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Abstract

The emergence of mathematical concepts, such
as number systems, is an understudied area in
AI for mathematics and reasoning. It has previ-
ously been shown (Carlsson et al., 2021) that by
using reinforcement learning (RL), agents can
derive simple approximate and exact-restricted
numeral systems. However, it is a major chal-
lenge to show how more complex recursive
numeral systems, similar to the one utilised
in English, could arise via a simple learning
mechanism such as RL. Here, we introduce an
approach towards deriving a mechanistic expla-
nation of the emergence of recursive number
systems where we consider an RL agent which
directly optimizes a lexicon under a given meta-
grammar. Utilising a slightly modified ver-
sion of the seminal meta-grammar of (Hurford,
1975), we demonstrate that our RL agent can
effectively modify the lexicon towards Pareto-
optimal configurations which are comparable
to those observed within human numeral sys-
tems.

1 Introduction

While there is evidence to suggest that animals,
young infants and adult humans possess a biolog-
ically determined, domain-specific representation
of numbers and elementary arithmetic operations,
only humans have a capacity for generating an infi-
nite set of natural numbers, while all other species
seem to lack such a capacity (Hauser et al., 2002;
Chomsky, 1982, 1986; Dehaene and Changeux,
1993; Dehaene, 1997). This unique capacity is cen-
tral to many aspects of human cognition, including,
of course, the development of sophisticated math-
ematics. The fundamental mechanism underlying
this is the use of a finite symbolic system to repre-
sent arbitrarily large discrete numerical magnitudes
i.e. the positive integers. However, the work within
AI on developing and changing representations of
mathematical concepts, such as number systems, is

limited, and primarily concerns revising represen-
tations of logical theories (Bundy and Li, 2023).

In cognitive science, a recent influential body
of work suggests language is shaped by a pres-
sure for efficient communication which involves
an information-theoretic trade-off between cogni-
tive load and informativeness (Kemp and Regier,
2012; Gibson et al., 2017; Zaslavsky et al., 2019).
This means that language is under pressure to be
simultaneously informative, in order to support ef-
fective communication, while also being simple,
to minimize the cognitive load. Exact and ap-
proximate numeral systems were studied in (Xu
et al., 2020) in this framework of information-
theoretically efficient schemes for communicating
quantitative concepts. A mechanistic explanation
of how such schemes could arise was proposed in
(Carlsson et al., 2021) via reinforcement learning
in signalling games. However, these studies were
limited to simpler exact and approximate numeral
systems and do not cover more complex systems
capable of representing arbitrary numerical quanti-
ties.

How does one explain the origins and develop-
ment of such numerical systems capable of generat-
ing expressions for arbitrary numerical quantities?
(Chomsky, 2008) hypothesises that a fundamental
operation called Merge can give rise to the succes-
sor function (i.e., every numerosity N has a unique
successor, N + 1) in a set-theoretic fashion (1 =
one, 2 = {one}, 3={one, {one}}, ...) and that the
capacity for discretely infinite natural numbers may
be derived from this. However, representations of
numbers in natural languages do not reveal any
straightforward trace of the successor function.

Another proposal is that Merge is able to inte-
grate the two more primitive number systems men-
tioned above, an approximate number system for
large numerical quantities and a system of precise
representation of distinct small numbers. A natural
way to achieve this is via a grammar that has two
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primitive components corresponding to these no-
tions: a base for large approximate numerical val-
ues and digits for precise representations of small
quantities. An example of a meta-grammar which
covers this family of grammars is that proposed in
the seminal work of (Hurford, 1975) (see §3).

Such a grammar in turn would be subject to pres-
sures to achieve a system of efficient communica-
tion in the information-theoretic sense of (Kemp
and Regier, 2012; Gibson et al., 2017; Zaslavsky
et al., 2019). Taking this line of thought, we in-
vestigate here how pressure for efficient represen-
tations would lead to the evolution of recursive nu-
meral systems that are efficient in an information-
theoretic sense.

