning that is beneficial

for social interaction and collaborative attention.

70
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A crucial social characteristic that facilitates human-robot cooperation is gaze-

following (HRI). Robots that can track a person’s gaze are better able to comprehend

that person’s attention, interest, and intentions. Gaze following enables us to make

eye contact which can enhance our social presence and naturalness. To infer human

visual attention, it is essential to carefully consider head posture, gaze direction,

scene organization, and saliency (Parks et al. 2015).

Gaze estimation refers to the process of determining where a person is looking us-

ing techniques from computer vision and machine learning (Akinyelu and Blignaut

2022). In the context of dialogue, gaze estimation could be used to infer informa-

tion about a person’s attention, interest, or intentions. For example, if a person is

looking at a particular object or person while speaking, it may indicate that they

are referring to that specific object or directly addressing that particular individual

(Cazzato et al. 2020). Gaze estimation is a challenging task, which can be affected

by factors such as head pose, lighting, and occlusions. As a result, the accuracy of

gaze estimation models can vary depending on the conditions under which they are

used (Kar and Corcoran 2017).

In this chapter, we present a gaze-estimation model that estimates the gaze of two

individuals in a scene, detecting different patterns of gaze behaviours in a single

model.

Gaze following is a natural and important social behavior that allows people to com-

municate and coordinate their attention, and it plays a key role in social interaction

and communication (Flom et al. 2017). In the context of gaze estimation, gaze fol-

lowing could be implemented using computer vision and machine learning techniques

to enable a robot or virtual assistant to follow a person’s gaze in a more natural

and human-like way Saran et al. (2018). This is widely believed to have potential

benefits such as improving the social interaction and communication capabilities of

such systems, but remains an open challenge.



4. Neural Network Gaze-Target Prediction for Human-Robot Interaction72

In addition to potential applications to Human Robot Interaction (HRI) (Drewes

2010), medical diagnostics (Bedford et al. 2012), virtual/augmented reality Blattger-

ste et al. 2018, and surveillance systems (Marois et al. 2020), our work is motivated

in part by the potential for automated measures of gaze behaviour to contribute to

clinical research and understanding of developmental disorders like autism. The bur-

den of manual gaze coding, which is time consuming and costly (Somashekarappa

et al. 2020), can be lifted in this situation by automated analysis. This, we believe,

offers a useful tool for analysing gaze behaviours in clinical populations at a finer

level of granularity, although the accuracy of the labels may be lower than with

manual annotation.

Various systems have been created to estimate the direction of gaze. However, it

is still difficult to quickly and accurately calculate gaze direction in a variety of

environments, particularly when there are two or more parties involved in a conver-

sation. The gaze-following challenge is designed to establish a connection between

the scene and human visual attention, in order to evaluate how effectively it will

perform during human-robot interaction.

The main objectives and contributions of this chapter are:

1. Automating robot gaze behaviour using machine learning.

2. Classifying elements of the dialogue based only on gaze behaviours (such as

dialogue acts, intimacy regulation and referencing objects)

3. Presenting a dataset containing annotations of attention targets with complex

patterns of gaze behaviour and out-of-scene target predictions

4. Developing an implementable-model of gaze in dialogue for a conversational

robot/avatar to interpret and produce human-like gaze behaviour

Eye gaze supports and augments other social behaviours such as speech/gesture, and

the mental states or cognitive effort can substantially influence gaze. Since speech

is a dominant mode of communication in human interactions, it is non-viable to

separate gaze from speech in human-robot dialogue. Researchers have shown that

gaze improves speech-based interactions such as disambiguating object references,
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maintaining engagement, conversation and narration, guiding attention, managing

partners, and influencing turn-taking (McMahan and Evans 2018; Laube et al. 2011).

We suggest a non-wearable eye-gaze detection technique that uses videos to study

gaze in interaction by making use of the new developments in deep learning.

The majority of the research on gaze following in HRI points to its potential as a

useful tool for enhancing robots capacity for social interaction and communication.

However, there are still a lot of difficulties and unanswered problems, such as how

to design and apply gaze in a reliable way, as well as how to gauge its efficiency in

various HRI scenarios. Our method utilizes the manually annotated gaze predictions

denoting various types of gaze to train the network that results in a more efficient and

precise detection of gaze targets to its corresponding object in space at a given time.

The rapid advancements in the field of robotic technologies presses the importance of

social robots’ prominence in the future, such as robots that are built for interacting

with people and are designed for various applications such as therapy and education

alongside industry (further discussed in 6.

4.1 Corresponding Work
Recent research has focused on developing algorithms for automatic gaze estima-

tion using various approaches: Deep Learning-based approaches: Deep learning

algorithms, such as convolutional neural networks have been used to predict gaze

locations in images or video data. These approaches have shown promising results in

terms of accuracy and efficiency (Lian et al. 2018; Koochaki and Najafizadeh 2018).

There are different methods to estimate gaze using machine learning, some of which

are based on deep learning algorithms such as convolutional neural networks (CNNs)

(Lemley et al. 2019) or recurrent neural networks (RNNs) (Palmero et al. 2018) and

also by analyzing head pose/gaze direction using 3D sensors such as depth cameras

(Zhang et al. 2020).
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Figure 4.1: Network Architecture

Appearance-based models: Focuses on developing models that take into account

the appearance of a person’s eyes and face to predict gaze locations. These models

have been shown to outperform traditional gaze estimation algorithms that rely

solely on image data (Wood et al. 2016; Murthy and Biswas 2021).

Multi-modal fusion: Emphasizes on fusing multiple sources of information, such

as eye movements, head movements, and facial expressions, to make more accurate

gaze predictions. The multi-modal fusion approaches have been shown to improve

the accuracy of gaze prediction compared to single-modality methods (Ishii et al.

2015; Aftab 2019).

Gaze correction in virtual reality: Virtual reality (VR) environments introduce

new challenges for gaze estimation, as the participant’s gaze is not directly visible.

The main focus is on developing gaze correction methods that can correct for mis-

alignment between the gaze location and the virtual scene in VR environments (Shi

et al. 2020; Sidenmark and Gellersen 2019).

The basic pipeline of gaze estimation using CNNs involves:

1. Head pose detection: The first step is to detect the head in the image or

video. This can be done using a variety of methods, such as Haar cascades,

HOG+SVM, or deep learning-based approaches.
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2. Eye detection: Once the head pose is estimated, eye region is segmented and

is further cropped from the image or video and resized to a fixed size.

3. Feature Extraction: The CNN model is then used to extract features from

the eye images. This typically involves passing the eye images through several

layers of convolutional and pooling layers.

4. Gaze Regression: After feature extraction, the model uses a fully connected

layer to estimate the gaze direction, in some cases, the model can use 3D gaze

direction.

5. Gaze vector: The output of the model is a gaze vector that indicates the gaze

direction.

Automatic gaze annotation is typically faster and less expensive than manual gaze

annotation, but the accuracy of the labels may be lower than with manual annota-

tion.

4.1.0.1 Single-stage regression

It is commonly used in computer vision applications such as object detection, se-

mantic segmentation, and gaze estimation. This approach has the advantage of being

computationally efficient, as it requires a single forward pass through the network

to make a prediction. Additionally, single-stage regression models can be trained

end-to-end, allowing the network to learn complex relationships between the input

features and the target variable. The network typically consists of several layers of

neurons, where each layer performs a specific function such as feature extraction,

non-linear transformation, or prediction (Sun et al. 2020).

However, single-stage regression models may be less interpretable than multi-stage

approaches, as they can be more difficult to understand the internal workings of

the model. Additionally, single-stage regression models may be more susceptible to

overfitting to the training data if the model is too complex. In these cases, regu-

larization techniques, such as dropout or early stopping, may be used to prevent

overfitting.
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4.1.0.2 Auxiliary face landmark detection

It refers to the use of additional information related to facial landmarks, such as

the positions of the eyes, nose, and mouth, in the process of gaze estimation. Facial

landmarks provide important information regarding the structure of a face and can

be used for face normalization, making it easier to detect the gaze direction. For

example, the position of the eyes can be used to align the face so that the gaze

direction is always in a consistent direction, regardless of the position of the head

(Kendrick et al. 2018).

In gaze estimation, the auxiliary face landmark can be used to improve the accuracy

of the gaze direction prediction by providing additional context about the face. For

example, the position of the eyes can be used to estimate the position of the gaze

direction relative to the face. Additionally, the position of the mouth can be used to

distinguish between a smiling face and a neutral face, as smiling can affect the gaze

direction. These techniques can be used in combination with a single-stage regression

model for gaze estimation or as a pre-processing step before feeding the data into

the gaze estimation model. The use of auxiliary face landmark information can be

useful in improving the accuracy and robustness of gaze estimation, especially in

scenarios where the gaze direction is occluded or the face is in an unusual position.

4.1.0.3 Gaze following

In an initial attempt to solve the gaze following problem, Recasens et al. (2015)

propose the GazeFollow dataset, which consists of 2D images, location of faces,

and labels for the gaze following phenomenon. A video gaze-following dataset called

Video-AttentionTarget, described in Chong et al. (2020), contains images, face loc-

ations, and labels from videos. The gaze target predicted by the above mentioned

papers use a straightforward network topology that incorporates saliency and gaze
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Figure 4.2: Various types of gaze: a) Joint attention (black box), gaze on hummus and
questionnaire, b) Gaze aversion (green box), gaze on partner, c) Mutual attention
(yellow box), looking at each other d) Individual gaze (orange box), attention on
different objects in space

channels. To increase the accuracy of gaze-following, additional information such as

human stance, gaze direction, or object identification are included. Gaze-following

becomes more challenging as a result of the acquisition of the extra information,

which requires additional dataset for training or extra processing steps for inference.

