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Abstract

Most work in explainable artificial intelligence
(XAI) focuses on causes for predictions from
machine-learning (ML) based models. In other
words, XAI typically aims to address questions
such as “Why does the model predict that I
have a high risk of developing heart disease?”.
To investigate what kinds of explanations that
humans actually communicate in ML-related
contexts, we collect human dialogues revolv-
ing around model predictions. A preliminary
analysis reveals that causes for predictions is in-
deed a common topic, but that the meaning (or
nature) of target labels is even more frequent.
This finding suggests that conversationally ex-
plainable AI systems may need to be able to
“teach” human users the meaning of words or
expressions that they use and to repair potential
problems related to semantic coordination of
such words.

1 Introduction

Most research in explainable artificial intelligence
(XAI) focuses on causes for predictions (see e.g.
(Barredo Arrieta et al., 2020; Miller, 2019)). In
principle, this enables XAI methods to address
questions such as “Why does the model predict
that I have a high risk of developing heart disease?”
(request for local explanation of specific prediction)
or “How does the model predict risk of develop-
ing heart disease?” (request for global explana-
tion of how the model generally makes its predic-
tions). However, not much work has studied what
kinds of explanations that humans actually commu-
nicate in scenarios involving predictive or statistical
modeling. Previous work has collected dialogues
where the explainer is a dialogue system (Kuźba
and Biecek, 2020) or a researcher acting as the sys-
tem (Hernandez-Bocanegra and Ziegler, 2021), as
well as explanatory dialogues that do not specifi-
cally involve statistical estimates (Moore and Paris,
1993; Madumal et al., 2019; Alshomary et al., 2024;

Fisher et al., 2023; Götze and Schlangen, 2023). As
far as we are aware, no previous work has collected
explanatory dialogues revolving around model pre-
dictions, with human participants in both roles.

2 Data collection

Our web-based experiment (Berman and Howes,
2022) collects human dialogues about model pre-
dictions of personality traits (openness, extraver-
sion, etc.) from music preferences. Firstly, partici-
pants listen to 30-second excerpts of 10 tracks and
rate them on a 4-point hedonic scale (like/dislike
slightly/very much). In a second part, participants
are paired up with each other and are randomly
assigned the role of either explainee or explainer.
They then chat with each other using an interface
where explainers, but not explainees, are given ac-
cess to prediction results (estimated personality
traits), information about the statistical model, de-
scriptions of personality traits, global and local
feature contribution plots, and feature values (plots
of the explainee’s music preferences). In a third
part, participants are once again paired up with
each other, but this time in opposite roles.

The experiment does not involve any personal
data such as participant’s names. Participants were
recruited via various channels such as the univer-
sity’s web page, newsletters, posters at campus, and
social media.

3 Preliminary results

A preliminary analysis of 27 collected dialogues re-
veals that causes for predictions is a fairly common
explanandum category. For example, in one of the
dialogues, an explainee utters: “I really want to
know what these results are based on...why am I so
low on openness? kind of disagree with that”. How-
ever, the meaning/nature of target label is an even
more frequent topic. This latter kind of explanatory
exchange constitutes a form of semantic coordina-
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tion (Larsson, 2008; Larsson and Myrendal, 2017),
where the meaning of specific words or expres-
sions form a topic of conversation. Observed strate-
gies for initiating coordination include signaling
non-understanding (“I think about the word agree-
ablenes, don’t know what to think about that”),
inquiring about implications (“Is a lower score on
agreeableness a negative quality to have?”), raising
explicit word meaning questions (“what do ’agree-
ableness’ mean?”) and self-initiation (explaining
target labels unpromptedly). Strategies for repair-
ing or apprehending coordination problems (i.e.
explaining target labels) include copying content
from the web interface (“Openness to experience
describes a dimension of cognitive style that distin-
guishes imaginative, creative people from down-to-
earth, conventional people.”), elaborating implica-
tions (“You seem to be a person that seldom end
up in conflicts, that is easy to do business with”,
“Looks like your openness score would make you
both creative and down to earth”), and referring to
a higher-order concept (“Do you know about the
OCEAN scale?”).

Below is an example of an excerpt where an
explainee (A) and explainer (B) together coordinate
the meaning of one of the target labels:

A: I think about the word agreeablenes,
don’t know what to think about that :)

B: You probably are not so concerend with
working together with other people eithr

A: Maybe not, but I do every day and have
done so for many years

B: It means cooperation with others and con-
cern with social harmony

4 Discussion and future work

The collected data indicates that meaning of target
labels is an important topic in human conversations
about model predictions. Although the collected
dataset is small and only concerns a single task, it
does not seem far-fetched to expect similar find-
ings for other tasks and in other domains, at least
when explainees are not domain experts. The find-
ing also resonates with the frequently cited XAI
question bank (Liao et al., 2020), which includes
“What does the system output mean?” as one of the
prototypical questions that explainees may want to
ask about an AI.

The results suggest that conversationally explain-
able AI systems may need to be able to “teach” their
human users the meaning of terms or expressions

used by the system and to repair potential coordi-
nation problems that emerge during the interaction.
Future work will need to investigate how an AI sys-
tem might explain meaning of target labels without
producing presupposition violations that could po-
tentially give users an inaccurate mental model of
the system’s capabilities. For example, if an AI
system explains what agreeableness means, this
might presuppose that a predictive model trained
on tabular data has such knowledge, when in fact
the model only learns correlations from linguisti-
cally unlabeled data distributions. In other words,
to avoid presupposition violations, the linguistic de-
sign of such explanations may need to be carefully
crafted (Berman, 2024). Furthermore, interesting
challenges are raised by the potential need to se-
mantically coordinate vague and context-sensitive
explanatory expressions. For example, if an AI
explains a prediction by stating that a person likes
loud music (Berman, forthcoming), this may raise
the question what the system means by “loud” (in
this context). Depending on the type of predictive
model, it may not be evident how to best answer
such a question.
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