2 Efficiency of Recursive Numeral
Systems

Under the information-theoretic framework of
(Kemp and Regier, 2012; Gibson et al., 2017; Za-
slavsky et al., 2019), Xu et al. (2020) argued that
numeral systems, including approximate, exact re-
stricted and recursive systems, support efficient
communication (examples of these systems are
shown in Figure 1). While this argument is com-
pelling for exact and approximate systems, it was
pointed out by Denić and Szymanik (2024) that
for recursive systems, the picture is more compli-
cated. The complexity measure of Xu et al. (2020)
depends both on the number of lexicalized terms
and number of rules in the grammar. As noted
by Denić and Szymanik (2024), while exact and
restricted systems lie very close to the information-
theoretic frontier in the tradeoff between simplicity
and informativeness, recursive systems seem to lie
off the frontier, as shown in Figure 2. The defini-
tion of complexity used by Xu et al. (2020) might
not be well suited to recursive systems because
these systems always maximize informativeness,
since they can express any numeral. Hence, for
recursive systems there is not a clear trade-off be-
tween informativeness and this measure of com-
plexity and hence recursive systems do not lie on
the frontier. Instead, Denić and Szymanik (2024)
argue that there is (at least) one more pressure shap-
ing systems of recursive numerals in addition to
simplicity and informativeness, namely average
morphosyntactic complexity. Thus, since recursive
systems achieve perfect informativeness, the appro-
priate tradeoff is along two axes: the number of
lexicalized terms and the average morphosyntactic

complexity. Denić and Szymanik (2024) show that
recursive systems found in human languages opti-
mize a trade-off between these two measures. A
natural question that emerges from this line of argu-
ment is: what mechanistic processes can optimize
for an efficient trade-off along these dimensions?

1 2 3 4 5 6 7 ...Numerals

Chiquitano

Awa Pit

English

Figure 1: Three distinct numeral systems from three
differing languages are shown. These are the approxi-
mate numerals used in Chiquitano, the exact-restricted
numerals used in Awa Pit and the recursive numerals
used in English. Colors indicate how words are assigned
to numeral concepts.

Like Denić and Szymanik (2024) we first show
how the Pareto frontier of the number of lexicalised
terms and average morphosyntactic complexity can
be estimated using a genetic algorithm optimising a
grammar for number systems like the one of (Hur-
ford, 1975, 1987). Our work does however differ
from Denić and Szymanik (2024) in that we do
not stop there but also 1) use a slightly modified
Hurford-grammar better suited for optimisation and
2) provide a natural mechanistic procedure based
on reinforcement learning which leads towards the
emergence of number systems that are close to the
Pareto frontier of efficiency between lexicon size
and average morphosyntactic complexity. Thanks
to the simple modification to the grammar we show
that the languages obtained present characteristics
that are common in human languages, which we do
not find in the languages obtained via the approach
of Denić and Szymanik (2024).

3 Meta-grammars for recursive number
systems

The grammar introduced by (Hurford, 1975, 1987)
allows for the representation of numerals in natural
languages. It relies on two sets: D – enumerating
the set of lexicalised digits (e.g. one, two, three,...),
and M – enumerating the set of multipliers (e.g.
ten, hundred,...). Some examples are shown in
Table 1. We use a slightly modified version of this
grammar, which is given below in equation (1).
Our modification removes the single M from the
construction of Phrase leaving only Num ∗M as



0 25 50 75 100 125 150 175 200
Complexity

0.5

0.0

0.5

1.0

1.5

2.0

Co
m

m
un

ica
tiv

e 
co

st

Approximate
Exact restricted
Recursive
Hypothetical (Recursive)
Hypothetical (Approx.)
Hypothetical (Exact restr.)

Chiquitano

Fuyuge
Gooniyandi

Munduruku
Piraha

Wari

Araona1

Awa Pit2 Hup
Krenak

Rama3
Wichi

Waskia

EnglishMandarin GeorgianAinu

FrenchSpanish

Figure 2: Reproduction of Figure 4b from (Xu et al., 2020), showing that while restricted numeral systems seem to
optimize the simplicity/informativeness trade-off (here are plotted the complexity and communicative cost, their
opposite), recursive numeral systems (plotted as blue dots) do not, as they lie far away from the Pareto-optimal
recursive numeral system (the left-most point of the blue line).

an option. When optimising D and M pairs this
small modification results in more natural, human-
like systems as it captures that multipliers ought to
have higher costs than plain digits.