4.1.1 Predicting the Target

A significant difference between earlier studies on gaze target prediction is whether

the attention target is situated in a 2D image or 3D space. Cheng et al. (2021) were

among the first to show how a deep model can learn to find the gaze target in the

image; our work focuses on the 2D case. By simultaneously learning gaze angle and

saliency it is possible to address out-of-frame gaze targets. It can be done by taking

into account various scales, body pose, and sight lines and within-frame gaze targets

which improves the estimation even further.

We explicitly model the temporal gaze behavior and report results for gaze target

prediction in video while taking out-of-frame targets into consideration. As per the

architecture, head features are used to regulate the spatial pooling of the scene, and

head location map in place of a one-hot position vector to produce a fine-grained

heatmap using deconvolutions rather than a grid output.
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Figure 4.3: Simultaneous Gaze Generation with attention maps of both parties in a
single scene

4.2 Method

4.2.1 Multiface processing pipeline

The technique uses a two-stage strategy. First, by considering the scene and head

data as a separate network input that share the same scene properties. The scene

image serves as a discrete input to the scene-channel for a one-shot feature extraction

regardless of the presence of the individuals.

We implement active learning or semi-supervised learning approaches (Taha 2023)

that make use of both manual and automatic annotation to improve the performance

of gaze estimation models. The idea is to use the automatic annotation to pre-label

a large dataset and then use a smaller set of manual annotations to correct and

improve the automatic annotation.

The feature extraction backbone network is Resnet50 (Koonce and Koonce 2021)

for network verification, where the head channel considers the number of persons

present in an input image into account (dyadic in this particular situation). To

forecast the gaze target, the two participants’ head images and head locations are

used as binary masks. Each head image location mask serves as the head channel
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input.

fh =Ch(Ih), fs =Cs(Is) (4.1)

Second, in order to predict the gaze, same head ( fh) and scene ( fs) features are

concatenated to a fusion layer which goes through several up sampling and convolu-

tion layers to predict the position heatmap of the gaze targets. To avoid exorbitant

consumption of computational resources for scene and face feature extraction we

opted for lightweight ghostnet module which uses inexpensive operations to gener-

ate feature maps similar to convolutional layers, although it does not transcend the

convolution operation.

4.2.2 Face detection and heatmap generation

Single-stage methods for multi-stage face recognition are preferred for real-time ap-

plications due to their light weight and high accuracy. For example, face recognition

methods apply a single-layer architecture to design more efficient modules for facial

features.

We created an extensive face dataset using a large number of manual annotations

and use a one-step gaze estimation method. The input to the model is a complete

image with two faces and the output is the gaze directions of the people in the scene.

Instead of processing each face individually, we propose a model that estimates the

gaze of multiple people simultaneously with assistance from attention heatmaps

within the image.

Using an image, we can infer a person’s gaze direction and consider whether there

are any salient objects along the estimated line of sight. The heatmap is learned

by connecting two independent convolution pathways in accordance with this hy-

pothesis. A multi-task learning framework is used to explicitly train for gaze angle
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with a convolutional pathway connected to the face image. Auxiliary tasks for gaze

angle estimation offer several advantages, including the possibility of devising a su-

pervisory signal based on the relationship between gaze heatmaps and angles, which

effectively enhances heatmap estimation performance (figure 4.3).

Heatmap generation for gaze predictions using machine learning involves creating

visual representations of gaze data. Heatmaps are generated by plotting the gaze

data onto a 2D image and color coding the points based on the density of gaze

data in that area (Park et al. 2018). Gaze heatmaps can be used to evaluate the

performance of gaze-based algorithms by comparing the generated heatmaps with

ground-truth data.

We adopt a cross domain learning approach where the model learns partial inform-

ation relevant to each task from different datasets (for example, looking outside the

frame, looking at each other, fixation on an in-frame object, looking away in the

frame, etc.).

4.2.3 Neural Network Architecture

The videos that were manually annotated were later used to predict robust gaze

target location.

4.2.3.1 Convolutional layers

The architecture consist of head convolutional layers for head feature extraction

(ResNet-50). It is followed by an additional residual layer and an average pooling

layer to reduce the spatial dimension of the feature maps. The black pixels shown

in figure 2, denote the head bounding box of each person and the white pixels

denote rest of the image. They are reduced using three max pooling operations. The
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scene feature extraction network computes scene feature map similar to the head

convolution module. Head feature map and head position are then concatenated

while the scene convolution is the concatenation of the head position and the scene

image.

4.2.3.2 Dense layers

The final layers of the architecture consist of a fully connected layer where the

attention layer computes attention maps by passing the two concatenated layers.

Lastly, two convolution layers encode the features in the encoder module.

y =Wd ∗h+bd (4.2)

where y is the gaze prediction, Wd is the weight matrix of the final dense layer, h is

the output of the previous layer, and bd is the bias term of the final dense layer.

hi = f (Wi ∗ x+bi) (4.3)

where hi is the output of the ith convolutional layer, f is the activation function, Wi

is the weight matrix of the ith layer, x is the input image, and bi is the bias term of

the ith layer.

4.2.3.3 Recurrent layers

The scene information providing head position as spacial referencing enables the

model to learn faster. Subsequently, the architecture includes convolutional Long

Short-Term Memory (Conv-LSTM) to capture temporal dependencies in the eye

movement data from the sequence of frames. Four deconvolution layers makeup the

deconv module to up-sample the features computed by the convLSTM into a full

sized feature map.

ht = fr(Wr ∗ht−1 +Ur ∗ xt +br) (4.4)
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where ht is the hidden state at time step t, fr is the activation function of the

recurrent layer, Wr and Ur are the weight matrices of the recurrent layer, xt is the

input image at time step t, and br is the bias term of the recurrent layer.

4.2.3.4 Object detection

The feature map is then modulated by a scalar that defines whether the gaze at-

tention of the person is within the bounds of the scene or out-of frame, higher the

value of the scalar the focus is within the frame. It consists of two convolution layers

and a fully connected layer while the element-wise subtraction from the feature map

normalization is performed. Following, heatmap with minimum values greater than

or equal to zero are cropped resulting in the final heatmap that can be visualized

with intensity maps of the object prediction.

4.2.4 Simultaneous Multiple Gaze Detection

The model was trained on NVIDIA RTX TITAN GPU and implemented in Pytorch.

The network is optimized by the Adam algorithm for 100 epochs and the batch size

was set as 32, and the initial learning rate was 10−4. The scene and the masked

header image, acts as input to the model, scaled to 224*224. The output was a heat

map of size 64*64 and the ground truth heat map was generated with 2D Gaussian

weights around the ground truth of the tracked target. During training, to ensure a

repeatable balance of the two channels, a single randomized head image was selected

from the scene during each iteration.

In addition, weight loss varied depending on the duration of the training. In the

early stages, we expect the output heatmaps to reflect the tracked target points,

like previous gaze tracking methods. In the final stage, we focused on refining heat

maps and minimizing errors through regression. Thus, in our implementation, the
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value of (alpha) increases as the number of training epochs increases from 0 to

0.5. During inference, to track multiple people’s gazes, the scene-channel extracts

features from the scene only once, while the main channel runs multiple times for

different people.

To capture the natural gaze behavior, VideosAttentionTarget dataset 1 videos in-

clude live interviews, sitcoms, reality shows, and movie clips, all available on You-

Tube containing 50 different shows represented by the clips ranging in length, from

1-80 seconds. From the extracted head image, we use the head conditioning branch

to compute a head feature map. An additional residual layer and an average pooling

layer are added to the head convolution of the network. Using three successive max

pooling operations, a binary image of the head position is reduced and flattened.

Previous work has used position encoding to encode the position of the head in the

scene, but the binary image encoded it more effectively. Concatenating the face with

its head positioning gives the head feature map. These two features are then passed

through a fully-connected attention layer to create an attention map.

Following, Wang et al. (2020), we employ a single-stage regression task that maps im-

age pixels to multiple gaze directions directly, estimates gaze directions and further

predicts auxiliary face information including bounding box and facial landmarks.

The scene convolution component of the network, which is equivalent to the head

convolution module previously discussed, is used to compute a scene feature map.

The model quickly learns when the head position is provided as a spatial reference in

addition to the scene. The attention map generated by the head conditioning branch

is then multiplied by the scene feature map. As a result, the model can learn to focus

more on scene elements that are more likely to be noticed based on the characterist-

ics of the head. Along with the weighted scene feature map, the head feature map is

then concatenated. In the encoder module, the combined features are encoded using

1. https://github.com/ejcgt/attention-target-detection

https://github.com/ejcgt/attention-target-detection
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two convolutional layers after which the model uses a convolutional Long Short-

Term Memory network (ConvLSTM). The deconvolutional network, made up of

four deconvolution layers, up-samples the features calculated by the convolutional

LSTM to a full-sized feature map.

