Towards a Statistical Model of Grammaticality

Alexander Clark, Gianluca Giorgolo, and Shalom Lappin
firstname.lastname @kcl.ac.uk
Department of Philosophy, King’s College London

Abstract

The question of whether it is possible to characterise grammat-
ical knowledge in probabilistic terms is central to determin-
ing the relationship of linguistic representation to other cog-
nitive domains. We present a statistical model of grammati-
cality which maps the probabilities of a statistical model for
sentences in parts of the British National Corpus (BNC) into
grammaticality scores, using various functions of the parame-
ters of the model. We test this approach with a classifier on test
sets containing different levels of syntactic infelicity. With ap-
propriate tuning, the classifiers achieve encouraging levels of
accuracy. These experiments suggest that it may be possible to
characterise grammaticality judgements in probabilistic terms
using an enriched language model.

Keywords: enriched language models, probability distribu-
tion, grammaticality judgements, probabilistic syntax

Introduction

The past two decades have seen a lively debate over whether
linguistic knowledge is probabilistic or categorically rule-
based in nature (see the papers in Bod, Hay, and Jannedy
(2003) for some of this discussion). Given the success of
probabilistic accounts of learning, representation, and infer-
ence across a wide range of cognitive domains, this debate
has considerable importance for the way in which knowledge
of language is integrated into our general view of human cog-
nition.

On the classical view of syntax developed within linguistic
theory over the past sixty years, the grammaticality and the
probability of a sentence are entirely distinct properties with
no direct relationship. Chomsky (1957) presents the origi-
nal argument for the irrelevance of probability in determining
grammaticality.! This argument depends on the inability of
a simple word n-gram model to predict a distinction in prob-
ability between a syntactically well-formed but unlikely (se-
mantically anomalous) sentence like Colorless green ideas
sleep furiously, and a word salad like Furiously sleep ideas
green colorless. Pereira (2000) shows that a smoothed class-
based n-gram model trained on a newspaper corpus predicts
a significant distinction in probability between the two sen-
tences.

While it is certainly the case that grammaticality cannot be
directly reduced to probability, the question of whether there
is a significant correlation between the two remains open and
interesting. Our general approach is as follows. We train
a smoothed class-based trigram model on a filtered subclass
of the BNC. We test this model on two corpora. One is di-
vided into original sentences of part of the BNC and their re-
versed counterparts. The second consists of a subset of orig-

ISee Fong, Malioutov, Yankama, and Berwick (2013) for a re-
cent discussion of some of the issues involved in identifying gram-
maticality with probability of occurrence.

inal BNC sentences and their permuted variants in which a
word in each sentence is randomly exchanged with another
word three positions away from it. These distortions consti-
tute syntactic infelicities. The first case involves gross struc-
tural ill-formedness similar to the word salad example, while
the second introduces subtler, more local mistakes. We score
the test corpora using three alternative conditions. Our binary
classifiers predict that a string is well-formed (original) or dis-
torted (either reversed or permuted) on the basis of a score de-
rived through normalising its log probability (logprob) value
in various different ways. We also test different standard de-
viations from the distributional norm in setting cut off points
for our binary classifiers In our best cases we obtain an accu-
racy rate of 98.9% for the original-reversal test set, and 79.1%
for the original-permutted test set.

These results suggest that by looking at the internal com-
ponents of a probability distribution and the stages through
which it is computed we can identify additional information
that may be used to specify significant correlations between
probability and grammaticality. This opens up an interesting
set of research questions on the relationship between speak-
ers’ knowledge of the probability distribution for a language
and their grammaticality judgements.

Probability and Grammaticality

As has often been noted, it is not possible to reduce gram-
maticality directly to probability. First, short ungrammati-
cal sentences generally receive higher probability values than
long, complex grammatical sentences containing words with
low frequencies. Second, if one specifies a probability value
(or even a range of such values) as the minimal threshold for
grammaticality, then one is committed to the existence of a fi-
nite number of grammatical sentences. The sum of the prob-
abilities of the possible strings of words in a language sum to
1, and so at most 1/¢€ sentences can have a probability of at
least €.

