
Modern Type Theoretical semantics: Reasoning using
proof-assistants

Stergios Chatzikyriakidis (based on joint work with Zhaohui Luo)

March 9, 2016

S. Chatzikyriakidis CLASP seminar 1/98

Interactive theorem provers

Started in the early 60s

◮ The need for formally verified proofs
◮ The AUTOMATH project (De Bruijn 1983, 1967 onwards)

⋆ Aim: a system for the mechanic verification of mathematics
⋆ Several AUTOMATH systems have been implemented
⋆ The first system to practically exploit the Curry-Howard isomorphism

S. Chatzikyriakidis CLASP seminar 2/98

Interactive theorem provers

Proof-assistant technology has gone a long way since then
◮ Proliferation of proof-assistants implementing various logical

frameworks
⋆ Classical logics/set theory (Mizar, Isabelle)
⋆ Constructive Type Theories (MTTs, Coq, Lego, Plastic, Agda among

other things)

◮ Important verified proofs
⋆ Four Colour Theorem (Gonthier 2004, Coq)
⋆ Jordan curve theorem (Kornilowicz 2005, Hales 2007, Mizar and HOL

respectively)
⋆ The prime number theorem (Avigad et al 2007, Isabelle)
⋆ Feit-Thompson theorem (Gonthier et al. 2012, Coq (170.000 lines of

code!))

◮ Other uses: Software verification
⋆ CompCert: an optimized, formally verified compiler for C (Leroy 2013,

Coq)
⋆ Coq in Coq (Barras 1997): Construct a model of Coq in Coq and show

all tactics are sound w.r.t this model (verify the correctness of a system
using the system itself)

S. Chatzikyriakidis CLASP seminar 3/98

The Coq proof-assistant

INRIA project

◮ Started in 1984 as an implementation of Coquand’s Calculus of
Constructions (CoC)

◮ Extension to the Calculus of Inductive Constructions (CiC) in 1991
◮ Coq offers a program specification and mathematical higher-level

language called Gallina based on CiC
◮ CiC combines both expressive higher-order logic as well as a richly

typed functional programming language

Winner of the 2013 ACM software system award

A collection of 100 mathematical theorems proven in Coq:
http://perso.ens-lyon.fr/jeanmarie.madiot/coq100/

S. Chatzikyriakidis CLASP seminar 4/98

The Coq proof-assistant

An ideal tool for formal verification
◮ Powerful and expressive logical language
◮ Consistent embedded logic
◮ Built-in proof tactics that help in the development of proofs
◮ Equipped with libraries for efficient arithmetics in N, Z and Q, libraries

about lists, finite sets and finite maps, libraries on abstract sets,
relations and classical analysis among others

◮ Built-in automated tactics that can help in the automation of all or
part of the proof process

◮ Allows the definition of new proof-tactics by the user
⋆ The user can develop automated tactics by using this feature

S. Chatzikyriakidis CLASP seminar 5/98

Installing Coq

Easy to install (http://coq.inria.fr/download)

Use the installer
◮ The code in this tak is compatible with the earlier version of Coq 8.3

rather than 8.4
⋆ 8.4 version has some minor improvements that lead to minor

incompatibilities with the earlier version
⋆ Download the earlier version if you want to directly use the code (

version 8.3) (http://coq.inria.fr/coq-8.3)
⋆ If you feel adventurous, read the differences pertaining to the new

version, and revise code accordingly
⋆ You can get Coq via Macports or HomeBrew
⋆ There is a for emacs, Proof General (provides support for a number of

proof-assistants incl. Coq, Isabelle, HOL among others)

S. Chatzikyriakidis CLASP seminar 6/98

Theorem proving in Coq

Coq is an interactive theorem prover: the user drives the prover to the
proof

◮ How it works: A theorem is declared with the command Theorem,
followed by the name of the theorem we want to prove, followed by the
theorem itself

⋆ Theorem x : a ⇒ b
⋆ The goal is to reach a complete proof using the proof tactics provided

by the assistant

S. Chatzikyriakidis CLASP seminar 7/98

Basics of Coq

Typing

◮ All objects have a type in Coq

⋆ All the pre-defined objects in Coq can be checked for type using the
command check

⋆ For example the type nat of natural numbers has type Set (nat : Set),
while natural numbers like 1,2,3 and so on, type nat (1 : nat).