Gaze-Object Prediction

Scene

Gaze prediction

Object prediction

Scene feature extraction Scene feature map 

Head feature extraction

Fusion 
Feature

Head feature map

Attention 
Layer

Encoder Conv
LSTM Deconv

Figure 4.4: In head feature extraction, location mask of the head image performs
multiple feature extraction (in this case two people) and the scene image acts an an
independent output for a one time feature extraction. Following, head features are
concatenated with the shared scene features. The fusion feature predicts the the final
gaze output of the respective person. The object detection maps the corresponding
gaze target point generating heatmaps

4.2.5 Heatmap generation for the intended object

Using the Model, we estimate the subject-dependent saliency of a scene in terms of

a heatmap (the “what” component of visual attention) and how likely it is that the

subject will fixate on the estimated gaze target in the scene (the overall “strength”

of visual attention).
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A fully-convolutional model has two pathways, one for the whole image and another

for the face image (figure 4.1). In order to separate the scene information from

the face information, we optimize the relationship between the scene and the face

information in the input. Consequently, retrieved scene information can be shared

when gaze following processes multiple individuals in the same scene.

Data inaccuracy in imaging systems due to amplitude quantization can be perceived

as a random noise, that effects the accuracy of decisions based on the image data.

Hence, to tackle the inconsistent size causing the quantization error, the numerical

coordinate regression method is introduced on the heatmap to create a straight-

forward structure that allows multiple people to use the same scene feature for

gaze-following prediction. In the following, we compute the gaze target point and

remove the quantization error.

The likelihood of fixation is a single-valued measure that indicates how likely it is

that the subject is looking at the estimated target region. The model is based on

a fully connected layer. The model can estimate a person’s visual attention much

more accurately using this last output. In case the person is looking outside the

image, the heatmap is close to zero. The value can be added to the heatmap with

an operator, which, depending on the application, may be a weighting operator or

a gating operator. This last layer is trained to create a higher value when it is more

likely that the heatmap region is attended to and a lower value otherwise.

4.2.6 Implementation and Generation of Gaze

The GHI corpus contains annotation for different types of gaze in a dyadic conver-

sation and is time stamped. It also has speech transcribed for each participant in

two separate tiers. Each of these videos last about 20-30 minutes and have a high

resolution recording from two vantage points (discussed in detail in 2).
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The complete image, the subject’s cropped face, and the location of the subject’s

face that requires attention estimation act as the input to the model. The two stills

from the video are enlarged to 224x224 so that the network can see the face with

improved resolution. The full image coordinates for the face position are supplied

and these coordinates are flattened to a 168-dimensional 1-hot vector after being

quantized onto a 13x13 grid.

Two convolutional (conv) pathways make up the model: a scene pathway and a face

pathway (see figure 4.1). The conv pathways employ ResNet 50 (He et al. 2016) as

their backbone network and for each of the conv paths, all conv layers of ResNet50

are specifically used. Later three convolutional layers (1x1, 3x3, and 1x1) with ReLu

and batch normalization with stride 1 and no padding after each ResNet50 block are

added. The filter depths of the convolutional layers are 512, 128, and 1, respectively

which results in extracted features’ dimensionality being reduced (Jin et al. 2022).

Figure 4.5: Various gaze estimates captured in two different angles in a particular
scene. a. Mutual attention (looking at each other), b. Joint attention (gaze on hum-
mus and questionnaire), c. Gaze aversion (gaze on partner while the partner looks
away), d. Individual gaze (attention on different objects in space)
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In the face pathway, the feature vector computed with the face input image goes

through a fully connected layer to predict the gaze angle represented using yaw

and pitch intrinsic Euler angles. In the scene pathway, the feature vectors extracted

from the whole image as well as from the face image are concatenated with the face

position input vector to learn the person-centric heatmap. Similarly to face position,

the ground truth used for learning the heatmap is available as a gaze target position

in (x,y) coordinates which is quantized into 10 grids in each dimension.

In order to determine the ”intensity” of the fixation that is, how likely it is that the

individual is genuinely fixating at a gaze target within the viewable scene, the input

vectors to the last layer of each pathway are concatenated and fed into the last fully

connected layer. When the subject is gazing inside the image, the training label for

this value is 1, and when they are looking outside the scene, it is 0.

In total for the 24 videos, 48 individualistic gaze predictions were generated account-

ing for close to 80k predictions per video. The heatmaps give us a clear understanding

of the region of interest on which the gaze attention occurs (see figure 4.3).

4.3 Evaluation
The manual annotation has been done on 4 videos for the GHI corpus and we auto-

mate gaze for all 24 videos ranging between 24-30 minutes, and the generated images

for each video is between 40k to 60k. Therefore, the resulting gaze prediction data-

set (GHI-Gaze) approximately consists of 2.4 million images with facial landmark,

gaze information and heatmaps were generated with two different angles for the

same session (figure 1). The various types of gaze behaviour can be extracted by

collecting the specific coded temporal information.

We conducted two types of evaluation to measure the perform of the model. Firstly,

we use the spatiotemoral model on the existing dataset such as VideoAttentionTar-

get and Gaze-follow. Secondly, on the manually annotated Goodhousekeeping In-

stitute (GHI) dataset containing 60k images and 90k annotations for specific types
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of gaze (Somashekarappa et al. 2021). GazeFollow dataset is publicly available and

is built on ImageNet, PASCAL and MSCOCO containing 122k images of different

scenes and 130k annotations while the VideoAttentionTarget dataset contains you-

tube videos, with 164k extracted frames of labelled gaze behaviour and the targets.

4.3.1 Spatiotemporal Evaluation

In the context of gaze estimation, it involves evaluating the accuracy of the model’s

predictions in terms of both the location of the gaze target and the timing of the

gaze. We evaluated the single image target prediction and the dataset contained

annotations of the persons head and gaze locations in various types of images. The

model was trained by using annotation labels from the baseline models mentioned

in Table 4.2. Later these labels were extended to detect out-of frame gaze targets

while the GHI dataset was not yet introduced for unbiased comparison.

We use four performance measures that are key indicators based on previous gaze-

following methods to evaluate the model. AUC (Area Under the Curve) is the metric

used to evaluate the performance of a binary classifier i.e the similarity between

the predicted versus the ground truth heatmap. AUC ranges from 0 to 1, with

a value of 1 indicating perfect classifier performance, and 0.5 indicating random

performance. The averaged difference between the coordinates of the predicted gaze

target point and the coordinates of the ground truth point that some annotators have

assigned a label is the average distance, Avg Dist. The shortest distance between

the anticipated point and the closest labeled point is the Minimum Distance, Min

Dist. The angular error between the predicted and ground truth gaze direction from

the head position to the attention target in the image is referred to as Ang.
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Table 4.1: Evaluating on GazeFollow dataset

Method AUC ↑ Avg. Dist ↓ Min. Dist ↓ Ang ↓
Recasens et al.(2015) 0.878 0.190 0.113 24.0°
Lian et al.(2018) 0.906 0.145 0.082 17.6°
Chong et al.(2020) 0.921 0.137 0.077 -
Dai et al.(2021) 0.922 0.133 - 16.1°
Jin et al.(2021) 0.919 0.126 0.076 -
Tu et al.(2022) 0.917 0.133 0.069 -
GHI-Gaze (ours) 0.920 0.112 0.059 13.7°
Human 0.924 0.096 0.040 11.0°

Similar to the recent gaze prediction approaches for feature extraction we adop-

ted resnet50 network. The resulting comparison with previous methods is shown in

Table 1. The analysis shows that the GHI-Gaze, predictions fine tuned with human

annotations and attention maps perform better with AUC of 0.924 and the angular

error of 13.7° compared to the previous results. The human metrics have the best

performance measure with 0.924 AUC and 11° of angular error.

In Figure 1, “a” represents mutual gaze where the individuals are looking at one

another. Due to a clear view of the face it is easier to visualize the gaze in the

first image. While in the second generated image of “a” due to face occlusion it is

impossible for human annotators to recognize the gaze, but the model accurately

detects the gaze taking into consideration other factors such as head pose estimates

and attention heatmaps.

Images represented as “b” denote gaze on the same object in the scene, and “c”

averted gaze where an individual looks at the partner and the partner looks away.

Finally, “d” represents gaze on different objects with in the scene.
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4.3.2 Evaluation on GHI Corpus

We evaluate our complete model on the VideoAttentionTarget (VAT) dataset and

use AUC, Distance and Out-of-Frame measures. The analysis shows that the GHI

gaze predictions fine tuned with human annotations and attention maps perform

better with AUC of 0.889 to reported baselines although doesn’t exceed human eval-

uations. Distance refers to the measurement of the separation between two points,

objects, or entities. In the context of gaze estimation, it could refer to the distance

between the gaze target and the eye gaze position. Out-of-Frame refers to an object

or entity that is not within the bounds of an image or video frame. In the context

of gaze estimation, it means that the gaze target is not visible in the image.