Num = D | Phrase | Phrase±Num

Phrase = Num ∗M
(1)

This meta-grammar is a mutually recursive (Num
and Phrase are defined in terms of each other) non-
free datatype (not every number has a canonical
representation). A specific (human) number sys-
tem consists of a combination of sets D and M ,
together with a commitment to a unique representa-
tion for each number where there are options. That
is, the same D and M pair can appear in several
concrete languages, differing in which representa-
tions are chosen for the remaining numerals.

Table 1: Some D and M pairs associated with different
human numeral systems.

Language D M

English [1, 2, 3, 5, 6, 9, 11] [10]
French [1, 2, 3, 4, 5, 6, 7, 8, 9] [10, 20]

Kunama [1, 2, 3, 4] [5, 10]

3.1 Complexity Metrics

Optimization with the meta-grammar constitutes
choosing appropriate sets D and M , and then the
composition of the remaining numerals using the
constructions plus, minus and multiplication.

The morphosyntactic complexity of a Num is
simply defined as the size, i.e. number of symbols,
in the expression built using the meta-grammar.
For example, the single digit "2" has complexity 1
while "2 * 10" has complexity 3 etc. This measure
is referred to as ms_cmpx.

Recall that the meta-grammars allows non-
canonical representation of numerals. For a given
pair of D and M pair, a set of concrete languages,
L = {L1, . . . , LN}, can be induced. For each con-
crete language, the average morphosyntatic com-
plexity under the need distribution can be calcu-
lated according to Equation 2. The need distri-
bution is parameterised as P (n) ∝ n−2 which
captures that smaller numbers are typically used
more frequently and thus better expressed with low
complexity constructs (Dehaene and Mehler, 1992;
Xu et al., 2020). The evaluation is limited to nat-
ural numbers from 1 to 99, as numbers beyond
this range have a very low probability under the
given distribution, making their contribution to the



average morphosyntactic complexity negligible.

avg_ms_cmpx(L) =

=

99∑
n=1

P (n) ·ms_cmpx(n,L)
(2)

We refer to the language which achieves the most
compact representation as Lmin:

Lmin = argmin
L∈L

(avg_ms_cmpx(L)) (3)

Lmin is the lower-bound on the average mor-
phosyntactic complexity obtainable by a given D
and M pair. We note that when optimising D and
M pairs we are interested in minimising the mea-
sure shown in Equation 4.

avg_ms_cmpx(D,M) = avg_ms_cmpx(Lmin)
(4)

3.2 Estimating the Pareto Frontier

As in Denić and Szymanik (2024), we will utilise
a genetic algorithm (see algorithm (1)) to estimate
the Pareto frontier. Typically, a genetic algorithm
involves the creation of a population of candidate
solutions which are evaluated according to a fitness
function. The best performing candidates are taken
and a number of random mutations is applied which
produces a new generation. This process happens
iteratively until a termination condition is met. Our
claim is that our grammar should perform better
under optimization as it more clearly reflects the
higher costs represented by multipliers than Hur-
ford’s original one, used by Denić and Szymanik
(2024).

Algorithm 1 Genetic Algorithm for Pareto Frontier
Result: Final population of (D,M) pairs
Sample initial population of (D,M) pairs
Compute Lmin for each (D,M) in population
Evaluate population (via eq. (2) and lexicon size)
for i ∈ [1, . . . ,max generation] do

Select dominant (D,M) pairs from popula-
tion

Perform up to 3 random mutations
Compute Lmin for population
Evaluate population

end

The minimum languages associated with the fi-
nal population of D and M pairs will provide an
approximation to the set of optimal languages that
exist on the Pareto frontier. Languages in this set
are optimal in the sense that a reduction in average
morphosyntactic complexity cannot be obtained
without experiencing an increase in lexicon size
and vice versa.

4 Reinforcement Learning for Optimizing
Grammars

Previous work by Carlsson et al. (2021) left the
extension towards recursive numerals systems out-
standing. In contrast to the signalling game they
utilise, we consider a single RL agent who directly
decides upon the lexicalisations of numerosities.
Through providing this agent with an appropriate
reward function we can incentivise it to optimise a
given D and M within a particular meta-grammar
(e.g. (1)).

