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ABSTRACT
The emergence of powerful deep learning systems has largely displaced classical sym-
bolic algebraic models of linguistic representation in computational linguistics. While
deep neural networks have achieved impressive results across a wide variety of AI and
NLP tasks, they have become increasingly opaque and inaccessible to a clear under-
standing of how they acquire the generalisations that they extract from the data to
which they apply. This is particularly true of BERT, and similar non-directional trans-
formers. We study an alternative deep learning system, Unitary-Evolution Recurrent
Neural Networks (URNs) (Arjovsky et al., 2016), which are strictly compositional in
their combination of state matrices. As a result they are fully transparent. They can
be understood entirely in terms of the linear algebraic operations that they apply
to each input state matrix to obtain its output successor. We review these opera-
tions in some detail, clarifying the compositional nature of URNs. We then present
experimental evidence from three NLP tasks to show that these models achieve an
encouraging level of precision in handling long distance dependencies. The learning
required to solve these tasks involves acquiring and representing complex hierarchical
syntactic structures.

11.1 INTRODUCTION

Theoretical linguistics owes two major ideas to the work of Montague (1970a,b). The
first is the general hypothesis that semantics is amenable to mathematical formula-
tion. The second is the view that the semantics of a language is a function defined
compositionally over its syntax. Realising Montague’s program requires that (1) the
syntax-semantics interface is expressed as an algebraic structure, and (2) semantic
interpretation is achieved through such a structure. We will explore in some detail
what these conditions entail.

The emergence of linguistic models based on deep learning have brought consid-
erable improvements in terms of coverage and predictive power, compared to tools
based on algebraic theories (Moss, 2022, Chapter 10 of this volume). Unfortunately,
using such models has generally means giving up Montague’s principles of compo-
sitionality. At a surface level, even though the model is expressed as a well-defined
function from an input string to a (task-dependent) prediction, this function pos-
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Figure 11.1: Example of one step of unitary evolution

sesses no particular property which conditions its behaviour predictably on various
classes of input. Therefore it is arduous, though not impossible, to infer insights about
such a model, from a theoretical linguistic perspective. Although it is not impossible
that deep-learning models embed a syntactico-semantic interface, in most cases the
discrete types of information that the models learn and represent remain opaquely en-
coded. Concomitantly, the non-linear activation functions that deep learning models
apply between the each layer prevent transparent tracking of this information. This
is particularly frustrating in light of the fact that prediction functions are specified
through the operations of linear algebra, which carry a rich set of tools for structural
analysis.

In this chapter, we advocate the Unitary Recurrent Network (URN) as a trans-
parent alternative model of deep learning. This architecture was first proposed by
Arjovsky et al. (2016) to solve the problem of exploding and vanishing gradients
when applying back propagation in a recurrent neural network, thanks to the norm-
preserving properties of unitary matrices (see Fig. 11.1 for an example). Its algebraic
properties give reason to think that the framework admits of interesting theoretical
analysis. The rest of the chapter shows that the URN can be trained to learn syntactic
structure, and that the trained models are amenable to white-box analysis.

11.2 TWO FLAVOURS OF ALGEBRAIC STRUCTURES

In general, an algebraic structure is defined by

• a collection of (types of) operations parameterized over a type a –the carrier
set, and

• a number of axioms specifying the above operations

For example, as an algebraic structure, a monoid is defined by the two operations
‘ : a and (•) : a æ a æ a, such that

’x. ‘ • x = x (left identity)
’x. x • ‘ = x (right identity)

’x y z. x • (y • z) = (x • y) • z (associativity)

Any given monoid is defined by a particular tuple (a, ‘, (•)). For instance, (R, 0, (+))
is the usual additive monoid over real numbers.
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11.2.1 Syntax-semantics interface

As we have observed, a syntax-semantics interface is defined by an algebraic structure.
A simple way to construct such an interface is to encode a context-free grammar, with
an indexed carrier set. A rule like S ::= NP V P corresponds to the type aNP æ
aV P æ aS . Among others, Ranta (2004) uses this kind of coding. Any instance of
this structure produces a particular semantics. In our example, this involves assigning
semantic types to all the syntactic categories (aNP , aV P , aS , etc.), and defining valid
operations for each of the rules. It should be stressed here that the such meaning
representations are not limited to the context-free case.

In general, if the algebra Fa æ a is the syntax-semantic interface, then the
initial algebra µF is the set of associated syntactic representations, while any function
„ : F– æ – is a compositional semantics over such a syntax.1

Montague (1974) provides a semantics for quantifiers by means of a continuation
monad carrying truth-valued e�ects. (Barker and Shan, 2004; Groote, 2001). Mon-
tague left the type of individuals abstract, but it can be further instantiated to vector
spaces, with various interpretations. (Bernardy, Blanck, et al., 2018; Emerson and
Copestake, 2016, 2017; Grefenstette et al., 2011; Grove and Bernardy, 2021)

11.2.2 Sequence algebras and parsing

On Montague’s view, semantics is based on syntactic structure. However, languages
do not come with labelled syntactic structures. Rather, basic linguistic data consists
of sequences of symbols. In fact, this is assumption already comes with a fair amount
of theoretical bias and abstraction, but we will take it as given.

The mapping of raw linguistic data to syntactic structure has been widely studied
in the history of parsing. Let’s consider an algebraic formulation of the parsing task.
The structure of linguistic input, a sequence of symbols, can be captured as a sequence
algebra, defined as follows.
Definition 11.1 (Sequence algebra). A sequence algebra over a set of symbols �
consists of three operations:

embed : � æ a embedding a symbol
‘ : a empty sequence

(•) : a æ a æ a concatenation
together with the same laws that define monoids.

(That is, it is a free monoid over the set �). The monoid operations and laws
express the linear character of a sequence. In particular the laws ensure that the
order (and, in general, the structure) of concatenations plays no role in the meaning
of a sequence.

The set of sequences is the associated initial algebra. A parser is any instance of
a sequence algebra with the carrier set a being instantiated to the syntactic structure
of interest, for the task at hand.2 It should be emphasised that this definition entails

1See Chapter 10 for more algebraic background.
2Typically, a parser is also allowed to fail, but we’ll ignore that case here.



Unitary Recurrent Networks ⌅ 255

that the parser is strictly sequence-compositional, in the sense that one can parse
any sub-sequence, and compose it with the parse result of any other sub-sequence.
This might seem counter-intuitive if one is accustomed to thinking of a parser as an
automaton processing the string in a left-to-right order, whose behaviour is described
by a state-transition function

f : � æ s æ s.

However, there is no incompatibility between these two characterisations of parsing.
They are functionally equivalent, but they express distinct formal perspectives on
the way that parsing operates.

Definition 11.2 (Automaton from sequence algebra). Assume a sequence algebra
(a, embed, ‘, •). Then we can construct an equivalent parser automaton by letting the
internal state be the carrier set:

s = a

f x s = s • embedx

Definition 11.3 (Sequence algebra from automaton). Assume an automaton internal
state s, whose behaviour is captured by a state-transition function f : � æ s æ s.
We can define an equivalent sequence algebra by letting the carrier type be the set of
state-transition functions:

a = s æ s

embed = f

‘ = id

w1 • w2 = w2 ¶ w1

It should however be noted that, for any non-trivial set s, the set a = s æ s is
extremely large.3 The reformulation of a sequential automaton as a sequence algebra
produces a computationally expensive result, unless there happens to be an e�cient
representation of transition functions over s. There are, then, practical tradeo�s in
choosing one approach over the other.

As we see it, the advantages of the automaton approach is that if the set s
is small, then it can be implemented by a sequential algorithm in a way which is
memory e�cient. It also corresponds more closely to psycholinguistic models which
rely on sequential processing of inputs.