Table 4.2: Quantitative Spatiotemporal Evalutaion

Method AUC ↑ Distance↓ AP↑
Random 0.505 0.458 0.621
Fixed bias 0.728 0.326 0.264
Chong+LSTM 0.833 0.171 0.712
VAT 0.860 0.134 0.853
GHI 0.889 0.117 0.869
Human 0.921 0.051 0.925

The first column in Table 4.2 lists various methods that were considered as baseline

performance measures. The prediction made at a 50% chance is denoted as ‘Ran-

dom’ and the bias term or constant that is added to a model’s output to adjust

its predictions is represented as ‘fixed bias’, where its value is not updated during

training. It can be added to the output of a layer to improve the accuracy of predic-

tions. The fixed bias is usually initialized with a small random value and remains

unchanged during training. It helps to shift the predictions of the network towards

the target values and can be used to account for any systematic error in the data.
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We report the gaze target non temporal estimator with additional LSTM layer pro-

posed by Chong et al. (2018) with an AUC of 0.833 for comparison. Our model

was evaluated on the VAT dataset that previously only reported for individual gaze

estimation in a scene and was not fine tuned with human feedback resulting in an

AUC of 0.860. Human evaluation measures the manual annotation of gaze predic-

tions of objects within the screen and has the highest AUC of 0.92. GHI performs

better compared to other models with an AUC of 0.889 and excludes out-of scene

targets but predicts that the gaze targets for both the participants in a single frame

providing information about the specific types of gaze.

4.4 Modeling gaze behaviour in a Robot
Modeling gaze behavior in a robot often requires a combination of computer vision,

and robotic control system, as well as a thorough understanding of human gaze

behavior. It can be challenging, particularly when the gaze behavior is complex or

subtle.

Some of the most difficult types of gaze to model include: Mutual gaze/ Direct

gaze, where the robot directly looks at the human, simulating eye contact, because

it requires the robot to respond in real-time to the human gaze, while also adjusting

its own gaze in a natural and engaging way (Lombardi et al. 2022). Longer mutual

attention can be considered eerie and induce uncanny valley effects. Averted gaze,

where the robot looks away from the human, requires the robot to simulate a lack

of attention or interest, which can be difficult to do in a way that is convincing to

humans (Müller et al. 2020). Gaze cues, where the robot uses gaze to initiate an

action or behavior, often requires the robot to respond to human gaze in a sophist-

icated and context-sensitive way (Mutlu et al. 2012; Massé et al. 2016). Scanning
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gaze, where the robot moves its gaze around its environment, simulating explora-

tion or attention to multiple objects or people. Follow gaze, where the robot tracks

the movement of a human’s gaze, implying attention or interest in what the human

is looking at.

In a human-robot interaction, the prediction of a gaze target can be used as input

for the determination of the best robot action in response to a human action, given

the circumstances. The challenges arise from the need to simulate human-like gaze

behavior in a way that is realistic, engaging, and responsive to human actions. Follow

gaze, where the robot tracks the movement of a human gaze, can be easier to model

compared to other types of gaze behavior in a robot. This is because gaze follow

often requires less sophisticated modeling of human gaze and more straightforward

control of the robot’s gaze mechanism. These different types of gaze can be used

in combination to create more sophisticated and nuanced interactions between the

robot and the human.

In gaze follow, the robot uses computer vision algorithms to detect the position and

movement of the human gaze, and then adjusts its own gaze accordingly. It does not

need to respond in real-time or make sophisticated judgments about the context of

the interaction. Instead, the robot simply follows the human gaze as it moves. How-

ever, it is important to note that gaze follow is still a challenging task, particularly

when the gaze is fast-moving or unpredictable and goal/context dependent. The res-

ults of the study have a direct application on improving the contextualized gaze on

a social robot and in this paper, we discuss the gaze architecture for implementation

on a robot.
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Figure 4.6: Real-time Human-Robot Interaction architecture for a Social Robot

4.5 Gaze Interaction Architecture for a Robot
It is anticipated that social robots, which are becoming more prevalent in society,

would be able to communicate like humans do by using both verbal and non-verbal

cues (Mishra and Skantze 2022). Anthropomorphic robots are favored to zoomorphic

or machinelike robots because they are more likely to trigger mind attribution. Gaze

predictability manipulation can help study gaze following strategies based on the

task characteristic and following reflexive gaze. By adding invalid cues it is possible

to determine the trustworthiness of the system (Morillo-Mendez et al. 2022).

The Furhat Robot platform consists of input and output interfaces (projector, neck

servo motors, touchscreen, etc.) and software modules for automatic speech recog-

nition (ASR), text-to-speech synthesis (TTS), face tracking, etc. The Event System

mediates all of the sensory inputs, modules, and actuators in the Robot Platform. To

create a gaze plan, the Gaze Planner advocates high-level events such as the user’s
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position, speech input, and the positioning of objects on the touchscreen. The Gaze

Controller then takes advantage of this strategy to generate actions that causes the

robot’s head to turn and eyes to move. Using the Skill API, which defines all of the

interaction-specific details, is where the interactions can be implemented.

The interaction is modelled using state charts where the dialog contexts are defined

as hierarchical states and the generic behaviors are defined on higher levels in the

hierarchy (figure 3). While the more specific behaviors are defined further down in

the hierarchy, and may override generic behaviors. The intent classification (NLU)

dynamically takes the current hierarchical contexts enabling multiple intent in each

utterance. Complex behaviors may be defined in their own state charts, and reused

across applications. Computer vision platform tracks real time multi-user face and

estimates head pose from the video stream. The architecture provided in figure 3,

describes the dialogue with gaze module implementation from the current work. A

specific type of gaze, acts as an input for the robotic gaze based on the speech intent

and face tracking by assessing the temporal predictions.





Chapter 5

Experimental Evaluation of Gaze
Interaction with Social Robot

Gaze automation in a social robot is a crucial aspect of Human-Robot Interaction

(HRI) that aims to make the robot more engaging, intuitive, and effective in its

communication with humans. The ability of a robot to control its gaze —-where it

looks, how it looks, and when it looks- is essential for establishing a natural and

meaningful interaction with users (Ruhland et al. 2015; Breazeal 2004; Onyeulo and

Gandhi 2020). The main purpose of the research in this chapter is to assess different

patterns of gaze in robots in order to contribute to a more effective, natural, and

engaging interaction. How does human-like behavior of a robot influence

people’s perception of it?

Maintaining appropriate eye contact helps the robot establish a connection with

users, fostering a sense of engagement, trust, and rapport by directing attention

towards users or relevant objects, signaling engagement and facilitating more fo-

cused interactions. Gaze behavior serves as a powerful nonverbal communication

tool, allowing robots to convey intentions, emotions, and social cues (Aliasghari et

al. 2020; Liu et al. 2012), and using these gaze cues to signal turn-taking in conversa-

tions, facilitating more natural and intuitive interactions. Gaze automation enables

robots to provide visual feedback, such as nodding or looking towards objects, to

95
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confirm understanding or indicate agreement and enables better task performance

by focusing attention on critical elements, reducing distractions, and improving task

efficiency (Somashekarappa et al. 2023).

The main objectives and contributions of the chapter are:

1. Implementing different gaze patterns in a social robot in an interactive setting

2. Experimental evaluation of robot gaze patterns in human-robot interaction

3. Analysis of how different gaze patterns may be predictive of people’s engage-

ment in an interaction with a social robot

In this experimental study, we investigate gaze patterns as a potential continuous

metric to gauge people’s perceptions of robots. Our specific research questions are

i) Is there any correlation between robot gaze patterns participants’ perception of

its friendliness, cooperativeness and sociability? ii) Does the robot’s gaze pattern

significantly influence users assessments of the robot’s usability and overall inter-

action experience? iii) If so, how do specific gaze patterns indicate the emotional

engagement of the user during the interaction?

5.1 Corresponding Work
Research has shown that a robot consistently maintaining the user’s mutual atten-

tion is viewed as more genuine (Hoffman and Breazeal 2004). Similarly, leveraging

the speaker’s visual attention through gaze-tracking positively impacts understand-

ing speech, aiding in the prediction, clarification, and resolution of spoken references

(Prasov 2011; Degutyte and Astell 2021). Mutlu et al., delved into the significance

of mutual attention within collaborative scenarios, where both humans and robots

engage in coordinated tasks within a shared environment (Mutlu et al. 2016). Ad-

ditionally, they explored gaze strategies employed to structure dialogs and define

distinct roles of speakers and listeners in human-robot interactions.
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Figure 5.1: Event Attention Interface (EAI) showing the gaze model state transitions
of the robot in the interaction space. Blue block indicates gaze on the user and pink
block in the surrounding environment. The blue horizontal line depicts the user’s
gaze on the robot and the white horizontal line is the beginning and the end of
speech turn of the robot.

The computational frameworks developed for recognizing and facilitating engage-

ment, focus on “the method by which multiple participants establish, sustain, and

conclude their perceived bond during shared activities” (Rich et al. 2010). This

research highlights the influence of targeted and mutual gaze on the relational dy-

namics between interacting parties but doesn’t address the role of gaze in clarifying

speech or using gaze to prompt responses.

While certain investigations have focused on general modelling approaches to integ-

rate various modes and dialog reasoning for multi-modal interfaces, embodied con-

versational agents, and human-robot interactions, they often overlook key concepts

such as joint attention, mutual attention, or engagement (Wang et al. 2023). The

current paper builds upon insights from existing literature but advances the field by
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incorporating different gaze aspects into a unified and innovative modelling frame-

work. The model for our experimental condition is based on detailed observations

of gaze behaviors in human-human interactions, made from the manual annota-

tion and analysis on the Good Housekeeping Institute (GHI) corpus in Chapter 2

(Somashekarappa et al. 2021).