On the other hand, probabilistic inference does appear to
be pervasive throughout all domains of cognition (Chater,
Tenenbaum, and Yuille (2006)). Moreover, language mod-
els do seem to play a crucial role in speech recognition and
sentence processing. Without them we would not be able to
identify speech sounds, and meaningful syntactic and seman-
tic structures in noisy environments. Finally, grammatical-
ity appears to track speakers’ acceptability judgements, and
these are, in many cases, graded. Probability provides a nat-
ural basis for generating such a gradient (Crocker and Keller
(20006)).

Our starting point is a language model: a statistical model
that defines a probability distribution over sentences.
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We construct a log-linear model, parameterised by some
vector of parameters @ = (0,...,6;). This framework cov-
ers a wide range of different models from n-gram models to
PCFGs.”

The probabilities defined by this model cannot be used to
define a notion of grammaticality for several reasons. First,
as the sentences increase in length, the probability of the sen-
tence will always decrease exponentially, for sufficiently long
sentences, while we assume that long sentences can be as
grammatical as short sentences. Second, one can often substi-
tute a rarer semantically related word for an open class word
of the same POS without affecting grammaticality, but the
substitution will reduce probability. Figure 1 shows that the
log probabilities for sentences that have been reversed or per-
muted, and are thus generally ungrammatical, overlap com-
pletely with the log probabilities of normal sentences (see the
next section for details of the experimental protocols). We
need to augment our model with an additional component to
convert probability into a score that correlates with grammat-
icality in an interesting way.
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Figure 1: Histograms for the distributions of log probabilities
under the three conditions.

We use statistical properties of the parameters of the model.
In order to compute the probability of a sentence with respect
to a model we do calculations on the parameters. For a log
linear model, this gives a linear function of certain indicator
variables; a weighted sum. To compute a score that correlates
with grammaticality, we consider other functions, such as a
weighted mean, or a minimum over certain scores.

In a trigram model each parameter will then correspond to
the log conditional probability of one word, given the two

ZWe use smoothing techniques that, in general, can take the

model outside the class of log-linear models, but we pass over this
technical detail here.

preceding words: 0,,,,,, |, ,- To compute the probability of
a sentence we sum the relevant parameters to obtain the log
probability. For a sentence (wy,...,w,) the log probability is

log Prrigram ({(W1, ..., Wn)) = Zew,\wi,lw,-,z
i=1

We take the sequence of relevant parameters
(O, [wow_1 -+ »Ownlwn_ywn_o)» and, rather than summing
them, we perform other computations. We consider the aver-
age or the minimum of the set of parameters as alternatives
for defining values that correspond to grammaticality.

Our most basic score is the mean of this value, the logprob
divided by the word length of the sentence:

1
Meanlogprob = ; log Prricram ((W1,- -+, Wa))

This eliminates the dependence of the logprob on the
length. Our next score divides the logprob of the original tri-
gram model by the logprob with respect to a unigram model.

Normalised = log Prrsgram (W, -, W)
1OgPUNI<3RAM(<Wl yee 7Wn>)

This removes the variation in logprob caused by rare lex-
ical items. Note that if the unigram model is uniform (if
we had equal numbers of each word in the training corpus),
then the log of the unigram model would be a multiple of the
length, and so it would reduce to the previous value.

Our third score uses the observation that a sentence with
one grammatical error in it is ungrammatical. In order to mea-
sure grammaticality we look at the minimum of some score
over the parts of the sentence. We take the minimum of the
ratio of the log trigram probability to log unigram probability.

Minimum = min [log ewiw"'w"z}
i log®,,

None of these measures will produce a score which is in
the range [0, 1], though it would be possible to map them into
this range. This value will also vary even for grammatical
sentences. The scores will be numbers that are distributed in
some way. Figure 2 shows the distribution of these scores for
the test data. As this score specifies a continuum of values, we
are able to accommodate a gradient notion of grammaticality.

Given these three measures we use various standard tech-
niques to see whether new sentences are anomalous or not.
For a collection of naturally occurring grammatical sentences
we train our models, and then we consider the distribution of
these scores. We estimate the mean and standard deviation
of the score. We can then judge new sentences as ungram-
matical if they are unusually low in score- more than a few
standard deviations away from the mean.

Pauls and Klein (2012) apply a related approach to another
problem. They use scores based on the logprob values of a
language model to discriminate between grammatical and un-
grammatical sentences in order to improve the performance
of natural language processing systems.
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Experiments and Results

For our experiments, we use the standard n-gram language
model, which is an instance of a Markov model for sequences.
To estimate the probability of a sequence of words wy ... wy
we use the chain rule of probability, as in (1).