The sequence-algebraic approach has also advantages. First, it it can be imple-
mented as a divide-and-conquer algorithm. The input sequence can be split arbi-
trarily. Both sub-sequences can be parsed independently, and the results recombined
using (•). If this recombination operator is e�cient, then one obtains an algorithm
cost e�ective overall. Valiant (1975) takes advantage of this principle to construct
the most time-e�cient algorithm for general context-free parsing. The complexity
of Valiant’s algorithm is sub-cubic. Cubic, or even sub-cubic, complexity is unreal-
istic for human processing, and so context-free grammars may seem to be a poor

3if the cardinality of s is |s|, then the cardinality of a is |s æ s| = |s||s|
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model for human language syntax. One can, of course, resort to heuristic methods
to improve complexity in many situations; but Bernardy and Claessen (2013, 2015)
demonstrate a general result in this regard. They show that if the charts are repre-
sented by appropriate sparse matrices and input strings are organised hierarchically,
then the complexity of Valiant’s algorithm becomes linear.

The second advantage of the sequence-algebraic approach for parsing is that one
can analyse any value of a out-of-context. In fact, because it can be combined in
any context, a value of this type must include, in one form or another, possible
interpretations for all the contexts that it can possibly interact with. In practice,
such an analysis is possible only if the structure of a is simpler than arbitrary state-
transition functions (s æ s). We will show later how to leverage this theoretical
property for URN models. In the case of Valiant’s algorithm, the type a is realised by
a parse chart. For any sequence of symbols w, the chart „valiant(w) contains all the
possible syntactic representations of all possible subsequences contained in w. While
this sounds expensive, Bernardy and Claessen (2013, 2015) show that this chart is
asymptotically (very) sparse for hierarchically organised inputs.

Third, the sequence algebra formulation allows for parallel evaluation. It is possi-
ble to compute it at symbols using embed, then group those results in adjacent pairs,
for each in parallel, then proceed upwards until one has a result for the full input
sequence. This can be crucial when using modern parallel hardware for evaluation.

A sequence-algebra need not take the form of a usual parser. It can map a se-
quence of symbols directly to a semantic value without invoking an intermediate
syntactic representation. Such models are now referred to as “end-to-end” systems.
They connect one end of a process (sequences of symbols) to the task-specific seman-
tics (the carrier type a). Our focus here is to construct and analyse such systems
using an URN architecture.

We have pointed out that an RNN is fully defined by a transition function, of the
type that we have identified above:

f : � æ s æ s.

We call such an operation f an evolution function. If the RNN acts as a language
model, then it also contains a prediction function whose role is to predict the next
symbol, given the current state. More precisely, it predicts a probability score for
each symbol

p : s æ � æ R

The set of these scores is then turned into a probability distribution through a softmax
function:

softmax : (� æ R) æ (� æ [0, 1])

softmax q x = eq x

q
xœ� eq x

While RNNs can be neatly reformulated as sequence-algebras (even if ine�cient
ones), transformer-like deep learning models cannot be easily expressed in these
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terms. Indeed, a transformer essentially consists of several layers of attention heads,
and the output of each attention head head depends on all input positions. This
global dependence pattern is incompatible with a sequence algebra. Such algebras
require that any input is represented independently of its larger context, in a way
that depends solely on its constituents, and its structure.

11.2.3 Linear Algebra

To clarify the structure and interpretation of URNs we will review some of the con-
cepts of linear algebra that we will apply. In fact, linear algebra is central to deep
neural networks in general, given that they operate through operations on vectors
and matrices. These concepts tend to be suppressed as assumed in much current
work on deep learning. It is worth highlighting them here to indicate the di�erences
between URNs and other deep learning networks.

Algebraically, a vector space over a field s is defined by a vector addition (+) :
a æ a æ a, multiplication by a scalar (ú) : s æ a æ a, and the vector 0 : a
such that (+) is associative, commutative, invertible, and has 0 as a left and right
unit. Additionally, multiplication by a scalar is required to compatible with scalar
multiplication; and vector addition must distribute over multiplication by a scalar
and vice versa. Finally, the scalar unit must be the unit of multiplication by a scalar.

In practice, one seldom works with the algebraic definition. Rather, one uses a an
array of numbers, say Rn. The reason for doing so is that, given a basis ęi of a vector
space of dimension n, the set of vectors is isomorphic to the set of representations
Rn, with

x̨ =
ÿ

i

xięi

But our main object of interest is linear maps, which are defined as homomor-
phisms between two vector spaces (when the source and target spaces are identified,
one speaks of a linear operator). Again, we do not work with this definition, but
rather with representations in the form of matrices of numbers Rn

m
, for the same

reason that we use arrays of numbers instead of vector spaces as defined above.
Given appropriate bases ęi and d̨i for the source and target spaces, matrix repre-

sentations are in isomorphic relations with linear maps:

F (x̨) = F

Q

a
ÿ

i

xid̨i

R

b =
ÿ

j

ęjF
j

i
xi

The components of the image of F are obtained by matrix-vector multiplication:

F (x̨)j =
ÿ

j

F j

i
xi

These definitions are intended as formal background that is often omitted in
discussions of deep neural networks. For a detailed introduction to linear algebra, we
recommend consulting standard references (Gantmacher, 1959; Strang, 2016).

To clarify, we are not suggesting that vector algebra specifies the syntax-semantics
interface for a linguistic theory. It plays an entirely di�erent role in our model.
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11.2.4 Linear operators as charts, charts as phrase embeddings

We will be making use of the fact that linear operators (linear maps to and from the
same vector space v) form a monoid under composition.

a = v æ v

‘ = id

F • G = G ¶ F

Notice that the composition of a linear operators is another linear operator. Conse-
quently, one can represent such a composition as a matrix, which is the product of
the representations from which it is formed. The corresponding monoid is:

a = Rn

n

‘ = I

F • G = G ◊ F

By also defining a function embed : � æ Rn

n
we obtain a matrix-based representation

of charts. Because the number of dimensions in such a chart is n2 (and not infinite
as it would be in the general case), it is possible that it is amenable to a context-
independent analysis. We will use a deep-learning approach to construct embed –
an appropriate word-embedding – and the methods of linear algebra to analyse the
charts. For reasons that will become clear later, we restrict ourselves to unitary opera-
tors as charts. Such a chart essentially acts as a representation for the input substring
that it is built from, and we generally refer to it as the embedding for the substring.

The adjective “unitary” refers to the fact that the norm of the determinant is the
unit. It also indicates that the underlying scalar field consists of complex numbers.
We will, in fact, restrict the scalar field to real numbers, which permits a more
vivid geometrical representation of some of our data. Therefore, the matrices that
we employ in URNs are actually orthogonal. We retain the description “unitary”
because it now enjoys wide currency in the deep learning literature to refer to URN-
like models.4

Definition 11.4 (Orthogonal matrix). A matrix Q is orthogonal i� it is square and
QT Q = I.
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Figure 11.2: Schematic representation of RNN cells. In the above, square boxes rep-
resent dense layers— with a trainable matrix of weights— followed by an activa-
tion function (sigmoid or hyperbolic tangent). Circles and ellipses represent bare
functions, with no associated dense layer. Arrows carrying matricial information are
drawn thicker. Accordingly, the symbol ◊ corresponds to matrix-vector multiplica-
tion, while § corresponds to the Hadamard product of vectors.

11.3 TWO MODELS

We consider two generative models: an LSTM (Hochreiter and Schmidhuber, 1997)
and an URN (Arjovsky et al., 2016). We show them schematically in Fig. 11.2.