Humans employ diverse communication modalities to convey information, while

selecting channels based on their efficiency and communicative potential (Hessels

2020). To disambiguate, individuals rely on their counterparts’ ability to integrate

information from these channels for clarity. Solely relying on verbal expressions

can introduce uncertainties, potentially disrupting mutual understanding (Cassell

et al. 2000). Consequently, listeners often integrate a speaker’s verbal content with

accompanying gestures and eye movements to derive a clearer interpretation be-

fore seeking clarification (Gullberg and Holmqvist 1999). Notably, when using gaze

during speech, the visual cue typically precedes speech by approximately 800-1000

milliseconds, while individuals tend to focus on the referenced object about 200

milliseconds after auditory input (Heyselaar et al. 2021).

In collaborative efforts, individuals strive to direct their partners’ attention either

to specific objects in their environment or to themselves. In addition to verbal and

pointing cues, they commonly use gaze and a combination of these communication

methods to achieve this goal. Furthermore, individuals track their partner’s gaze

to establish a shared frame of reference, leading to synchronized focus and mutual

attention on a particular object. This interaction signifies active engagement in the

joint activity and the ability to discern indicated items. When both parties maintain

this focused interaction, they engage in mutual gaze (Mitterer and Reinisch 2017).

Both gaze mechanisms, aimed at fostering joint attention, play a crucial role in pre-

serving shared understanding. In our robotic application, the system draws attention

to the speaker based on the demands of the conversational act such as maintaining

attention while the speaker is looking at the robot or looking away during a long

utterance to avoid discomfort. Effective communication relies on skillful mechanisms



5.1. Corresponding Work 99

that regulate the roles of speakers and listeners (Brown 1991). In this context, the

orientation of gaze becomes a pivotal cue in either facilitating or constraining these

role transitions. Generally, speakers divert their gaze from the audience, signaling

their desire to maintain control of the conversation, whereas they redirect their fo-

cus toward another participant to relinquish the floor (Mason 2012). If a statement

does not conclude with a gaze directed towards another individual, the transition

between speakers may be prolonged.

Figure 5.2: Session in progress. Experiment setting showing cameras placed behind
the users and Furhat during the interaction. Images to the left show various pos-
itioning of gaze movements of the robot in accordance with the conversation flow
(consent has been provided my the participants to use the images from the experi-
ment for publishing purposes with faces being swapped/anonymized)
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Despite achieving good results in replicating human-like gaze behaviors in robots,

a prevalent constraint is their predominantly reactive nature. Although certain sys-

tems devise gaze behavior plans for forthcoming utterances at the onset of speech

(e.g., (Ishii et al. 2016)), these plans lack incremental updates and do not signific-

antly influence the ongoing gaze behavior. Another common limitation is the static

nature of many systems, utilizing fixed duration for gaze shifts. For instance, in (Das

et al. 2015), the robot’s gaze remained fixed on the relevant target for 1-5 seconds

during interactions before transitioning to the target with the lowest priority. In

contrast, Human-Human Interaction (HHI) entails extensive planning. Studies in-

dicate that gaze behavior is intricately coordinated with the underlying speech plan

(Holler and Kendrick 2015b). The duration of planning determines whether a swift

glance suffices or necessitates head movement for a more extended gaze.

In summary, prior research has explored gaze models for robots, but it has often over-

looked the consideration of the human partner’s eye movements. The predominant

gaze behavior of existing robots is designed in response to users’ speech, or gaze be-

havior is accomplished through head movements. However, head movements are lim-

ited to approximating coarse gaze direction and cannot effectively convey nuanced

eye movements. Given the identified gaps in existing research, the present study

addresses this gap by directing attention toward the intricate interplay between hu-

man and robot gaze dynamics. Our focus is to discern how incorporating a more

comprehensive understanding of human eye movements into the design of robotic

gaze behaviors could enrich the overall human-robot interaction experience. This

research is aimed to contribute valuable insights into refining robotic gaze models,

moving beyond traditional constraints, and fostering a more natural and intuitive

communication between humans and robots.
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5.2 Human to Robot interaction setup
This section describes the implementation of our system that enables real-time gaze

interaction with a social robot head. Furhat1, is an anthropomorphic robot equipped

with a Software Development Kit (SDK), which provides tools tailored conception,

deployment, and analysis of applications. It features a biomimetic neck design fa-

cilitating lifelike head movements, comprehensive control over facial expressions,

gestures, and ambient lighting. The platform supports customization, enabling ad-

justments to facial characteristics, ethnicity, gender, multilingual modality, and even

species, with adaptable faces securely attached through magnetic mechanisms.

The primary components of Furhat’s programming infrastructure encompasses de-

velopment of skills using Kotlin API, with integration into python for object detec-

tion. The skill framework constitutes an advanced layer building upon rudimentary

I/O capabilities, allowing Natural Language Understanding (NLU), dialog manage-

ment, multimodal utterances, interaction logging, and the incorporation of Graphical

User Interfaces (GUI). The facial behavior is controlled by a 3D face model which

is similar to that of virtual agents.

The robot can execute rapid gaze shifts through digital animation and incorporates

physical servos in its neck to mimic head movements. Convincing neck and eye gaze

behavior are crucial for our specific task, where users are expected to assess the

robot’s visual behavior. The robot achieves precision in looking at various parts of

the lab by standing in the fixed position, and is calibrated to ensure accurate gaze

shifts towards specific locations.

1. https://furhatrobotics.com/
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5.2.1 Interaction session

The experiment is a within-subject design where the participants interacted with

the robot in 3 consecutive sessions. The social robot displayed three variations of

gaze behavior: neutral, experimental and random (see section 5.3.2 for details). The

participants had zero exposure to the robot prior to the experiment. The social inter-

action sessions lasted about 30-40 minutes. Each session was programmed to take up

to 10 minutes where the robot asked questions and the user was requested to briefly

answer at their own pace while the robot maintained expressive gaze movements

throughout the experiment. Finally, at the end of each session two questionnaires

were provided to measure user engagement and perception of the robot.

5.2.2 Participants

21 participants between the age of 25 to 48 with the average age of 36.5 years were

recruited (M=13; F=7; Non-Binary=1). They were either first or second language

English speakers, with a minimum of undergraduate education. Prior to the main

session we conducted a pilot study on 5 individuals. At the beginning of the ses-

sion, participants were presented with information about the study and provided

their informed consent. The study was approved by the Swedish Ethical Review

Authority2.

5.3 Experiment and evaluation
The participants were seated approximately 150 cm away from the robot. The user

and Furhat, were centrally aligned. We adjusted the participants’ sitting height to

guarantee that their eyes are approximately the same level as the robot’s eyes. Our

baseline condition is using continuous eye contact as similar to gaze behavior always

2. https://etikprovningsmyndigheten.se/, 2023-03044-01.

https://etikprovningsmyndigheten.se/
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used in existing robotic systems: the robot attends to users’ face when they are

facing towards the robot. The gaze shift is generated via eye movement. The robot’s

neck moved to track the user during the experiment along with their gaze. Furhat’s

blink was consistent across all experiments.

Figure 5.3: Questionnaire Analysis. Plot 1: Perception Questionnaire, Plot 2: User
Engagement Scale

Prior to the study, the experimenter explained the purpose and procedure of the

study to the participants. The entire experiment lasted for around 30 minutes per

participant. During each session, the participants had three interactions with the

robot (one in each of the gaze behavior conditions; neutral, experimental and ran-

dom, with the order randomized between participants). In each interaction, the

participants were asked to answer six unique questions. After each interaction, each

participant filled in a questionnaire to assess their perceptions of the robot’s beha-

vior. The Perception Questionnaire consists of questions to assess users’ perceptions

of the robot’s anthropomorphism, animacy, likeability, intelligence and safety, with

each of these factors based on 3 to 5 sub-questions rated on a five point Likert scale

(e.g. the subscales related to anthropomorphism included items such as rating the

robot on a scale that ranged from ‘fake’ (1) to ‘natural’ (5) and ‘artificial’ (1) to

‘lifelike’ (5).

After all three interactions, the subject filled in a user engagement scale question-

naire about their overall experience and feedback. This questionnaire consists of 12

statements to be assessed in a 5 point Likert scale from “strongly disagree” (1) to

“strongly agree” (5), with each statement relating to one of four factors. The four
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factors are ‘Focused Attention (FA)’, ‘Perceived Usability (PU)’, ‘Aesthetic Appeal

(AE)’, and ‘Reward Factor (RF)’ (O’Brien et al. 2018). Examples of items relating

to perceived usability for example, are ‘I felt frustrated while talking to Furhat.’ and

‘I found Furhat confusing to use.´

Furhat, first greeted the participants and asked them open ended unique questions

during each session which were consistent across subjects. There were a total of 18

questions and the robot answered these questions briefly as well while the interactant

was asked to observe the naturalistic behavior of the robot.

5.3.1 Measures

Users’ subjective understanding of each interaction was assessed using the responses

to the perception questionnaires. We further assessed users overall experience by

analysing the responses to the user engagement scale. For both of these scales we

use only average figures aggregated over the sub-items for each factor.

Figure 5.3 (Plot-1) represents the analysis of a Perception Questionnaire comparing

ratings across different attributes (‘Anthropomorphism’, ‘Animacy’, ‘Likeability’,

‘Intelligence’, ‘Safety’) under the three experimental conditions: ‘Neutral’, ‘Experi-

mental’, and ‘Random’.