P(W] .. .Wk) = P(Wl)P(W2|W1) .. .P(Wk|W1 .. -kal) (1)
The problem with this approach is that we have to estimate
the conditional probability of an extremely large number of
possible subsequences. Therefore a common method is to
reduce the conditional dependencies to a smaller predefined
sequence of a given length n, the so called order of a model.
Using this assumption we approximate the components in (1)
using (2).

P(W,‘|W1...W,‘,1) %P(w,-|w,-,n+1...w,',1) (2)

The probability assigned to a sequence of words is given by
the product in (3)

k

.Wk) %HP(W,“W,',,HF] ...W,;l) (3)
i=1

P(Wl..

A common choice for n, that we adopt for our experiments,
is three (trigrams).

The standard strategy to estimate the probability of each n-
gram is maximum likelihood estimation (MLE), which counts
the number of times the n-gram appears in a training corpus,
and normalizes the count by the sum of the counts of all n-
grams that share the same initial subsequence:

CWi—py1...w;
P(Wi|Wi—n+1 .. 'WW—I) — Z (C‘(IWV'I+1+1 131}) (4)
w —n

To avoid assigning 0 probability to unseen n-grams (a com-
mon case, given the huge number of possible n-grams) we
use smoothing or discounting, which transfers a small por-
tion of probability mass from seen n-grams to unseen ones.
A large number of smoothing techniques have been pro-
posed in the literature (see Chen and Goodman (1999) for
a thorough overview). In our experiments we use a form
of interpolated smoothing known as Interpolated Kneser-Ney
(Goodman (2001)), which has been shown to give consis-
tently good results with different types of metrics.

To reduce the search space of our language model we also
employ clustering, which groups together words that occur
in similar contexts. In this way we can better estimate the
probability of a word following a certain sequence, given the
observations we have made of similar words in the same con-
text. Brown, deSouza, Mercer, Pietra, and Lai (1992) intro-
duced the standard technique for using clustering in language
models. The general form of a cluster-based language model
is given in equation (5), where C; is the cluster to which word
w; is assigned to.

P(Wi|Wi7n+1 .. .W,;]) = P(wi|Cl-)P(C,-|C,-,n+1 .. .Ci,1) ®))

The probability P(w;|C;) is given by the count of occurrences
of w; divided by the count of occurrences of C;, while the
other factor of the product can be estimated with a smoothed
model like Interpolated Kneser-Ney. Brown et al. (1992) de-
scribes a technique for generating the optimal clustering in a
corpus, given a parametrically specified number of classes.

We implemented our own procedures for the training and
the assessment of n-gram language models, using Interpo-
lated Kneser-Ney as the smoothing technique. For cluster-
ing we applied the improved version of Brown et al. (1992)’s
algorithm described in Liang (2005).

Both the training of the language models and the measure-
ment of their performance in the given tasks are performed
on portions of the BNC. The BNC is a heterogenous collec-
tion of linguistic data. To obtain a more consistent sample
of English we first restricted the available texts by exclud-
ing transcriptions of spoken language, poetic texts and tech-
nical/scientific material. The corpus used for training and the
one used for testing were generated from this subset of the
BNC by randomly selecting 600k sentences for training, and
60k for testing. This gave us a training corpus of slightly less
than 13 million words, and a testing corpus of approximately
1.3 million words.

To avoid the problem of unknown words in testing, we re-
constructed both the training and the testing corpus. We sub-
stituted, in both the training and the test corpus, the POS tag
for each word which appears less than five times in the train-
ing corpus. This insures that the test corpus vocabulary is a
subset of the training corpus vocabulary.

Three different types of test corpus (conditions) were gen-
erated. The original condition is left intact, and we assume
that it contains only grammatical sentences. The permuted
condition is generated from the original by randomly swap-
ping two words, separated by two intervening words, in each
sentence. The sentences in this corpus are taken to be less
grammatical than those in the original condition. Finally, the
third test corpus was produced by reversing the order of the
words in the original sentences. This reversed condition is
considered to be the most syntactically distorted of the three.