We proceed to describe their evolution functions as mapping from a hidden state
ht to the next state (ht+1):

f xt ht = ht+1

The expression for ht+1 depends on the RNN cell used.
4The choice between real and complex fields is not significant for our purposes. In geometric

terms (planes, rotations, etc.) the results are the same. A plane can be represented either by two
real vectors, or by one complex vector. A rotation can be expressed by a unimodular complex
number or a real angle, etc. Our results also apply to unitary matrices with complex numbers.
Beyond the easier geometric interpretation that it a�ords, we adopt real matrices for two reasons.
First, on the implementational side, we found that the TensorFlow library, which we use in our
experiments, does not fully support complex numbers. Second, from the theoretical perspective,
the description of our models does not require reference to complex numbers. To include them
would introduce needless complexity to our account. The precise connection between unitary and
orthogonal matrices is explained in, for example, Gantmacher (1959, p. IX.13).
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11.3.1 LSTM

To highlight the contrast between LSTMs and URNs, consider, the LSTM (Hochreiter
and Schmidhuber, 1997), which is defined as follows:

vt = ht ù xt

ft = ‡(Wf vt + bf )
it = ‡(Wivt + bi)
ot = ‡(Wovt + bi)
c̃t = ‡(Wcvt + bc)

ct+1 = (ft § ct) + (it § c̃t)
ht+1 = (ot § tanh(ct+1))

Here ‡ refers to the sigmoid function and (ù) is vector concatenation.5
We observe that the conversion of an LSTM to a sequence algebra (Definition 11.3)

would not be interesting or useful. Because it employs non-linear transition functions
(sigmoid and hyperbolic tangent), the set of transition functions does not allow a
simpler representation than a set of general functions from vectors to vectors.

11.3.2 URN

We define our version of an URN as follows:

ht+1 = Qtht

St = skew(xt)
Qt = eSt

skew(x) is a function that takes a vector and produces a skew-symmetric (Defini-
tion 11.5) matrix by arranging the elements of x in a triangular pattern. For example,
with an input vector of size 3, we have:

skew(x) =
3

0 x0 x1
≠x0 0 x2
≠x1 ≠x2 0

4

The upper triangle of St is provided by the previous layer (typically the word embed-
ding layer), and its lower triangle is its negated symmetric. This setup ensures that
St is anti-symmetric. By Theorem 11.2, this entails that Qt is unitary.

Definition 11.5 (Skew-symmetric matrix). A square matrix S is skew-symmetric
i� ST = ≠S.

Lemma 11.1. Assume that S is a real and skew-symmetric matrix. Then the eigen-
values of S are pure imaginary.

5During training we apply dropout to the vectors ht and xt for every timestep t.
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Proof. Assume u a complex vector, and ⁄ a complex number, such that u is an
eigenvector of S with corresponding eigenvalue ⁄. By definition, Su = ⁄u. We have
uúSu = ⁄uúu = ⁄ÎuÎ2. Taking the hermitian conjugate of both sides yields uúSúu =
⁄̄ÎuÎ2. Because S is skew-symmetric, we also have uú(≠S)u = ⁄̄ÎuÎ2, and in turn
uúSu = ≠⁄̄ÎuÎ2. We can then conclude that ⁄ = ≠⁄̄, which is satisfied only when ⁄
is pure imaginary.

Theorem 11.2. If S is skew-symmetric then eS is orthogonal. Additionally, the rank
of S gives the maximum number of eigenvalues of eS di�erent from 1.
Proof. By the spectral theorem, S admits a unitary diagonalisation. By Lemma 11.1,
the eigenvalues are pure imaginary, and thus we have S = Uú(i�)U , with � real and
diagonal. Let the diagonal elements of � be ◊j . We can then compute:

eS =
Œÿ

n=0

Sn

n!

=
Œÿ

n=0

(Uúi�U)n

n!

=
Œÿ

n=0

Uú(i�)nU

n!

= Uú

Q

a
Œÿ

n=0

(i�)n

n!

R

b U

= Uúei�U

Thus, the eigenvalues of eS are ⁄j = ei◊j , and each of them is unimodular. Conse-
quently, eS is unitary. We also know that it is a real matrix, and thus it is orthogonal.

To prove the second part of the theorem, we note that if ◊j = 0 then ⁄j = 1.
Because the rank of S gives the number of non-zero elements of �, it is also the
maximum number of elements of ei� di�erent from 1. These numbers can di�er when
◊j = 2fi for some j.

We call Qt the orthogonal embedding of the input symbol at position t.
In contrast to an LSTM, it is useful to specify an URN as a sequence algebra:

embed x = eskew(v(xt))

‘ = I

w1 • w2 = w2 ◊ w1

Assuming that the hidden state vectors have dimension n, the number of dimen-
sions of the carrier type is n ◊ (n ≠ 1)/2, due to the orthogonal restriction. This is a
notable improvement over an LSTM. Another consequence of this restriction, which
Arjovsky et al. (2016) suggest as motivation for URNs, is that they are not subject
to exploding or vanishing gradients.6

6In fact, this feature is present in all linear models (as defined in Section 11.2.4), but URNs
enjoy a stronger property. This property is that the gradients wrt. the hidden state is constant
throughout timesteps. Arjovsky et al. (2016) provide a proof for a more general result.
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In what follows, we let n be the dimension of the state vectors si, and N the
length of the sequence of inputs. We consider only the case of n even.

11.4 THEORETICAL ANALYSIS OF URN MODELS

We can deduce several properties of the class of URN models from their definition,
independently of experimental results. We again highlight the fact that the behaviour
of the model for any input string w is entirely characterised by the orthogonal matrix
which is the product of the orthogonal embeddings embed xi of each of the symbols
xi composing it. Studying the model consists in examining these matrices.

Since the work of Mikolov et al. (2013), vector embeddings have proven to be an
extremely successful modelling tool. One of their primary disadvantage in most deep
learning systems is that their structure is opaque. The only way of analysing the
relations among word vectors is through geometric distance metrics, such as cosine
similarity. The unit vectors u and v are deemed similar if Èu, vÍ is close to 1.

For URNs we use orthogonal matrix embeddings, which exhibit much richer struc-
ture. We apply mathematical analysis to get a clear understanding of this structure,
and how it relates to vector embeddings.

11.4.1 Compositionality

The product of orthogonal matrices is another orthogonal matrix. Consequently, the
results of Section 11.2.4 apply to the URN, but to a stronger degree: the carrier set of
the sequence algebra can be chosen to that of orthogonal matrices, not general matri-
ces. This ensures that the combination of matrices that URNs perform in processing
input is strictly compositional at each point on the sequence.

11.4.2 Unit vectors

An orthogonal operator preserves the lengths of vectors that it acts upon. Because
composition preserves this property, we can ensure that every phrase embedding is
orthogonal by ensuring that embed(x) is orthogonal for every symbol x.

We limit ourselves to state vectors hi of norm 1 from now on. In all our experi-
ments, we take h0 to be the vector [1, 0, . . . ] without loss of generality.

11.4.3 Long-distance memory

Cosine similarity is a proximity metric that is commonly used to measure similarity
between vectors. A crucial property of orthogonal operators is that they preserve
cosine similarities. This is a consequence of the following theorem.

Theorem 11.3 (Orthogonal matrices preserve inner products). If Q is orthogonal,
then for every h, s, ÈQh, QsÍ = Èh, sÍ.

Proof. ÈQh, QsÍ = (Qh)T Qs = hT QT Qs = hT s = Èh, sÍ

This property is one of the primary reasons that we are proposing URNs as a
model of deep learning for NLP. It entails that no information is lost through time
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steps. This formal analysis suggests that an URN will be good at tasks which require
long-term memory. We report the results of our experimental work in the latter
section of the chapter. They strongly confirm this conjecture.

11.4.4 Distance and Similarity

When working with vectors of unit length only, the cosine similarity is equal to the
(euclidean) inner product Èu, vÍ =

q
i
uivi. It is equivalent to working with euclidean

distance squared, because Îu ≠ vÎ2 = 2(1 ≠ Èu, vÍ).
Notions of vector similarity and distance can be naturally extended to orthogonal

matrices, via their e�ect on the state vector. The Frobenius inner product ÈP, QÍ =
�ijPijQij extends cosine similarity, and the Frobenius norm ÎAÎ2 =

q
ij

A2
ij

extends
euclidean norm. They connect in a way that is similar to their relationship for unit
vectors: ÎP ≠ QÎ2 = 2(n ≠ ÈP, QÍ).