5.3.2 Event Attention Interface

In the neutral condition the system tracks the face with the users movement and

blinks at regular intervals similar to the other conditions but does not react to

the user’s gaze. Instead the robot’s attention was directed towards the user’s face

position. A wait key was initialized in all conditions in case of delayed response from

the user. In case of no reply, the robot repeated the question and if the user did
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not want to share or answer during the conversation, by default Furhat moved on

the next question after a bridging sentence. This paradigm was to make sure the

conversation flow did not affect the perception of the robot since the main focus in

to access the non-verbal cues.

In the experimental condition, the gaze patterns were dynamically programmed so

as to follow the verbal cues with semantic and pragmatic information, in line with

evidence from gaze research in human-human interaction. The completion of the

syntactic unit by the user was a cue to break mutual gaze, while the end of sentence

completion of the robot was a cue to move gaze back to the listener which are

cues for turn-yielding and turn-holding (Skantze 2021). Gaze aversions are used to

reduce cognitive effort and modulate intimacy, hence the robot looked away during

the speaking turn (Jaber 2023). During a longer speaking turn, the robot looked

away in the environment for one second before (randomly initialized) to avoid eerie

mutual attention (figure 5.1, block 4) (Somashekarappa et al. 2021). In order to

avoid overlap, if the participants began speaking before or after turn completion,

Furhat paused until the user finished their turn.

In contrast, the random condition was designed to randomly trigger the gaze of the

robot without any predetermined contextual padding. In this case we implemented

the same basic gaze movements as in the experimental condition, but the initiation

of the gaze behaviors was not directly tied to the interactive context. For example,

gaze could be directed towards the environment (and away from the speaker) during

a users speech, towards the speaker for an indefinite length of time or the robot could

appear to look away in the middle of a sentence.

In order to understand and visualize the dynamic gaze events in random and exper-

imental conditions we utilize the Event Attention Interface (EAI). Figure 5.1 shows

the platform of the robots interface, indicating the attention on the user to the left.

The graphical representation depicts the generated gaze behavior of Furhat during
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interactions and also the status of users gaze focus on or away from the robot. Dur-

ing the transitions, the robot maintained mutual attention towards the user while

they glanced away frequently. Similarly, the robot actively broke the eye contact

when the user looked steadily at the robot.

5.4 Questionnaire Analysis
Participants’ feedback on the overall interaction experience and the impression of

the robot is presented in figure 5.3.

Attributes Comparison: The graph in figure 5.3 plot 1 shows the average ratings for

each attribute across the three experimental conditions.

As can be seen in figure 5.3, the experimental condition, based on human gaze

behavior, consistently leads to higher ratings across all attributes, suggesting that

the experimental natural gaze manipulations positively impact user perceptions.

The random condition generally falls below the experimental condition but shows

comparable ratings to the neutral condition. This might indicate that random gaze

factors have a less pronounced impact on perceived attributes.

We ran a series of Generalized Linear Mixed Models (GLMMs) with each of the

five attributes as dependent variable, gaze pattern type (neutral, experimental or

random) as independent variable, participant ID as a within-subject factor and age

and gender as random effects. Post hoc pairwise comparisons were carried out in the

case of significant effects to identify which differences were significant.3

3. All statistical analyses were run using SPSS 28. The models use a linear model with a normal
distribution.
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For anthropomorphism, there was a significant main effect of gaze pattern type

(F2,60 = 5.681, p = 0.006). Post hoc pairwise analyses showed that the rating for

anthropomorphism was significantly higher in the experimental than random con-

dition (t = 3.36260, p = 0.001) and marginally higher than the neutral condition

(t = 1.89560, p = 0.063). Neutral and random conditions were not significantly dif-

ferent from eah other (t = 1.4660, p = 0.148).

For animacy, there was a significant main effect of gaze pattern type (F2,60 =

15.666, p< 0.001). Pairwise tests showed that animacy was rated significantly higher

in the experimental condition than the neutral condition (t = 3.28360, p = 0.002)

and the random condition (t = 5.56860, p < 0.001). Furthermore, the neutral gaze

pattern was rated as significantly more animated than the random gaze pattern

(t = 2.28460, p = 0.026).

There was also a significant main effect of gaze pattern type on likeability (F2,60 =

8.183, p < 0.001). Likeability was rated significantly higher in the experimental con-

dition than both random (t = 3.99060, p< 0.001) and neutral (t = 2.57260, p= 0.013).

Likeability was not rated significantly differently in the random and neutral condi-

tions (t = 1.41960, p = 0.161).

The same pattern of effects was found for the ratings of intelligence, with a significant

main effect of gaze pattern type (F2,60 = 8.183, p < 0.001), a significant difference

between the experimental and random (t = 3.88360, p < 0.001) and experimental

and neutral (t = 2.14260, p = 0.036) conditions and no significant difference between

random and neutral gaze patterns (t = 1.69160, p = 0.096).

There was no significant main effect of gaze pattern on participants’ perceptions of

safety (F2,60 = 1.485, p = 0.235).

With the exception of safety, therefore, user’s perceptions of the robot were higher

for all our measured attributes in the experimental condition than in the other two

conditions, highlighting the importance of gaze behavior in users perceptions of a

social robot in interaction.
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User Engagement Scale: Utilizing a structured User Engagement Scale (fig 5.3, plot

2), four key aspects were examined: ‘Focused Attention,’ ‘Perceived Usability,’ ‘Aes-

thetics,’ and ‘Rewarding.’ Each aspect was assessed based on user-provided ratings,

and the mean values were calculated to discern the overall perception of users. Each

of these contain three sub-statements. Participants expressed a moderate level of

engagement in terms of focused attention (Mean Value = 3.19). Perceived usab-

ility and aesthetics yielded a moderate mean value of approximately 2.84 & 3.0.

This indicates a generally satisfactory level of usability, hence requires potential en-

hancements in the user experience. The aspect of ’Rewarding’ exhibited a relatively

higher mean value of approximately 3.5 where participants found the interaction to

be rewarding, indicating a positive and fulfilling experience. Note that as we only

asked our subjects these questions once after all three of their interactions, further

between-subject experiments are needed to assess whether these engagement factors

are also positively impacted by more human-like gaze behavior in the robot.



Chapter 6

Discussion

The thesis firstly, explores the dynamics of eye gaze signals in human-human inter-

actions, delving into their role in reducing cognitive effort, regulating attention, and

signaling social intentions. Through extensive annotation and analysis, it uncov-

ers patterns of gaze behavior indicative of agreement, disagreement, and decision-

making processes. Notably, mutual gaze emerges as a powerful conversational rein-

forcement, contributing to natural perception and interaction fluency.

Secondly, the research introduces a novel neural network architecture for gaze estim-

ation, offering a more accurate and efficient approach compared to previous methods.

Challenges such as head pose variations and occlusions are addressed, paving the

way for real-time gaze tracking applications in human-robot interaction contexts.

This advancement holds promise for improving the naturalness and intuitiveness of

interactions with social robots, enhancing user engagement and task performance.

Finally, offers valuable insights into the nuanced role of gaze behavior in human

interaction, laying the foundation for the design of more sophisticated and socially

adept conversational agents. Future work may include expanding the annotated cor-

pus, evaluating inter-rater reliability, and integrating gaze cues into robotic systems

for various applications, such as therapy and education. Additionally, ongoing ef-

forts to address ethical and legal concerns will be crucial in ensuring the responsible

and ethical use of gaze technology in human-robot interaction contexts.

109
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6.1 Implications of Gaze in Human Interaction

Dynamics
Eye gaze signals play a role in reducing cognitive effort and balancing attention with

intimacy, impacting turn-taking dynamics and indicating cognitive effort during gaze

aversions. Gaze-following without speech differs from static stimuli observation, and

gaze transitions in dialogue acts are influenced by speech stimuli, as reported by

Admoni and Scassellati (2012).

The study discussed in Chapter 2 presents findings that suggest potential avenues

for further research in gaze analysis. The identified themes include the prediction of

gaze agreement/disagreement before the emergence of linguistic cues and the explor-

ation of how decision-making influences eye gaze behavior. The study reveals that

mutual gaze is established by a speaker before making remarks, but when denying or

expressing a differing opinion, the gaze remains in the shared environment. This ob-

servation is consistent across various scenarios related to agreement/disagreement.

The partner establishes mutual gaze before making remarks. But while denying or

not sharing the same opinion as the partner, the gaze is in the shared environment

as noted in Excerpt 1, Similar pattern was observed across scenarios pertaining to

agreement/disagreement scenarios. This hypothesis of existence of a unique correl-

ation between gaze patterns, is seconded by (Grynszpan and Nadel 2015).

Mutual attention occurrences are found to be the least common but still act as

powerful conversational reinforcements. In human-robot interactions, mutual gazes

contribute to natural perception, higher recall, and improved persuasiveness. Gaze

duration is influenced by individual personalities, with extroverts spending more

time looking at their partner.
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Gaze cueing is found to influence joint attention, and in verbal interaction, joint

attention can occur simultaneously without the influence of verbal utterances, sug-

gesting the development of social cognition (Beaudoin and Beauchamp 2020). The

duration of gaze during joint attention is notably spent in coordination tasks, with

short fixations potentially contributing to more natural interactions. Considering

the task required coordination, the maximum gaze duration during the session was

spent in Joint attention, but interestingly, on average, each of these fixations lasted

for about 2.9 seconds. The gaze-shifts from one object to another is quick and is not

directly influenced by other factors such as speech. From a conversational robotics

perspective, short duration fixations in robotic gaze could in turn make interaction

more natural.