We used a simple binary classifier to measure the perfor-
mance of our language model in predicting the grammatical-
ity of a sentence. After calculating the three scores (Mean
log prob, Normalised, and Minimum) in all three conditions
we designed two different binary classifiers that assign a la-
bel to every sentence in each condition. The first classifier
is a simple threshold set to different values for the mean and
the standard deviation of the distributions of the alternative
normalised scores for the original condition. For each binary
comparison the classifier assigns a label to the sentence z us-
ing the following rule:

original
c1(2) ={ £

other

if score(z) >m—S-s
(2) ©)

otherwise

where m is the mean for the score in the original condition, s
is the standard deviation and S is a factor by which we move
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the threshold away from the mean. The principle of this clas-
sifier is that the normalised logprob scores for ungrammati-
cal sentences will be lower than those for grammatical ones,
making it possible to distinguish between the two conditions.
We adapted this procedure to distinguish between local un-
grammaticality (permutation), and more global ungrammati-
cality (reversed cases).

The second classifier is a simple linear classifier con-
structed on the basis of the first one. It combines the informa-
tion from two different scores. This second classifier uses the
following general rule:

original
c2(2) :{ g

if score;(z) > —scorey(z) +t +1 o

other otherwise

where score] (z) is the first of the scores assigned to the sen-
tence, scorey(z) is the second one, #; is the best performing
threshold for this specific comparison as found in the case
of the first type of classifier for the first score, and #, is the
same kind of threshold for the second score. We simply check
whether the two scores are above or below the bisector of the
second and the fourth quadrant in the space formed by the
two scores, and translated by the best thresholds for the same
two scores. The intuition here is, again, that grammatical sen-
tences will have consistently better scores than ungrammati-
cal ones.

We performed experiments using both the standard and
the cluster-based language models. For the standard case
we trained models using words and part-of-speech tags as
tokens. In what follows we report only the results for the
cluster-based experiments, as these achieved better accuracy.
We used 250 clusters. The language model was trained on the
training corpus, and the three scores are computed for the sen-
tences in each condition (original, permuted and reversed).
Figure 2 summarises the distributions of the three scores for
each condition of the cluster-based language model. Itis clear
that all scores are reasonably good at distinguishing between
the original and the reversed conditions, given the small over-
lap between the distributions. As expected, the overlap be-
tween the original and permuted conditions is much higher.
It is also interesting to note that the while in the case of Mean
log prob and Normalised score the distributions for all the
conditions are roughly normal (with some degree of skew-
ing), the Minimum score gives a more irregular distribution,
at least for the ungrammatical cases.

On the basis of these distributions we created the first type
of classifier. The results for the two comparisons we per-
formed (original/permuted and original/reversed) are sum-
marised in figure 3. The graphs show the accuracy for each
score obtained by varying the S parameter as described in (6).
In our experiments we let S vary in the interval [0,2.75], using
a step interval of 0.25.

In the case of the original/permuted comparison we ob-
tained the best accuracy (77.3%) by using the Normalised
score and setting the threshold at 0.75 standard deviations
to the left of the mean. However the Minimum score seems

Table 1: Linear classifier accuracy

Accuracy permuted reversed
Mean log prob + Normalised 71.2 97.9
Mean log prob + Minimum 77.1 97.2
Normalised + Minimum 79.1 98.1
Threshold classifier baseline 71.3 98.9

to perform better in general for this comparison, obtaining a
maximum accuracy of 77.1%.

Not surprisingly, all three scores perform very well when
distinguishing between the original and the reversed version
of the sentence, with accuracies above 95%. The sharp drop
in accuracy in the case of the Minimum score that we observe
when setting the S parameter to 2.75 is due to the spike we
have in the case of the reversed condition (see rightmost graph
in figure 2).

Table 1 reports the accuracy for the linear classifier that
combines the results of two threshold classifiers (with the best
single classifier scores listed in the bottom row as a baseline
comparison). Despite the simplicity of this linear classifier,
we observe an improvement in the original/permuted com-
parison.

Error analysis

It is interesting to analyse the cases where our classifiers fail.
We looked at the cases that form the tails of the distributions
for the Normalised threshold, as it is this score that gives the
best general level of classifier accuracy.

The following ten sentences receive the lowest Normalised
score according to our language model for the original con-
dition: interview - Swims - / - contracts - then - TELEPHONE
- 75% - Hotel deal - mimic each item across - lan ! 90%
These cases are very marginal English sentences. Their pres-
ence in the corpus may well be due to transcription error in
the BNC, or to the idiosyncratic nature of the text from which
they are extracted. However, other cases of false ungram-
matical sentences include perfectly acceptable sentences like
the following: Amnesty has been given Greetings Magazine’s
“Best Charity Card of the Year” award .