Lemma 11.4. For any two orthogonal matrices P and Q of dimension n,ÎP ≠ QÎ2 =
2(n ≠ ÈP, QÍ).

Proof.

ÎP ≠ QÎ2 = ÈP ≠ Q, P ≠ QÍ
= ÈP, P Í ≠ ÈP, QÍ ≠ ÈP, QÍ + ÈQ, QÍ
= n ≠ 2ÈP, QÍ + n

Why is the Frobenius norm a natural extension of cosine similarity for vectors?
It is not due merely to the similarity of their respective formulas. The relation is
deeper. Crucially, the Frobenius inner product (and its associated norm) measures
the average behaviour of matrices on state vectors. More precisely, the following holds:
Es[ÈPs, QsÍ] = 1

n
ÈP, QÍ , and Es[ÎPs ≠ QsÎ2] = 1

n
ÎP ≠ QÎ2.

Theorem 11.5. For every orthogonal matrix Q of dimension n and a random unit
vector s, Es[ÈQs, sÍ] = 1

n
trace(Q).

Proof. By the spectral theorem, Q admits a diagonalisation of the form Q = Uú�U ,
with U unitary. Let ⁄i be the (diagonal) elements of � and let x = Us. Remark that
because U is unitary, ÎxÎ =ÎsÎ = 1. Thus

q
i
|xi|2 = 1.7 Obviously, E

Ëq
i
|xi|2 = 1

È
.

By assumption, all dimensions of x have the same distribution (applying Q to s
does not change this fact, because multiplying by it conserves densities), and thus

7Here, even if Q is real, U , ⁄i and thus xi are complex.
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E[|xi|2] = 1
n

. We can now compute:

Es[ÈQs, sÍ] = Es[sT Qs]
= Es[sT Uú�Us]
= Ex[xú�x]

= Ex

S

U
ÿ

i

|xi|2 ⁄i

T

V by � diagonal

=
ÿ

i

⁄iEx[|xi|2] by linearity of expectation

= 1
n

ÿ

i

⁄i

= 1
n

trace(�) because trace is sum of eigenvalues

= 1
n

trace(�UUú)

= 1
n

trace(Uú�U) by trace cyclic property

Corollary 11.6. For any two orthogonal matrices P and Q of dimension n, and a
random unit vector s, Es[ÈPs, QsÍ] = 1

n
ÈP, QÍ.

Proof. Remark first that ÈPs, QsÍ = sT P T Qs = ÈQT P, sÍ. Combining this equation
with Theorem 11.5 and Lemma 11.4 yields the expected result.

Theorem 11.7. For every orthogonal matrices P and Q of dimension n and a ran-
dom unit vector s, Es[ÎPs ≠ QsÎ2] = 1

n
ÎP ≠ QÎ2.

Proof. A direct consequence of Corollary 11.6 and Lemma 11.4.

In sum, as fallback, one can analyse unitary embeddings using the methods de-
veloped for plain vector embeddings. Doing so is theoretically sound, even though it
would not exploit the richer structure of matrices.

11.4.5 Geometric interpretation of embeddings

The proof of Theorem 11.2 tells us that, in general, every orthogonal embedding Q
can be written in the form Uúei�U , with � real and diagonal. Remembering that
such a Q is real, if 2 ◊ n is the dimension of the hidden state vectors, then Q is
interpretable as the combination of n rotations around an n orthogonal hyperplane,
with angles given by ◊j . For a real matrix, every such angle will be repeated twice
in the matrix �. The planes of rotation can be computed by diagonalising Q. Below,
we will be comparing embeddings by comparing their rotation planes. Since a plane
is given by two vectors, it may be unclear how to actually compare them, since they
can themselves be rotated within the plane that they define, without changing the
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result. We solve this problem by using a measure of similarity based on the solution
to the orthogonal procrustes problem, given below. This measure gives a value of 2
when the planes are equal (up to rotation of the basis vectors), and of 0 when they
are orthogonal.

Definition 11.6 (Plane similarity). Assume two planes in an n-dimensional space,
each defined by two orthogonal normal vectors, arranged in an n by 2 matrix. The
similarity between A and B is defined by sim(A, B) = max�ÈB, A�Í for � a 2 by 2
orthogonal matrix.

By taking the minimum for �— any rotation of the 2 base vectors in the plae—
we account for equal planes, which might be defined by another basis. A� covers all
possible bases of the plane defined by A when varying �.

Theorem 11.8. sim(A, B) is the sum of singular values of BT A.

Proof. Let U�V T = BT A be a singular value decomposition of BT A.

max
�

ÈB, A�Í = max
�

trace(BT A�)

= max
�

trace(U�V T �)

= max
�

trace(�V T �U)

= trace(�)

The last step follows because V T �U is orthogonal. The fact that � is diagonal entails
that the maximum trace for the product is achieved when V T �U = I.

In general, an orthogonal embedding contains a lot of data, and it can be hard
to visualise. How can we obtain a simplified, if abstract, picture of it?

11.4.5.1 Signature of Embeddings

First, we consider only the angles of the rotations ◊j , not the planes. While the
average e�ect is a useful measure, it is rather crude. The angles of these rotations
define how strongly Q a�ects the state vectors lying in this plane. We refer to such
a list of angles as the signature of Q, and we denote it as sig(Q). We represent any
such angle graphically as a dial, with small angles pointing up , and large angles
(close to fi) pointing down .

11.4.6 Average E�ect

The squared distance to the identity matrix is a useful metric for unitary embeddings,
ÎQ ≠ IÎ2. Theorem 11.5 entails that this metric is the average squared distance be-
tween s and Qs. This is the average e�ect that Q has, relative to the task for which
the URN is trained. Note that this sort of metric is unavailable for the opaque vector
embeddings of non-linear deep neural networks. For those systems the norm of a vec-
tor embedding is not directly interpretable as a measure of its e�ect. In an LSTM,
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for example, vector embeddings first undergo a linear transformation followed by
activation functions, before producing an output state, in several separate stages.

By Lemma 11.4, the average e�ect is also equal to 2(n ≠ ÈQ, IÍ). But ÈQ, IÍ is
equal to the trace of Q, which, in turn, is equal to the sum of its eigenvalues (

q
j
ei◊j ).

Therefore, the average e�ect is a measure of how large the angles in the signature
are.

11.4.7 Truncation

Another way to simplify the representation is to limit ourselves to matrices S(x)
which have non-zero entries only on the first k rows (and consequently k columns).
This restricts the total size of the embedding to (n ≠ 1) + (n ≠ 2) + · · · + (n ≠ k + 1),
due to the symmetric constraint. We refer to this setup as truncated embeddings.

As an example, the 3◊3 skew-symmetric matrix
3

0 a b
≠a 0 c

≠b ≠c 0

4
is 1-truncated if c =

0. This truncation reduces its matrix informational content to the single row (and
column) (a b).

We use the acronym URN to refer to the general class of unitary-evolution net-
works, k-TURN to refer to our specific model architecture with k-truncation of em-
beddings, and Full-URN for our model architecture with no truncation. (The letter
“T” in TURN stands for “Truncated”.)

A property of k-truncated embeddings is that S(x) has at most rank 2k. It fol-
lows from Theorem 11.2 that the corresponding orthogonal embeddings Q(x) can
be expressed as rotations around (at most) k planes. The more an embedding is
truncated— the smaller k— the simpler its geometric interpretation becomes.

11.4.8 Projection

Finally, to understand an orthogonal embedding Q, it can be enlightening to project
Q onto a m-dimensional subspace of the n-dimensional ambient space. We do this
by projecting each vector on to the m-dimensional subspace. We will consider the
projection of some embeddings onto the space defined by the prediction layer of an
URN.