Eye gaze signals reduce cognitive effort and balance attention with intimacy when

the speaker wants to maintain or relinquish the floor and the gaze aversions we

observe (lack of overlap between G1 and G2) signal cognitive effort that is looking

away or toward the speaker while beginning to answer a question depending on

whether they were in agreement or not, which in turn, suggests that these gaze

aversions are influenced by the purpose of the direction shift (Andrist et al. 2014).

Gaze-following without speech relies on following the motion based on observation

of static stimuli, but it acts differently during dialogue acts (Shepherd 2010a). As

noted in Excerpt 4, gaze transition occurs a few seconds before the actual implication

of movement because of the added assistance from the speech stimuli. As reported

by Admoni and Scassellati (2012) people can process gaze information, such as

direction, really quickly, as shown in overlapping gaze transition (see qualitative

analysis). Interactive eye gaze improves fluency and smooths task performance and

subjective experience.

Establishing mutual attention can assist in reducing pragmatic overload in perceiv-

ing cues (Zhang et al. 2017). However, in our study mutual attention gaze occur-

rences are the least common, even though they still act as powerful conversational

reinforcements. Mutlu et al. (2012), showed the human-like gaze behaviour of story
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telling implemented in a humanoid robots created more natural perception where the

people had higher and more effective recall when numerous mutual gazes were estab-

lished with the listeners. Also, promotion of persuasiveness of the robot while telling

a story with the addition of gaze shifts. But vise versa is true when only gestures

were added without any gazing effects. During human robot handover interactions

using eye gaze helped the robot to improve fluency and subjective experiences.

Peoples’ personalities can also affect gaze duration in a conversation. People are

more likely to speak when their conversation partner looks at them more often

(Vertegaal and Ding 2002). The interpersonal dynamics between partners i.e the

familiarity is correlated to the amount of mutual gaze not only on each partner’s

individual gaze behaviour. From an adaptive evolutionary perspective, attending

where others attend can provide information about behaviourally relevant events in

the surroundings, particularly action plans, intentions and successive action plans,

through the means of joint attention (Shuai 2012).

Processing eye gaze information results from an interaction between face specific

structures (involved in visual analysis) and an extended system (spatial attention)

as proposed by investigations into the distributed human neural system for face

perception (Haxby et al. 2000). Psychophysical interactions (PPIs) in functional

magnetic resonance imaging study showed differential connectivity or correlation

with core face perception structures in the posterior superior temporal sulcus and

fusiform gyrus. This was noted while viewing gaze shifts relative to control eye mo-

ments such as the opening or closing of the eyes. It demonstrated the contribution of

both the dorsal and the ventral core face areas to gaze perception. Hence, this net-

work provides an interactive system focusing on spatial attention and corresponding

shifts in attention (Nummenmaa et al. 2009)
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A fearful facial expression with the pointing/directing of the eyes can signify the

presence of danger in the surrounding which was investigated in an fMRI study

(Hadjikhani et al. 2008) where the meaning of the facial expression along with the

direction of the gaze was proven to compute the behavioural implications from the

observer’s perspective.

Discussing the aforementioned neural correlates of gaze behaviour and its direct

influence on dialogue has helped expand our understanding of some linguistic phe-

nomena in persons with disabilities. One of the important goals of the the thesis

is developing an automated system with improved gaze behaviour recognition. It

can also be used to assist in the diagnosis and rehabilitation of persons with com-

munication impairment, developmental delay, cerebral palsy, quadriplegia, autism,

Angelman syndrome, schizophrenia, and aphasia, to name a few.

Patients with schizophrenia displayed reduced non-verbal behaviour and increased

negative symptoms (Lavelle et al. 2012) and poor coordination of turn-taking along

with disfluencies using fewer self-repairs in dialogue (Howes et al. 2017). Another

study presented an analysis of gaze aversion patterns distinguishing between positive

and negative schizophrenia (Vail et al. 2017). Children with ASD prefer more limited

social interaction compared to children without ASD, hence measurement of eye gaze

as a screening tool may be an important contribution in this area (Vargas-Cuentas

et al. 2017). As a result, the development of innovative assistive technologies can

alleviate current challenges and improve diagnostic accuracy.
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6.2 Implications for Multimodal Meaning Repres-

entation
Chapter 3 provides evidence for the important link that gaze behaviour has for co-

ordination in interaction, and also stresses the interaction between gaze, non-verbal

behaviour and dialogue acts. Our data therefore offers new material for modelling

multimodal meaning construction in interaction – important not only from a the-

oretical linguistic perspective, but also for the implementation of ECAs able to be

more pragmatically adequate and to read non-verbal cues from the user in order

to refine their own behaviour (e.g. if the user laughed and looked at the ECA, a

likely adequate response might be to laugh back). More complex models for semantic

processing are needed in order to tune ECAs behaviour to the pragmatic functions

performed by the laughter, but our results suggest that gaze might be one of the

cues to be considered in order to classify the type of laughter. Chapter 3 is limited

by the small sample size analysed. Extending our dataset, will allow us to employ

more complex statistical models to be able to account for several variables at the

same time (e.g. laughter position in relation to the speech-turn, to the laughable

placement, arousal). Cross-cultural studies (e.g. Rossano et al. (2009)) showed dif-

ferences in gaze behaviours between different communities (consideration relevant

also for the implementation of ECAs appropriate to the user’s culture). Our results

therefore should not be taken as absolute, but open up the possibility for interesting

comparative studies.
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6.3 Implications of Deep Learning for Gaze Es-

timation
The main goal of Chapter 4 is to improve the accuracy of gaze estimation and

prediction. In this chapter we propose a novel neural network architecture to sim-

ultaneously and accurately detect gaze target on the intended object for multiple

people in a single scene. We compare the results firstly with manually annotated

data from GHI corpus and then with the popular GazeFollow dataset. The res-

ults show an improvement in the performance compared to previous methods and

provide specific information of the type of gaze in a given scene.

We faced challenges such as head pose variations, occlusions, and cluttered back-

grounds, but with the help of extensive manual annotation data made available it

has been possible to reduce error while also adopting open-sourced pre-trained mod-

els. Most current gaze prediction methods use visual information only (Spiller et al.

2021). However, incorporating linguistic modalities such as dialogue could lead to

improved performance and more natural gaze predictions (Hakkani-Tür et al. 2014).

It is possible to identify when someone is inattentive by observing how they look at

an object, following their gaze, and even identifying if they are maintaining mutual

gaze. Yet, there remains a complex, open challenge in automatically detecting and

quantifying these types of visual attention from images and videos.

Gaze information can be used as an input for human-Robot interaction (figure 4.2),

and focus on developing more sophisticated gaze-based interaction methods that are

more natural and intuitive. Gaze can provide insights into human behavior, such as

attention, memory, and emotions. Hence, by developing new methods for analyzing

gaze data, it is possible to gain a better understanding of human behavior and its

underlying cognitive processes. The final chapter discusses the implementation of

the gaze results obtained from the study on a Furhat Robot.
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Many current gaze estimation and prediction methods are computationally intensive

and not suitable for real-time applications. Developing fast and efficient algorithms

for gaze estimation and prediction is an important area for future work.

Overall, the field of gaze estimation and prediction has the potential to revolutionize

the way we interact with technology and gain insights into human behavior. There

is much work to be done to reach these goals, but the potential impact is significant.

Most research on gaze estimation has been constrained to specific predetermined

contexts, though the problem has long been a hot research topic (Pathirana et

al. 2022). Our method offers a detailed level representation of attention for each

individual in a video, in contrast to approaches that explicitly infer gaze behavior.

6.4 Impact of Anthropomorphic Social Robots on

User Perception
Chapter 5, highlights the importance of human-like gaze behavior in positively in-

fluencing user perceptions, especially in the context of an anthropomorphic social

robot. Tying the gaze behavior to the context of the interaction in progress, by look-

ing away and returning the gaze to the interlocutor in line with how humans tend

to do this in relation to turn-taking interaction and not continually gazing at one’s

interlocutor as is often the case in social robots, positively impacts on participants’

perceptions of anthropomorphism, animacy, likeability and intelligence, but has no

impact on participants’ perceptions of safety. Perhaps surprisingly there was no

difference in participants’ perceptions between the neutral and random conditions,

except in the animacy case where the neutral gaze behavior (which does not vary as

much) was rated as more animated than the random gaze behavior. This suggests

that care must be taken when implementing particular behaviors in social robots as

bad algorithms might actually be worse than doing nothing.
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One factor that was not yet addressed in this research is the question of how people’s

perceptions of robots evolve over repeated interactions, which requires the creation

of measurement methods suitable for extended evaluations. Currently, assessing

people’s views of robots heavily relies on questionnaires and interviews, which come

with inherent limitations (Fink et al. 2011; Flensborg Damholdt et al. 2020). Firstly,

these tools only reflect an individual’s viewpoint at a particular instance, making

it challenging to link shifts in perception to specific interaction moments. Secondly,

for an accurate longitudinal assessment, multiple evaluations are necessary. Yet,

repeatedly completing questionnaires disrupts the natural interaction with the ro-

bot, potentially reducing engagement and task performance. Lastly, relying on self-

reported measures introduces biases; individuals might recall previous responses,

leading to response fatigue or inadvertently revealing experimental objectives. In

future work it is necessary to address these questions by analysing the videos of

the interaction to try to discover if there are behavioral cues from the users (e.g.

smiling, verbal and non-verbal feedback) which are correlated with their reported

perceptions of the interactions.