We consider a finite-length episode of length 8
which proceeds as follows: the agent observes its
current state which is a function of the current D
and M pair. The state is represented as the con-
catenation of 99 one-hot vectors, each representing
a numeral n in the range 1, ..., 99. Each one-hot
vector is of length 3 and indicates whether the nu-
meral n is an element of D, M or neither. Given
this state, the agent selects an action according to
its policy. The action set is composed of seven
actions. We consider the seven we choose to be a
reasonable approximation to the types of changes
we may expect from a language system of this sort.
These are given in Table 2.

Table 2: Our set of actions and their descriptions.

Action Description
a0 Add highest numeral not in D or M to

D
a1 Add highest numeral not in D or M to

M
a2 Move lowest numeral in M to D
a3 Move highest numeral in D to M
a4 Remove highest numeral in D
a5 Remove highest numeral in M
a6 Do nothing

The actions provided enable the agent to intro-
duce, modify or remove a singular morpheme at
each step. Upon selecting an action, a state transi-
tion occurs and D and M are updated accordingly



and the agent receives a reward. This process re-
peats until the episode terminates.

The reward function is defined in equation (5)
and is a weighted combination of average mor-
phosyntactic complexity (equation (4)) and the lex-
icon size. We argue that this represents a natural
reward function as it reflects a preference towards
brevity while considering the cost of memory.

r(D,M) = −α · avg_ms_cmpx(D,M)+

− β · (|D|+ |M |)2
(5)

We parameterise the agent’s policy as a fully-
connected neural network which has a single hid-
den layer comprising of 100 neurons. We train it
to maximise reward using REINFORCE (Williams,
1992) and the optimizer ADAM (Kingma and Ba,
2015) with a learning rate of 0.005. We set the
discount factor, γ = 0.0, so that the resultant agent
will only care about immediate reward. We con-
sider this to be a reasonable approximation of how
a real numeral system may be modified as it re-
flects that communicative efficiency is required at
each intermediary step. This is similar in spirit to
evolutionary dynamics where there is an incremen-
tal monotonic increase in fitness at each step (as
opposed to intermediate steps which can reduce
fitness before increasing it again). Algorithmically,
this is a simpler variant of RL, closer to a contex-
tual bandit (Sutton and Barto, 1998) which is a
variant of the bandit problem where the agent can
observe a state.

In order to evaluate the RL-agent’s capacity to
optimize the lexicon, we train it from a number of
starting configurations (i.e. some D and M ) and
evaluate how its modifies D and M . Depending on
the configuration, we may expect the agent to intro-
duce new morphemes or to change how an existing
morpheme is used through its actions. Fundamen-
tally, we are interested in how an intelligent agent
may choose to optimise the construction of D and
M . Do these have similar structures to those that
we observe in human systems? Or do we find that
artificial systems prefer alternative structures?

5 Results and Discussion

5.1 Comparison of Pareto-Optimal Lexicons
We find that optimization of our meta-grammar in-
duces D and M pairs that are demonstrably more
similar to human numeral systems in their compo-
sition than those obtained via Hurford’s original

meta-grammar used in Denić and Szymanik (2024).
In our experiments, we refer to the lexicons induced
by Hurford’s meta-grammar as Denić lexicons,
while we also include 94 human languages1 as com-
parison. For both our and Hurford’s meta-grammar
the Pareto frontier is estimated through the genetic
algorithm defined in algorithm (1) which is run for
100 generations2.

We plot the Pareto frontier we obtain in Figure
3, where we calculate the average morphosyntac-
tic complexity and vocabulary of all D and M
pairs and human languages according to our meta-
grammar3. While human languages seem to stick
close to the Pareto frontier, those associated with
Hurford’s (optimized using Hurford’s and then re-
expressed with ours) do not. This suggests that the
configurations obtained via optimization of Hur-
ford’s grammar are sub-optimal. We stress that this
is not because Hurford’s grammar can not repre-
sent the D and M pairs that we find to be optimal
but rather that it provides no bias towards them
when utilised as part of an optimization procedure.
We consider Hurford’s grammar to be more suit-
able for expressing natural languages, while our
modification is tailored to research focused upon
the pressures that impact the evolution of numeral
systems.