11.5 EXPERIMENTS

We apply the LSTM and the URN to several tasks. In all cases, we employ a standard
training regime. We use an Adam optimiser (Kingma and Ba, 2014), with no further
adjustment. The learning rate is 0.001, and the batch size is 512. Our implementation
is done within the TensorFlow (Abadi et al., 2016) framework (version 2.2), including
its treatment of matrix exponential. We apply a dropout function on both inputs of
the cell function f at every time step, according to a Bernoulli distribution rate of fl.
This causes some entries of si or Q(xi) for the URN to be zeroed out. No dropout is
applied for the LSTM on the linear recurrent vector (ct).
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11.5.1 Cross-Serial dependencies

Shieber (1985) demonstrated the non-context-free nature of interleaved verb-object
relations in Dutch and Swiss German. One of Shieber’s examples of an embedded
verb-object crossing dependency in Swiss German is given in example (A) below.

(A) Jan sät das mer d’chind em Hans es huus lönd hälfe aastriiche
Jan said that we the children-ACC Hans-DAT the house-ACC let help paint

Jan said that we let the children help Hans paint the house.

Similar patterns have been observed in other languages. They can be expressed by
indexed grammars (Aho, 1968; Pulman and Ritchie, 1985), as well as a variety of other
Mildly Context-Sensitive grammar formalisms (Joshi et al., 1990; Stabler, 2004).

Shieber (1985) identified that cross-serial dependency patterns of case marked
nouns and their corresponding verbs can be iterated in this construction. The above
pattern can be abstracted as a set of ambncmdn structures, which together form a
Mildly Context-Sensitive language.

Formally, we consider the family of languages Ck = {ambncmdn | m + n < k}.
Note that if k < l, then Ck µ Cl. The training set consists of 51,200 strings picked
uniformly from C8. The test set contains 5,120 strings picked uniformly from C10.

The RNNs are trained as generative language models. Assuming a sample string
w œ C10, RNNs are trained to predict the symbol wi+1 given w0 to wi. Special start
and stop symbols are added to the input strings, as is standard.

This is to be contrasted with the testing procedure. At test time, given the prefix
w0. . . wi, a prediction of symbol wi+1 is deemed correct if it is a possible continuation
for w0. . . wi; that is, if w0. . . wi+1 is a prefix of some string in C10. A set of predictions
for a full string x0. . . xk is classified as correct, if all predictions are correct up to and
including the stop symbol. We report error rates for full strings only. This is because
when models make a mistake, it is typically for a single symbol near the end of a
string.

11.5.1.1 Results

Both RNNs struggle to generalise these patterns. They can model the training data
well, but produce incorrect patterns in some cases on strings of any greater length
than the samples in the training corpus.

We report four sets of results. The first set (Fig. 11.3a) is the cross-entropy loss
for the test set obtained by each model across training epochs. Low losses indicate
that, on a per-character basis, the models reproduce the exact strings in the test
set. We see that LSTM models generally make better guesses than URNs, across the
board.

The second set (Fig. 11.3b) is the error rate over number of epochs, for each tested
model. The best models can achieve less then ten percent error rate on average on the
test set. However, the LSTM models with larger number of units exhibit overfitting.

In the third set we show the error rate for a given training loss in Fig. 11.3c. The
corresponding ratio is a measure of a model’s capacity for correct predictions of a
given quality of approximation of the training set. It can be taken as an indication of



268 ⌅ Algebraic Structures in Natural Language

0 20 40 60 80 100

0.5

1

1.5

2

2.5

(a) Test loss across epochs

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

(b) Error rate across epochs

0.511.522.5

0

0.2

0.4

0.6

0.8

1

32-unit LSTM
16-unit LSTM
8-unit LSTM
32-unit URN
16-unit URN
8-unit URN

(c) Error rate against training loss.

2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

(d) Error rate against n + m, at epoch 100

Figure 11.3: Cross-Serial dependencies results for various models

the model’s bias for this task, relatively to generative language modelling. The URN
models tend to achieve lower error rates for this task, even though they do less well
from a generative language modelling perspective. For instance, the 32-unit URN is
able to obtain an error rate below 0.4 with a training loss as high as 1. In general,
the URNs provide a smoother decrease in error rate as they learn the language. In
contrast, the LSTM models exhibit a sharp drop in error rate around 0.7 training
loss.

Finally, we show the error rate broken down by length of pattern (reported as
n + m). We see here that the LSTMs tend to do better overall than the URNs for
lengths unseen in the training data. However, the LSTMs do worse when the number
of units increases, while the URNs do better as that number increases, thanks to a
lack of overfitting.
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11.5.2 Generalised Dyck Languages

In the next experiment, we evaluate the long-distance modelling capabilities of an
RNN for a context-free language. As before, we abstract away from the noise of
natural language, by constructing synthetic data. Following Bernardy (2018), we use
a (generalised) Dyck language. It is composed solely of matching parenthesis pairs.
So the strings “{([])}<>” and “{()[<>]}” are part of the language, while “<)” is
not.

Formally, we use the language D defined as the set of strings generated by the
following context-free rules: E ::= Á; E ::= EE; E ::= oEc, where (o, c) stands for
a pair of matching parenthesis pairs. In all of our tests, we use 5 types of pairs
(corresponding, for example, to the pairs () , [], {}, <> and ‘’.)

The training phase treats the URN as a generative language model, applying a
cross-entropy loss function at each position in the string. At test time, we evaluate
the model’s ability to predict the right kind of closing parenthesis at each point (this
is the equivalent of predicting the number of a verb). We ignore predictions regarding
opening parentheses, because they are always acceptable for the language. To generate
a string with N matching pairs, we perform a random walk between opposite corners
of a square grid of width and height N , such that one is not allowed to cross the
diagonal. When not restricted by the boundary, a step can be taken either along the
x or y axis with equal probability. A step along the x axis corresponds to opening a
parenthesis, and one along the y axis involves closing one. The type of parenthesis
pair is chosen randomly and uniformly.

In this task, we use strings with a length of exactly 20 characters. We train on
102,400 randomly generated strings, with maximum depth 3, and test it on 5120
random strings of maximum depth 10. Training is performed with a learning rate of
0.01, and a dropout rate of fl = 0.05, for 100 epochs.

The aim of the task is to predict the correct type of closing parenthesis at every
point in a string. It should be noted that this experiment is an idealised version of the
agreement task proposed by Linzen, Dupoux, et al. (2016).8 The opening parenthesis
plays the role of a word (say a noun) which governs a feature of a subsequent word
(like the number of a verb), represented by the closing parenthesis. Matching of
parentheses corresponds to agreement. Linzen, Dupoux, et al. (2016) point out that
sustaining accuracy over long distances requires that the model have knowledge of
hierarchical syntactic structure. If an RNN captures the long-distance dependencies
involved in agreement relations, it cannot rely solely on the nearby governing symbols.
The measure of distance used by Linzen, Dupoux, et al. (2016) is the number of
attractors. For our experiment, an attractor is defined as an opening parenthesis
occurring within a matching pair, but of the wrong kind. For instance, in “{()}”,
the parenthesis “(” is an attractor. We complicate the matching task by varying
the nesting depth between training and test phases. The depth of the string is the

8We report our experiment for the agreement task for natural language in the next section.
Baroni (Chapter 1 of this volume) discusses the deep learning and linguistic aspects of this task in
some detail.
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maximum nesting level reached within it. For instance “[{}]” has depth 2, while
“{([()]<>)}” has depth 4.