Coq < Check nat.

nat:Set

Coq <Check 1.

1:nat

Function application
◮ Applying a function to an argument

⋆ The addition function is of type nat → nat → nat, takes two nat
arguments and also returns a nat argument

Coq < Check plus.

plus:nat -> nat -> nat

Coq < Check plus 3 4.

3 + 4:nat

S. Chatzikyriakidis CLASP seminar 8/98

Basics of Coq

Declarations
◮ Associating a name with a specification
◮ Specifications classify the object declared

⋆ Well-founded typing hierarchy of sorts: Prop, Set and Type, logical
propositions, mathematical collections of objects and abstract types

⋆ We can declare new types either by Parameter or via Variable
⋆ We can restrict the scope by using local contexts, using section.

Coq < Variable H:Set.

H is assumed

Warning: H is declared as a parameter because it is at

a global level

Coq < Parameter H:Set.

H is assumed

Coq < Section section.

Coq < Variable H1:Set.

H1 is assumed

◮ The type Type is of type Type (but of a higher universe,
Typen : Typen+1) Girard’s paradox is avoided, there is no impredicativity

S. Chatzikyriakidis CLASP seminar 9/98

Basics of Coq

Definitions

◮ Definition ident : term1 := term2
◮ It checks that the type of term2 is definitionally equal to term1, and

registers ident as being of type term1, and bound to value term2.
◮ We can define a constant three to be the successor of the successor of

the successor of 0 (the successor is pre-defined).

Definition three:nat:= S (S(S((0))).

◮ Coq can infer the type in these cases, so it can be dropped:

Definition three:= S (S(S((0))).

◮ Defining functions
⋆ Square number function
⋆ Uses λ abstraction. Takes a nat to return a nat

Definition square:= fun n:nat=> n*n.

S. Chatzikyriakidis CLASP seminar 10/98

Basics of Coq

Inductive types

◮ Inductive types without recursion

⋆ The inductive type for booleans
⋆ Pre-defined in Coq in the following manner:

Coq < Inductive bool : Set := true | false.

bool is defined

bool_rect is defined

bool_ind is defined

bool_rec is defined

⋆ The above introduces a new Set type, bool . Then the constructors of
this Set true and false are declared, and three elimination rules are
provided, allowing to reason with this type of types

⋆ The bool ind combinator for example allows us to prove that every
b : bool is either true or false (more on this later)

S. Chatzikyriakidis CLASP seminar 11/98

Basics of Coq

Inductive types

◮ Inductive types with recursion: Natural numbers

Coq < Inductive nat : Set :=

| O : nat

| S : nat -> nat.

nat is defined

nat_rect is defined

nat_ind is defined

nat_rec is defined

◮ Recursive types are closed types
⋆ Their constructors define all the elements of that type
⋆ Peano’s induction axiom (nat ind) as well as general recursion is

defined (nat rec)

S. Chatzikyriakidis CLASP seminar 12/98

An example of a simple proof

Transitivity of implication: (P → Q) → (Q → R) → (P → R)

What is needed before we get into proof-mode
◮ Declaring P ,Q,R as propositional variables (only elements of type

Prop can be the arguments of logical connectives)

Variables P Q R:Prop.