The study could also benefit from qualitative data to complement quantitative rat-

ings, providing deeper insights into users’ subjective experiences. Therefore, to effect-

ively analyze how perceptions of robots change over time and connect these changes

to specific robot actions, there’s a need for more subtle and continuous assessment

methods.

Developers can leverage the insights gained from this analysis to prioritize elements

such as gaze that enhance anthropomorphism and animacy in similar systems. In

conclusion, the analysis provides a nuanced understanding of how different experi-

mental conditions impact user perceptions across multiple attributes, offering valu-

able insights for both researchers and practitioners in the field.
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6.5 Ethical Implications
The ethics of gaze estimation involve considering the potential consequences and

impacts of using the technology on individuals, groups, and society. One indispens-

able ethical issue is privacy, since it can be used to track and monitor individuals,

potentially violating their privacy. The collected gaze data can be used for purposes

beyond gaze estimation, such as advertising, surveillance, or profiling.

Another ethical issue is bias and fairness. Gaze estimation algorithms can be biased

based on the training data and the demographic characteristics of the individuals

in the dataset. For example, a gaze estimation algorithm trained on data from a

predominantly male or white population may perform poorly on individuals from

other demographic groups. This can lead to unequal treatment and discrimination

based on race, gender, or other characteristics. To mitigate these biases, the following

steps should be considered:

1. Data bias: Ensure that the training data used to develop the gaze estimation

algorithms is diverse and representative of the population that the technology

will be used on. This can help reduce the potential for bias in the algorithms.

2. Transparency: Provide clear information about the purpose and function of

gaze estimation technology, how it works, and the type of data that has been

collected. This can help to build trust and increase transparency around the

use of the technology.

3. Data privacy: Implement strong data privacy and security measures to pro-

tect the collected gaze data. This can include encryption, anonymization, and

secure storage of the data.

4. Regulation: Develop and enforce appropriate regulations and guidelines to

ensure that gaze estimation technology is used in an ethical and responsible

manner. This can include guidelines for the use of the technology in specific

contexts, such as security or law enforcement, and for the handling of the

collected gaze data.



6.5. Ethical Implications 119

5. User control: Allow individuals to control how their gaze data is collected and

used. This can include options for opt-in and opt-out of data collection and

the ability to access and delete their data.

6. Monitoring and evaluation: Regularly monitor and evaluate the performance

and impact of gaze estimation technology to identify and address potential

ethical concerns and biases. This can include ongoing audits and assessments

of the technology and its usage.

Additionally, gaze estimation can be used in applications that have potential con-

sequences for individual well-being and society as a whole, such as in security or law

enforcement contexts. In these scenarios, it is important to ensure that the techno-

logy is used in a transparent, responsible, and ethical manner, and that appropriate

safeguards are in place to protect individuals’ rights and freedoms. In conclusion, it

is important to consider the ethical implications of gaze estimation and to ensure

that the technology is developed, used, and regulated in a responsible and ethical

manner.

6.6 Legal implications
The collection and use of gaze data raises privacy concerns as it involves the monit-

oring and tracking of an individual’s gaze behavior. This data can be sensitive and

personal, and its collection and use must be done in compliance with privacy laws,

such as the General Data Protection Regulation (GDPR) in the European Union

and the California Consumer Privacy Act (CCPA) in the United States. Obtaining

informed consent from individuals for gaze interaction and data collection is crucial,

particularly if the interaction involves capturing and storing personal information.

The use of gaze technology can raise concerns about discrimination, particularly if

the data collected is used to make decisions that affect an individual’s rights and

opportunities. For example, if gaze data is used to make decisions about employ-

ment, credit, or housing, there is a risk of discrimination based on race, gender,
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or other protected characteristics. Gaze technology can be subject to bias, which

may affect the accuracy and fairness of the data collected and used. For example,

if the algorithms used to analyze gaze data are biased towards certain groups, this

could result in discriminatory outcomes. Robots that interact with humans, includ-

ing through gaze, must meet safety standards to prevent physical harm. Failure to

do so could lead to product liability claims.

In order to address these legal concerns, it is important to implement gaze technology

in a transparent manner. This includes providing clear explanations of the purpose

and use of gaze data, as well as offering users the ability to control or delete the

data collected. The use of gaze technology also raises ethical considerations, such as

the impact on privacy, autonomy, and dignity. For example, the use of gaze tracking

to monitor and control the behavior of individuals raises concerns about individual

autonomy and privacy rights. This includes compliance with privacy laws, addressing

the risk of discrimination, mitigating bias, promoting transparency, and considering

ethical implications. By doing so, designers and developers can ensure that gaze

technology is used in a responsible and ethical manner that protects the rights and

interests of individuals.

6.7 Conclusion and Future Work
Detailed gaze annotation helps to unearth hidden layers in human interactions which

can further help build automated dialogue systems. For future work, inter-rater re-

liability will be measured for all the videos that are annotated by the first author

followed by automatic annotation of the manually-coded data will be conducted

which would allow us to expand the corpus for multimodal interactions. The rapid

advancements in the field of robotic technologies increases the importance of so-

cial robots that are built for interacting with people and are designed for various
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contexts such as therapy, education, and industrial applications. Depending on the

degree to which they would need the autonomous capacity to display socially ac-

ceptable behaviour for human comfort, the results of this thesis can be used in the

implementation of gaze cues in avatars/robots such as Furhat.
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Consent Form 
 

Human-Robot Interaction 

I    , agree to participate in the study ‘’Human-Robot Interaction’’, 
conducted by Vidya Somashekarappa who has (have) discussed the research project with me. 
 
I have received, read, and kept a copy of the information letter/plain language statement. I have had the 
opportunity to ask questions about this research and I have received satisfactory answers. I understand 
the general purposes, risks, and methods of this research. 
 
I consent to participate in the research project and the following has been explained to me: 
 

• the research may not be of direct benefit to me 

• my participation is completely voluntary 

• my right to withdraw from the study at any time without any implications to me 

• the risks including any possible inconvenience, discomfort or harm as a consequence of 
my participation in the research project 

• the steps that have been taken to minimise any possible risks 

• public liability insurance arrangements 

• what I am expected and required to do 

• whom I should contact for any complaints with the research or the conduct of the 
research 

• I am able to request a copy of the research findings and reports 

• security and confidentiality of my personal information. 
 

In addition, I consent to: 

• audio-visual recording of any part of or all research activities (if applicable) 

• publication of results from this study on the condition that my identity will not be 
revealed. 

 
 
Name: _______________________________________________________________ (please print) 
 
Signature: _________________________________________________________________________  
 
Date: __________________________  
 
 

Figure A.1: Consent Form
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Samtyckesformulär 
 

Interaktion mellan människa och robot 

Jag     , samtycker till att delta i studien ``Interaktion mellan människa 
och robot'', utförd av Asad Sayeed som har (har) diskuterat forskningsprojektet med mig. 
 
Jag har tagit emot, läst och bevarat en kopia av informationsbrevet/förklaringen på klarspråk. Jag har 
haft möjlighet att ställa frågor om denna forskning och jag har fått tillfredsställande svar. Jag förstår de 
allmänna syftena, riskerna och metoderna för denna forskning. 
 
Jag samtycker till att delta i forskningsprojektet och följande har förklarats för mig: 
 
• forskningen kanske inte är till direkt nytta för mig 
• mitt deltagande är helt frivilligt 
• min rätt att när som helst dra mig ur studien utan att det påverkar mig 
• riskerna inklusive eventuella besvär, obehag eller skada till följd av mitt deltagande i 
forskningsprojektet 
• de åtgärder som har vidtagits för att minimera eventuella risker 
• offentliga ansvarsförsäkringar 
• vad jag förväntas och måste göra 
• vem jag ska kontakta för eventuella klagomål med forskningen eller genomförandet av forskningen 
• Jag kan begära en kopia av forskningsresultaten och rapporterna 
• säkerhet och konfidentialitet för min personliga information. 
 
Dessutom samtycker jag till: 
• audiovisuell inspelning av någon del av eller all forskningsverksamhet (om tillämpligt) 
• publicering av resultat från denna studie under förutsättning att min identitet inte avslöjas. 
 
Namn: _______________________________________________________________  
 
Signatur: __________________________________________________________________________  
 
Datum: ________________________  
 
 

Figure A.2: Consent Form Swedish
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Participant number:      Age/Gender:  

Figure A.3: Godspeed Questionnaire
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Participant Number:      Age/Gender: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FA-S.1 I lost myself in this experience. 

FA-S.2 The time I spent using Furhat  just slipped away. 

FA-S.3 I was absorbed in this experience. 

PU-S.1 I felt frustrated while talking to  Furhat. 

PU-S.2 I found furhat confusing to use. 

PU-S.3 Using Furhat was taxing. 

AE-S.1 This chat was interesting. 

AE-S.2 Furhat was aesthetically appealing. 

AE-S.3 Furhat appealed to my senses. 

RW-S.1 Using Furhat was worthwhile. 

RW-S.2 My experience was rewarding. 

RW-S.3 I felt interested in this experience. 

Figure A.4: User Engagement Questionnaire
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