11.5.2.1 Results

We report four sets of results. The first set (Fig. 11.4a) is the cross-entropy loss for
the test set achieved by each model across training epochs. Low losses indicate that,
on a per-character basis, the models reproduce the exact strings in the test set. These
losses cannot drop to zero because it is always valid to predict an opening parenthesis.
As in the cross-serial task, we observe that LSTM models make better guesses than
URN, at least for a similar number of units. However, we see that the training of the
URN is uniformly monotonous, while the LSTM can sometimes become worse for a
few epochs before converging. In fact, for 8 units, the LSTM exhibits overfitting: in
this case the test loss increases slowly after epoch 30.

To analyse the performance of each model on the task, we break down the error
rate by number of attractors (Fig. 11.4b). The URN models are weakest for a low
number of attractors, and they achieve near perfect accuracy for a large number of
attractors. According to Linzen, Dupoux, et al. (2016), this suggests that the models
are highly successful in learning hierarchical structure. A high numbers of attractors
corresponds to outer pairs, while a low number of attractors corresponds to inner
pairs. In sum, in inner positions the URN su�ers from some confusion. This confusion
decreases as the number of units increases.

The LSTM exhibits good accuracy for adjacent pairs, with zero attractors, such
as []. It does worst on pairs with 3 to 4 attractors. For larger number of units, the
accuracy then increases again, all the way to the longest parenthesis pair. So the
LSTM is good at making a prediction which depends only on the previous symbol,
and it is also good at making a prediction for a pair which encloses the whole string.
This indicates that it is fairly limited in its ability to capture hierarchical structures
over long distances, even though it does much better than the majority class baseline,
which stands at an 80% error rate.

In what follows, we will consider only the maximum error rate for any given
number of attractors, over varying epochs. That is, we report on the peak value from
the previous graph. Using this metric, the URNs perform consistently better than
the LSTMs with the same number of units (and a similar number of parameters).
They do so consistently across the training period (Fig. 11.4c). However, we note
that every model is capable of generalising to deeper nesting levels to some extent,
with an accuracy well above a majority class baseline (80% error rate). The URN
models beat the majority class baseline within the first epoch, while the LSTMs need
a couple of epochs to do so.

Next we report the error rate against training loss (Fig. 11.4d), as we did for
the cross-serial dependency task. Again, we do not report the average error rate, but
rather the maximum error rate for any given number of attractors. Here too, the
relationship between error rate and training loss corresponds to the bias of the model
for the task at hand, compared to a generative language model task. We observe that
the URN models outperform the LSTM models across the board.
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0.33 0.35 1.35
0.46 1.73 0.2
1.09 0.2 0.34

Table 11.1: Similarity for each pair of rotation planes, for the embeddings of ( and
[. Headers show the rotation e�ected on the compared planes.

Finally, we consider variants of the URN model. We report accuracy of the URN
model using either truncated embeddings, full embeddings, and for a baseline RNN
with full embeddings that are not constrained to be orthogonal (i.e. any matrix).
Still, no activation function is applied in any variant. In all three cases, the size
of orthogonal matrices is 50 by 50. We report accuracy on the task by number of
attractors in Fig. 11.5. We see that truncating embeddings does a�ect performance,
but not in a way that qualitatively changes the behaviour of the model. Truncating
has an e�ect similar to using fewer units. The non-orthogonal (arbitrary matrices)
model shows steadily decreasing accuracy relative to the number of attractors. We
note that even this naive model is not capable of generalising to longer distances. The
performance of the full URN is much better overall. This happens despite the fact
that the orthogonal system is a special case of the arbitrary linear recurrent network,
and so orthogonal embeddings are, in principle, available to the linear RNN without
the orthogonal constraint. But it is not able to converge on the preferred solution
(even for absolute loss). Our results show that restriction of the model to orthogonal
matrices o�ers a significant benefit in generalisation and tracking power.

11.5.2.2 Analysis

Let’s analyse the orthogonal embeddings further. We consider the 3-truncated em-
beddings produced in the last variant of the experiment, and we start with the embed-
dings of individual characters and their signatures (Table 11.2). The average e�ect,
and even the signatures of all embeddings, are strikingly similar. This does not imply
that they are equal, because they act on di�erent planes. We measure the similarity
of planes using Definition 11.6.

We see in Table 11.1 that the planes which undergo rotation by similar angles are
far from orthogonal to each other. One pair even exhibits a similarity of 1.73. This
corresponds to the fact that the transformations of ( and [ manipulate a common
subset of coordinates. On the other hand, those planes that undergo rotation by
di�erent angles tend to be in a closer to orthogonal relationship.

11.5.2.3 Composition of Matching Parentheses

To further clarify the formal properties of our model let’s look at the embeddings
of matching pairs, computed as the product of the respective embeddings of the
pairs. Such compositions are close to identity (Table 11.2). This observation explains
the extraordinarily accurate long-distance performance of the URN on the matching
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Figure 11.4: Results for the Dyck language experiment. When reporting error rates
as training progresses, we use the maximum error rate across number of attractors.
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Figure 11.5: Error rate per number of attractors, at epoch 100, with 50 units, for
various linear RNN architectures.
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character average e�ect signature
( 14.79
< 14.34
{ 13.98
[ 14.25
+ 14.20
) 14.85
> 14.42
} 14.07
] 14.34
- 14.26

string average e�ect signature
() 0.06
<> 0.06
{} 0.07
[] 0.06
+- 0.06

Table 11.2: Average e�ect and signatures of parenthesis embeddings and matching
pairs.

task. Because a matching pair has essentially no e�ect on the state, by the time all
parentheses have been closed, the state returns to its original condition. The model
experiences the highest level of confusion when it is inside a deeply nested structure,
and not when a deep structure is inserted between the governing opening parenthesis
and the prediction conditioned on that parenthesis.

11.5.3 Natural Language Long-Distance Agreement Task

Having seen that the URN performs well on synthetic language applications, we turn
to a natural language agreement task proposed by Linzen, Dupoux, et al. (2016).
This involves predicting the number of third person verbs in English text, through
supervised learning. In the phrase “The keys to the cabinet are on the table”, the
RNN is trained to predict the plural “are” rather than the singular “is”. This is the
natural equivalent of the bracket matching task discussed in the previous section.

The training data is composed of 1.7 million sentences with a selected subject-
verb pair, extracted from Wikipedia. The vocabulary size is 50,000, with out-of-
vocabulary tokens replaced by their part-of-speech tags. Training is performed for
ten epochs, with a learning rate of 0.01, and a dropout rate of fl = 0.05. We use
90% of the data for training, and 10% for validation and testing. A development
subset is not required, since no e�ort was made to tune hyperparameters. Our first
experiment proved su�cient to illustrate our main claims. In any case, a TURN has
few hyperparameters to optimise.

Figure 11.6 shows the results for a 50-unit TURN with 3-truncated embeddings
for the agreement task, for up to 12 attractors. We see that the TURN performs less
well than the LSTM of Linzen, Dupoux, et al. (2016). The accuracy drops o� for
both models, as the number of attractors increases. Statistical uncertainty increases
a lot with the number of attractors, due to decreasing numbers of examples.9

9In earlier work (Bernardy and Lappin, 2022), we have reported that the URN does better on
this task than the LSTM. This was due to an error in handling the training set. The current results
should be understood as a correction of our earlier reported work.
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Figure 11.6: Accuracy per number of attractors for the verb number agreement task.
Linzen, Dupoux, et al. (2016) do not report performance of their LSTM past 4 at-
tractors. Error bars represent binomial 95% confidence intervals.

11.5.3.1 Analysis

Despite the unimpressive accuracy of the model, we can still use our theoretical tools
to understand how the learned truncated unitary embeddings work. We first measure
the average e�ect for the embeddings of common words in the dataset (Table 11.3),
and other selected words and phrases (Table 11.5) obtained by composition. The table
of e�ects for these words and phrases (ordered from smallest to largest e�ect) confirms
our view concerning the measurement, along a particular plane, of the relations among
the unitary embeddings applied to the agreement task. Tokens which are relevant to
the task (e.g. “is”, “which”) have a larger e�ect than those which are not (e.g. the
dot, “not”).