We can further support our claim that optimiza-
tion of our meta-grammar induces D and M pairs
that are more representative of human numeral sys-
tems through Figure 4 and 5. In Figure 4, we
compare the cardinality of M for solutions on the
Pareto frontier for both meta-grammars. In Figure
5, we compare the resultant languages in terms of
the ratio of the cardinality of D to the lexicon size.

Figure 4 shows that our meta-grammar results in
languages which contain a singular element within
M whereas Hurford’s meta-grammar has an ap-
proximately uniformly distribution across the cardi-
nality of M within the permitted range. In general
human systems tend to present lexicons with low
numbers of M , where numeral systems with one or

1The 94 human languages we use are the ones studied
by Denić and Szymanik (2024) which do not present unclear
cases in the morphosyntactic content of any of their numerals.

2To obtain Denić and Szymanik (2024) Pareto-optimal lex-
icons, we make use of the results provided in the author’s
repository: https://github.com/milicaden/numerals_
ac2022.

3Note that expressing the natural languages in terms of
our meta-grammar made several languages lose some of their
nuances when expressing numerals. For example, our meta-
grammar does not allow for morphemes of type M to represent
numeral quantities on their own.

https://github.com/milicaden/numerals_ac2022
https://github.com/milicaden/numerals_ac2022
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Figure 3: Pareto frontier obtained via an evolutionary algorithm of artificial languages expressed with our grammar,
found in terms of lexicon size and average morphosyntactic complexity. We compare it with human languages and
dominant artificial languages obtained via the same process with the original Hurford grammar and subsequently
expressed via our grammar. We also sample and plot some of our languages to ease the visual comparison.

two multipliers are particularly common. Although
our lexicons are not an exact match, they have a
consistent bias towards lexicons with lower num-
bers of multipliers, whereas this property does not
present within the lexicons from Hurford’s meta-
grammar. Furthermore, it is notable that the ge-
netic algorithm utilised by Denić and Szymanik
(2024) imposes an artificial constraint upon the
meta-grammar which restricts it to systems with no
more than five elements in M with the intention of
better representing human systems. It is conceiv-
able that this mitigation constrained the distribution
of M and its absence may result in Ms with even
larger cardinalities.

Through Figure 5, we are able to evaluate how
configurations that exist on the Pareto frontier com-
pare in terms of their utilisation of their lexicon.
We find that our grammar provides a better fit to
real languages. However, there do appear to be
exceptions. For example, let us consider a lexicon
size of 12. In Table 3, we show the associated data
points and how they decompose into D and M . It is
clear from inspection of the example deduced from
Hurford’s original grammar that the resulting Lmin

will not have a predictable recursive structure. This
is in contrast to ours and a human language from
the Mixtec group (see Denić and Szymanik (2024),
appendix) referred to as Type 4-MixtecA in the ref-
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Figure 4: Comparison of lexicons induced by our meta-
grammar and Hurford’s meta-grammar in terms of the
cardinality of M .

erence. We suggest that our meta-grammar results
in lexicons which better represent the structure of
natural languages.

5.2 Optimising with Reinforcement Learning

In Figure 6, we show that our RL agent is able to
optimise the sets D and M to find lexicons that
exist on the Pareto frontier generated via our meta-
grammar which is where human numeral systems
lie. The starting points that we evaluate the RL-
agent from are provided in Table 4, and require
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and Ds obtained via both meta-grammars, compared
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Table 3: A comparison of different D and M pairs
associated with points in Figure 5 with a lexicon size of
12.

Grammar D M

Hurford [1,2,3,5,6,9,10,11,14] [4,7,25]
(1)(ours) [1,2,3,4,5,6,7,8,9,10,11] [12]

4-MixtecA [1,2,3,4,5,6,7,8,9] [10,15,20]

the agent to make differing modifications to the
initials D and M in order to find a configuration
which exists upon the Pareto frontier. The trajecto-
ries show that sub-optimal lexicons tend to move
towards the closest point on the Pareto frontier, and
later move along the frontier. This demonstrates
that the agent can effectively manipulate its lexi-
calisations to produce combinations of D and M
that enable an Lmin which finds an optimal trade-
off between average morphosyntactic complexity
and lexicon size. This simple model hints at pos-
sibilities of extensions to models that explore how
different pressures could explain evolutionary dy-
namics of language. For example, a multi-agent
setting could be used to study the dynamics with
a view to exploring how pressures for communica-
tive efficiency shape their shared lexicon (i.e. the
D and M the agents agree on).