◮ With this declaration at hand, we can get into proof-mode:

Theorem trans: (P->Q)->(Q->R)->(P->R)

◮ intro tactic: introduction of (P → Q), (Q → R) and P as assumptions

1 subgoal

H : P -> Q

H0 : Q -> R

H1 : P

============================

R

S. Chatzikyriakidis CLASP seminar 13/98

An example of a simple proof in Coq

The apply tactic: It takes an argument which can be decomposed
into a premise and a conclusion (e.g. Q → R), with the conclusion
matching the goal to be proven (R), and creates a new goal for the
premise.

H : P -> Q

H0 : Q -> R

H1 : P

============================

Q

We now use apply for H

H : P -> Q

H0 : Q -> R

H1 : P

============================

P

S. Chatzikyriakidis CLASP seminar 14/98

An example of a simple proof in Coq

The tactic assumption: matches a goal with an already existing
hypothesis. Applying assumption completes the proof

1 subgoal

H : P -> Q

H0 : Q -> R

H1 : P

============================

P

trans < assumption.

Proof completed.

S. Chatzikyriakidis CLASP seminar 15/98

An example of a more complicated proof in Coq
Peirce’s law: If the law of the excluded middle holds, then so is the
following: ((A → B) → A) → A

◮ We formulate in Coq notation:

Definition lem:= A \/ ~ A.

Definition Peirce:= ((A->B)->A)->A.

Theorem lemP: lem -> Peirce.

◮ We first use unfold to unfold the definitions. So lem and Peirce will be
substituted by their definition
lemP < unfold lem.

1 subgoal

============================

A \/ ~ A -> Peirce

lemP < unfold Peirce.

1 subgoal

============================

A \/ ~ A -> ((A -> B) -> A) -> A

S. Chatzikyriakidis CLASP seminar 16/98

An example of a more complicated proof in Coq

Applying intro twice (we can use intros to apply intro as many times
possible)

lemP < intros.

1 subgoal

H : A \/ ~ A

H0 : (A -> B) -> A

============================

A

We can now use the elim tactic on H, basically using the elimination
rules for disjunction:

H : A \/ ~ A

H0 : (A -> B) -> A

============================

A -> A

subgoal 2 is: ~A -> A

S. Chatzikyriakidis CLASP seminar 17/98

An example of a more complicated proof in Coq

We use intro and assumption and the first subgoal is proven

lemP < intro. assumption.

H : A \/ ~ A

H0 : (A -> B) -> A

============================

~A -> A

Intro and apply H0

lemP < intro. apply H0.

H : A \/ ~ A

H0 : (A -> B) -> A

H1 : ~ A

============================

A -> B

S. Chatzikyriakidis CLASP seminar 18/98

An example of a more complicated proof in Coq

Intro and absurd A:

lemP < absurd A.

2 subgoals

H : A \/ ~ A

H0 : (A -> B) -> A

H1 : ~ A

H2 : A

============================

~ A

subgoal 2 is:

A

S. Chatzikyriakidis CLASP seminar 19/98

An example of a more complicated proof in Coq

Absurd A proves the goal from False and generates to subgoals, A
and not A

Using assumption twice, the proof is completed

lemP < assumption. assumption.

1 subgoal

H : A \/ ~ A

H0 : (A -> B) -> A

H1 : ~ A

H2 : A

============================

A

Proof completed.

S. Chatzikyriakidis CLASP seminar 20/98

Other useful proof tactics

We discuss some of the basic predefined Coq tactics

Following Chipalla (2014) we categorize these according to the
connective involved in each case

◮ Conjunction
⋆ Elim: Use of the elimination rule
⋆ Split: Splits the conjunction into two subgoals
⋆ Examples:

Theorem conj: A/\B->A.

Theorem conj: B/\(A/\C)->A/\B.

◮ Disjunction
⋆ Elim: Elimination rule
⋆ Left,Right: Deals with one of the two disjuncts

Theorem disj: (B\/(B\/C))/\(A\/B)->A\/B.