Unfortunately, the average e�ect does not yield a sharp distinction among words
for the agreement task. It also does not separate some classes of words which have
a direct e�ect on the prediction (nouns, relative pronouns) from words which have
only have an indirect e�ect (object pronouns). We can further refine the analysis
by the projection of the word embedding Q(x) onto the subspace generated by the
projection layer.

Because we have only two possible predictions for this task, this space is 2-
dimensional. The projection is a 2◊2 matrix indicating how the word embedding
acts on the features determining the prediction of the number of the coming verb.10

The top left entry in the matrix corresponds to the action on the most relevant
feature. Lower values for this entry correlate with higher direct influence of the as-
sociated lexical item on the feature. This matrix is not in general orthogonal. But
the projection of many embeddings is close to the identity matrix. This proximity
indicates that the corresponding word has little direct influence on the prediction,
although it could have an e�ect when combined with some other words.

Conversely, words which have a direct e�ect on the prediction receive a matrix
10Essentially, we take the average for all other dimensions.
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word average e�ect projection
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2
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2

for 4.62
1

0.93 ≠0.06
0.11 0.88

2
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≠0.05 0.92

2
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0.84 ≠0.10
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2
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1

0.62 ≠0.01
0.08 0.95

2

that 5.00
1

0.85 0.12
≠0.14 0.88

2
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1

0.72 ≠0.03
≠0.04 0.92
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( 5.68
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0.86 0.03
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) 5.74
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0.90 0.04
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0.53 0.02
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0.73 0.09
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0.71 0.01
≠0.19 0.85
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, 8.35
1

0.58 ≠0.09
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2

Table 11.3: Table of phrase e�ects for agreement experiment for the most frequent
tokens in the corpus, ordered by average e�ect, from least to greatest. The projection
column shows the projection of the rotation on the prediction space.
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article year area world family articles years areas worlds families
article 0.00 7.04 6.51 6.89 5.82 9.26 9.84 10.01 10.87 9.39
year 7.04 0.00 7.62 6.30 5.38 8.22 9.06 9.75 10.14 8.64
area 6.51 7.62 0.00 6.42 6.34 9.57 9.70 10.39 11.63 10.39
world 6.89 6.30 6.42 0.00 5.17 7.32 8.82 9.17 9.13 7.83
family 5.82 5.38 6.34 5.17 0.00 7.71 7.72 8.78 9.49 8.82
articles 9.26 8.22 9.57 7.32 7.71 0.00 5.11 4.79 4.28 4.57
years 9.84 9.06 9.70 8.82 7.72 5.11 0.00 6.42 6.61 7.14
areas 10.01 9.75 10.39 9.17 8.78 4.79 6.42 0.00 5.93 6.09
worlds 10.87 10.14 11.63 9.13 9.49 4.28 6.61 5.93 0.00 7.79
families 9.39 8.64 10.39 7.83 8.82 4.57 7.14 6.09 7.79 0.00

Table 11.4: Distances between embeddings of most frequent nouns and their plural
variants. Words which can be both nouns and verbs were excluded.

the key 4.34
1

0.94 0.02
≠0.03 0.96

2

the keys 5.32
1

0.46 0.10
≠0.16 0.94

2

the keys to the cabinet 11.85
1

0.46 0.13
≠0.08 0.91

2

Table 11.5: E�ect, signature, and projection of the embedding of selected phrases

which is far from identity. The pair of words “have” and “in” is particularly notewor-
thy. They have the same average e�ect, but di�erent direct e�ects on the prediction,
with “have” showing a much larger direct e�ect, as expected. The phrase “the keys
to the cabinet” has a much larger e�ect on the agreement task than the phrase “the
keys”, but they both have a similar influence on the prediction of the next word.
Note also that the phrase “the key” and its plural counterpart have a similar average
e�ect, and similar signatures. But the projection on the prediction space shows much
less e�ect for the singular. This can be explained by the fact that number prediction
is biased towards the singular in the absence of context. For instance, a lone verb
tends to be singular.

We also compute the Frobenius distance between pairs of orthogonal embeddings
of the most frequent nouns, with both singular and plural inflections (Table 11.4).
As our account predicts, nouns with the same number inflection tend to be grouped
together (with a distance of 7.5 or less between them), while nouns with distinct
numbers are further apart (with a distance of 7.5 or more).

11.6 RELATED WORK

It has frequently been observed that DNNs are complex and opaque in the way in
which they operate. It is often unclear how they arrive at their results, or why they
identify the patterns that they extract from training data. This has given rise to a
concerted e�ort to render deep learning systems explainable (Linzen, Chrupa�la, and
Alishahi, 2018; Linzen, Chrupa�la, Belinkov, et al., 2019). This problem has become
more acute with the rapid development of very large pre-trained transformer models
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(Vaswani et al., 2017), like BERT (Devlin et al., 2018), GPT2 (Solaiman et al., 2019),
GPT3 (Brown et al., 2020), and XLNet (Yang et al., 2019).

URNs avoid this di�culty through being strictly compositional by design. If they
prove robust for a wide variety of NLP tasks, they will go some way to solving the
problem of transparency in deep learning.

11.6.1 Learning Agreement

The capacity of Recurrent Neural Networks (RNNs), particularly LSTMs, to iden-
tify context-free long distance dependencies has been widely discussed in the NLP
and cognitive science literature (Bernardy, 2018; Bernardy and Lappin, 2017; El-
man, 1990; Gulordava et al., 2018; Lappin, 2021; Linzen, Dupoux, et al., 2016;
Sennhauser and Berwick, 2018). These discussions have considered dependency pat-
terns in both artificial systems, particularly Dyck languages, and in natural languages,
with subject-verb agreement providing a paradigm case.

Bernardy (2018) tested the ability of LSTMs to predict closing parenthesis types
in a Dyck language. The results are qualitatively similar to those obtained for natural
language agreement. In both cases the LSTM makes the least successful predictions
for a moderate number of attractors. However he reports worse overall results than we
achieved in our experiments, despite using an LSTM with more units. We attribute
the improved performance of our LSTM to better implementation of the model. A
more optimal application of dropouts is a likely factor in getting better results than
Bernardy’s LSTM (2018).

While LSTMs (and GRUs) exhibit a certain capacity to generalise to deeper nest-
ing, their accuracy declines in relation to nesting depth. This is also the case with their
handling of natural language agreement. Other experimental work has illustrated this
e�ect (Hewitt et al., 2020; Sennhauser and Berwick, 2018). Similar conclusions hold
for generative self-attention architectures (Yu et al., 2019). Significantly, recent work
has indicated that non-generative self-attention architectures, in the mode of BERT,
perform poorly on this task (Bernardy, Ek, et al., 2021). Their work suggests that
sequential processing is required to solve it.

By contrast URNs achieve excellent results for this task, without any decline in
relation to either nesting depth, or number of attractors. We have shown that this
is because the learned unitary embeddings for matching parentheses are nearly the
inverses of each other.

The question of whether generative language models can learn long-distance
agreement was proposed by Linzen, Dupoux, et al. (2016). If accuracy is insensi-
tive to the number of attractors, then we know that the model can work on long
distances. The results of Linzen, Dupoux, et al. (2016) are inconclusive on this ques-
tion. Even though the model does better than the majority class baseline for up to
four attractors, accuracy declines steadily as the number of attractor increases. This
trend is confirmed by Bernardy and Lappin (2017), who ran the same experiment
on a larger dataset and explored the space of hyperparameters in detail. It is also
confirmed by Gulordava et al. (2018), who analysed languages other than English.
Marvin and Linzen (2018) focus on other linguistic phenomena, reaching similar con-
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clusions. Lakretz et al. (2021) recently showed that an LSTM may extract bounded
nested tree structures, without learning a systematic recursive rule. These results do
not hold directly for BERT-style models, because they are not generative language
models.11 For a detailed discussion of these results, see the recent account of Lappin
(2021).