For permuted sentences, when we analyse the tail of the
distribution, we encounter many cases where the permutation
produces the same sentence as the original, because the per-
muted words are identical. In other cases the permutation
generates semantically odd, but otherwise well-formed sen-
tences, as in It should be a match of a humdinger. These
are the ten permuted sentences that receive the highest Nor-
malised scores (and they are therefore mislabelled as origi-
nal): He glanced round the bar from the door. - He said that
he had not been informed of the dissolution of the National
Assembly on Jan. 4. - There ’s something I hear you to want.
- Sometimes , of course , it does not work. - Don’t know, 1
worry why. - I assure you I'm not. - It should be a match of a
humdinger. - She put her hand to her brow. - “Yes , I under-
stand ,” said Drew quietly. - But there was nothing there.
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Finally in the case of reversed sentences, we observe that
sentences that are assigned extremely high Normalised scores
tend to be proper names. Due to their low frequency in the
training corpora, proper names are most likely to be replaced
by their POS tag in the training and testing phase. There-
fore, the language model cannot distinguish the original and
the reversed versions of the sequence, given that they appear
identical. Again we report here the ten reversed sentences
that receive the highest Normalised score. Terrazze Alle -
seven - eight - nine - 2 TN. WOKINGHAM , 3 TN. FARN-
HAM - Debts : MAIDSTONE - Gloucester / BROCKWORTH
- FLAUBERT MME - VALLI FRANKIE - PATEL GARGY -
BATTERSEA HORSMAN UDO - REUNITE / JAFFE LUCKY

Discussion and Conclusions

Clark and Lappin (2011) propose an outline for a stochastic
model of indirect negative evidence. In this outline a function
maps the probability value of a string, and a set of properties
of the string and of the probability distribution over strings
of the language, to a threshold value that gives the minimum
frequency with which the string must occur in the primary lin-
guistic data in order to be well-formed. The threshold spec-
ifies the normalised minimal expectancy of occurrence for
a sentence of a certain type (length, lexical class sequence,
etc.). This model provides a language learner with a proce-
dure for querying the data to which he/she is exposed in order
to determine the extent to which the absence of a string in the
data indicates its ungrammaticality.

Here we effectively invert this strategy. We identify a set of
structural properties of a string together with parameters for
the distribution of logprob-derived scores, in order to define
a grammaticality threshold, which we use to classify strings
as grammatical or ill-formed. This model offers a stochas-
tic characterisation of grammaticality without reducing gram-
maticality to probability. It represents a core element of what
speakers know about the syntax of their language through
a set of parameters in a model whose values correspond to
properties of the modified probability distributions that the
model generates.

We are not, of course, suggesting that enriched n-gram
models are adequate to express the full content of speakers’
syntactic knowledge. However, the fact that simple models
of the sort that we have used are able to achieve a relatively
high degree of accuracy on wide coverage, domain general
grammaticality classification tasks suggests that there is an
interesting correlation between properties of the probability
distribution over the sentences of a language and a speaker’s
grammaticality judgements.

Should the correlation prove robust it suggests that gram-
matical knowledge is, to a significant extent, determined by
the stochastic patterns of the primary linguistic data to which
speakers are exposed. This result will have significant conse-
quences for both the representation of syntactic competence
and the nature of the language acquisition process.

In current work we are exploring this correlation further
with more sophisticated language models, different distri-

butional parameters and stochastic classifiers, and test data
that includes realistic syntactic infelicities. We are evaluat-
ing these models against native speakers’ acceptability judge-
ments.
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Figure 2: Histograms for the distributions of sentence scores. Each graph shows the distribution of a single score for the three
conditions. The x-axis represents the value of the score and the y-axis gives a measure of the frequency with which the score is
represented in the data. On the left are the scores given by taking the mean (equivalently normalising by length). In the middle

are the scores given by normalising with the unigram probability. On the right are the scores using the minimum condition.
These scores still overlap significantly, but much less so than the raw logprobs as shown in Figure 1.
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Figure 3: Results for the threshold classifier. The two graphs show two comparisons: original/permuted and original/reversed.

The x-axis represents the different values that control the distance from the mean of the threshold, while the y-axis shows the
accuracy expressed in percentages.
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