In the configurations we tested all trajectories
tend to converge towards the configuration D =
[1, 2, 3, 4] and M = [5]. This is as result of the re-
ward function which is maximised at this point for
the reward hyperparameters α = 1.0 and β = 0.01

Table 4: Starting D and M pairs used in RL experi-
ments.

Grammar D M

1 [1,2,3,4] [5,6,7]
2 [1] [2,3,5]
3 [1,5,6] [2,3,4]
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Figure 6: Myopic RL-based Agent optimising configu-
rations over a fixed length episode (8-steps). Each path
is the median of the trajectories that the agent follows
when starting from the same point (marked with an ×).

which we utilise. The morphosyntactic complex-
ity is a complicated function depending on deriva-
tions in the grammar and in general should be non-
convex in its arguments D and M and hence there
could be in general several local optima. However
empirically we only find one within the set of con-
figurations which are reachable within an episode.
We note that this point is the maximum, however
we cannot rule out that better configurations may
exist beyond this horizon. A particular selection
of α and β can be shown to change the position
of this maximum. Considering the local nature of
the optimization by the RL agent, it is somewhat
surprising that it is able to navigate the space of
configurations without getting stuck in a local max-
imum. This would imply that there is a monotonic
path from the tested configurations to the vicinity
of the maximum. The implication of this obser-
vation is interesting and we leave further analysis
utilising different reward functions to our future
work.

We note that human languages do not tend to
cluster to a single point of the Pareto frontier like
the lexicons our agent finds, but instead present a
sizable variety in terms of lexicons size and even
morphemes that are lexicalized. We hypothesize



that this might be due to the current limitations of
our RL-based approach which does not capture the
different influences that may shape the evolution of
language. Furthermore, our current approach does
not allow for the emergence of some classes of nu-
meral systems e.g. Type 2-Russian (as can be found
in (Denić and Szymanik, 2024)). We are unable to
achieve this representation as it includes numerals
within D and M which are non-sequential which
is unachievable with our current action space.

6 Conclusions and Future Work

Our work serves as an exploration of RL as a
method for the direct optimization of a lexicon
within the context of numeral systems. We have
demonstrated that this is possible and that an RL
agent can learn to manipulate its lexicalisations in
order to find an optimal trade-off between average
morphosyntactic complexity and lexicon size. The
resultant lexicons are comparable to those which
we observe within human numeral systems. A
key enabler of this was a minor modification to a
well-established meta-grammar for expressing nu-
meral systems. Optimization of the existing meta-
grammar produces systems which do not possess
regular recursive structures or forms. Our modi-
fication avoids the aforementioned issues and en-
ables an RL agent to optimize several lexicons to-
wards the Pareto frontier found via this new meta-
grammar. An interesting direction we intend to
explore is how other hyperparameter settings or
other reward functions affect the dynamics of con-
vergence and its final limit. In tandem, we hope
our contributions serve to provide an avenue to
continue to pursue and develop mechanistic expla-
nations for recursive numeral systems.

A limitation of our work is that our recursive nu-
meral systems are to subject to pressures that arise
from communication. Communication may instil
a bias towards shorter, more compact terminology
and explain the deviation between the terms that
we observe in our meta-grammar and the terms that
are used in natural language. We intend to extend
our model to consider the multi-agent nature of
communication in order to place our work in the
same information-theoretic framework of (Kemp
and Regier, 2012; Gibson et al., 2017; Zaslavsky
et al., 2019) and (Carlsson et al., 2021) and explore
how pressure for efficient communication shapes
the resultant languages. The inclusion of multiple
agents culminates in a more complex setting where

consideration must be given to the implication of
modifying a shared lexicon. For example, the intro-
duction of a new morpheme may cause a temporary
reduction in informativeness which must be taken
into account.
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