Our experiment shows that URNs can surpass state of the art results for this kind
of task. This is not surprising. URNs are designed so that they cannot forget infor-
mation. It is expected that they will perform well on tracking long distance relations.
The conservation of information in an URN is due to the fact that multiplying by
an orthogonal matrix conserves cosine similarities: ÈQs0, Qs1Í = Ès0, s1Í. Therefore
any embedding Q, be it of a single word or of a long phrase, maps a change in its
input state to an equal change in its output state. Considering all possible states
as a distribution, Q conserves the density of states. Hence, contrary to the claims of
Sennhauser and Berwick (2018), URNs demonstrate that a class of RNNs can achieve
rule-like accuracy in learning syntactic structure.

11.6.2 Cross-serial patterns

Kirov and Frank (2012) study both nested and cross-serial dependencies with a Simple
Recurrent Network (SRN). As far as we are aware, our experiment is the first appli-
cation of both LSTMs and URNs to cross-serial dependency relations. While both
achieve encouraging initial accuracy in recognising the cross-serial patterns, URNs
o�er significant advantages in simplicity and transparency of architecture. They also
displays enhanced stability in learning, and power of structural generalisation, rela-
tive to loss in training data.

11.6.3 Quantum-Inspired Systems

Unitary matrices are essential elements of quantum mechanics, and quantum com-
puting. There, too, they ensure that the system does not lose information through
time.

Coecke et al. (2010) and Grefenstette et al. (2011) propose what they describe
as a quantum inspired model of linguistic representation. It computes vector val-
ues for sentences in a category theoretic representation of the types of a pregroup
grammar (Lambek, 2008). The category theoretic structure in which this grammar
is formulated is isomorphic with the one for quantum logic.

A di�culty of this approach is that it requires the input to be already annotated
as parsed data. Another problem is the tensors associated with higher-types are very
large, making them hard to learn. By contrast, URNs do not require a syntactic type
system. Our experiments indicate that, with the right processing model, it is possible
to learn syntactic structure and semantic composition from unannotated input.

Compositionality of phrase and sentence matrices is intrinsic to the formal spec-
ification of an URN.

The research that we report here extends and modifies some of the leading ideas
11Goldberg (2019) and Lau et al. (2020) suggest approaches for using them as generative LMs.
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in the foundational work of Coecke et al. (2010) and Grefenstette et al. (2011). They
provided a system for handling computational semantics compositionally with struc-
tures that map onto the matrices of quantum circuits. We o�er a model for learning
syntactic structure, and for processing in general, that is strictly compositional. It
uses some of the same core methods as the earlier work. In future research we will
attempt to apply our model to NLP tasks involving semantic interpretation.

11.6.4 Tensor Recurrent Neural Networks

Sutskever et al. (2011) describe what they call a “tensor recurrent neural network”
in which the transition matrix is determined by each input symbol. This design
appears to be similar to URNs. However, unlike URNs, they use non-linear activation
functions, and so they inherit the complications that these functions carry.

11.6.5 Unitary-Evolution Recurrent Networks

Arjovsky et al. (2016) proposed Unitary-Evolution recurrent networks to solve the
problem of exploding and vanishing gradients, caused by the presence of non-linear
activation functions. Despite this, Arjovsky et al. (2016) suggest the application of
ReLU activation between time-steps, unlike URNs. Moreover, we are primarily con-
cerned with the structure of the underlying unitary embeddings. The connection
between the two lines work is that, exploding/vanishing gradients prevent an RNN
from tracking long-term dependencies. URNs eliminate this problem.

Arjovsky et al. (2016)’s embeddings are computationally cheaper than ours, be-
cause they can be multiplied in linear time. Like us, they do not cover the whole space
of unitary matrices. Jing et al. (2017) propose another representation which is com-
putationally less expensive than ours, but which has asymptotically the same number
of parameters. A third option is allow back-propagation to update the unitary ma-
trices arbitrarily n ◊ n, and project them onto the unitary space periodically (Kiani
et al., 2022; Wisdom et al., 2016).

Because we use a fully general matrix exponential implementation, our model is
computationally more expensive than all the other options mentioned above. How-
ever, we have found that when experimenting with the unitary matrix encodings of
Jing et al. (2017) and Arjovsky et al. (2016), we got much worse results for our exper-
iments. This may be due to the fact that we do not use a ReLU activation function,
as they do.

To the best of our knowledge, no previous study of URNs has addressed agreement
or other NLP tasks. Rather, they have been applied to data-copying tasks, which are
of limited linguistic interest. This includes the work of Vorontsov et al. (2017), even
though it is ostensibly concerned with long distance dependencies.

11.7 CONCLUSIONS AND FUTURE WORK

Our experiments have shown the following. First, contrary to previous claims (Sennhauser
and Berwick, 2018), RNNs can learn to recognise syntactic structures of the sort that
characterise natural language syntax, with good accuracy. Furthermore, this can be
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done both with well-known models, such as an LSTM, and mathematically tractable
ones, such as an URN. A particularly attractive result, is that these models achieve
such accuracy with less than a couple of thousand parameters. For hierarchical struc-
tures, the models can generalise to much deeper depths. For cross-serial patterns, the
models can approximate the training data well, but do not generalise well to longer
patterns.

Second, we have shown the potential of URNs as devices for tracking and pre-
dicting complex dependency relations, over long strings, in a fully compositional
way. The fact that URNs achieve good precision in predicting both deeply nested
and cross-serial dependencies (up to certain length) suggests that they are able to
recognise complex syntactic structures of the sort that are challenging for other neu-
ral networks. Furthermore, our experiments indicate that URNs are biased towards
predicting the patterns found in context-free and mildly context-sensitive languages,
even when trained as generative language models.

Third the fact that URNs satisfy strict compositionality o�ers an important
advance in the search for explainable AI systems in deep learning models. Unlike
LSTMs, they are compositional by design. They resolve the question of how to gen-
erate the composite values of input arguments in a principled and straightforward
way. URNs learn orthogonal embeddings, which can be combined to provide repre-
sentations for any phrase. We have demonstrated that they can be analysed using
standard tools from linear algebra.

Fourth, the refined distance, e�ect, and relatedness metrics that unitary embed-
dings a�ord, open up the possibility of more interesting procedures for identifying
natural syntactic and semantic word classes. These can be textured and dynamic,
rather than static. They can focus on specific dimensions of meaning and structure,
and they can be driven by particular NLP tasks. They are not blackbox processing
devices that require indirect methods of analysis and assessment, as is the case with
most other deep neural systems. Compositionality is realised by eschewing non-linear
activation functions, which pervade other architectures, such as LSTMs. The presence
of activation functions entail that the combination of two cells cannot be expressed
as a single cell.

The move to powerful bidirectional transformers, like BERT, has produced en-
hanced performance in a variety of NLP and other AI tasks. This has been achieved
at the expense of formal grounding and computational transparency. It is even less
obvious why such models perform as well as they do on some tasks, and poorly on oth-
ers, than is the case for LSTMs. By contrast, URNs o�er simple, light weight deep
neural networks whose operation is fully open to inspection and understanding at
each point in the processing regime. They achieve encouraging accuracy in capturing
complex hierarchical syntactic structures for both artificial and natural data.

Finally, we observe that the unitary matrices through which URNs compute out-
put values from input arguments are identical to the gates of quantum logic. This
suggests the intriguing possibility of implementing these models as quantum circuits.
At some point in the future, this may facilitate training these models on large amounts
of data, and e�ciently generating results for tasks that are currently beyond the re-
sources of conventional computational systems. Of course, quantum systems are still
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in their infancy, and thus caution is needed here when making claims of e�ciency on
behalf of quantum computing applied to machine learning.
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