◮ Implication (⇒) and Forall
⋆ Intro(s)
⋆ Apply

S. Chatzikyriakidis CLASP seminar 21/98

Other useful proof tactics

We discuss some of the basic predefined Coq tactics

Following Chipalla (2014) we categorize these according to the
connective involved in each case

◮ Existential

⋆ exists t: Instantiates an existential variable
⋆ elim: Elimination rule

Theorem NAT: exists x: nat, le 0 x.

◮ Equality (=)
⋆ reflexivity, symmetry, transitivity : The usual properties of equality
⋆ congruence: Used when a goal is solvable after a series of rewrites
⋆ rewrite, subst:Rewrites an element of the equation with the other

element of the equation. Subst is used when one of the terms is a
variable

S. Chatzikyriakidis CLASP seminar 22/98

Other useful proof tactics - Induction tactics

induction: induction x decomposes the goal statement to a property
applying to x and then applies elim x

elim: Similar tactic, does not add hypotheses in the context

An example using inductive types. We define the inductive type
season, consisting of four members, corresponding to each season:

month1 < Inductive season:Set:= Winter|Spring|Summer|

Autumn.

season is defined

season_rect is defined

season_ind is defined

season_rec is defined

Coq automatically adds several theorems that make reasoning about
the type possible. In the case above these are season rect season ind
and season rec

S. Chatzikyriakidis CLASP seminar 23/98

Other useful proof tactics - Induction tactics

season ind provides the induction principle associated with an
inductive definition. In this case this amounts to:

month1 < Check season_ind.

season_ind

:forall P : season -> Prop,

P Winter -> P Spring -> P Summer ->

P Autumn -> forall s : season, P s

Universal quantification on a property P of seasons, followed by a
succession of implications, each premise being P applied to each of
the seasons. The conclusion says that P holds for all seasons

S. Chatzikyriakidis CLASP seminar 24/98

Other useful proof tactics - Induction tactics

Let us say we want to prove the following:

SEASONEQUAL < Theorem SEASONEQUAL: forall s: season,

s=Autumn\/s=Winter\/s=Spring\/s=Summer.

We apply intro and call elim

s : season

============================

Autumn = Autumn \/ Autumn = Winter \/ Autumn = Spring \/

Autumn = Summer

Winter = Autumn \/ Winter = Winter \/ Winter = Spring

\/ Winter = Summer

Spring = Autumn \/ Spring = Winter \/ Spring = Spring

\/ Spring = Summer

Summer = Autumn \/ Summer = Winter \/ Summer = Spring

\/ Summer = Summer

Can be easily proven using left, right and reflexivity or using auto.

S. Chatzikyriakidis CLASP seminar 25/98

Automation tactics

Tactics that are a combination of more simple tactics, in effect a
macro of tactics

◮ Used to automate parts or the whole proof
◮ Examples of such tactics

⋆ The auto tactic: Provides automation in case a proof can be found by
using any of the tactics:intros, apply, split, left, right and reflexivity

⋆ The eauto tactic: A variant of auto. Uses tactics that are variants of
the tactics used in auto, the only difference being that they can deal
with conclusions involving existentials (for example eapply, functions
like apply but further introduces existential variables)

S. Chatzikyriakidis CLASP seminar 26/98

Automation tactics
An example exemplifying the difference between auto and eauto

◮ We define a predicate nat predicate and then create a theorem:

Parameter nat_predicate: nat->Prop.

Theorem NATPR: nat_predicate(9) -> exists n: nat,

nat_predicate(n).

◮ Due to the existential, auto cannot prove the above, while eauto can

However, the following can be proven by auto as well:

Variable j:nat.

Let h:= j.

Theorem NATPR: nat_predicate(j) -> nat_predicate(h)\/

exists n:nat, nat_predicate(n).

◮ In effect, the existential does not have to be dealt with, only the left
disjunct is used

⋆ Eauto cannot however open up existentials or conjunctions from
context. This is made possible with another tactic called jauto (see
next lecture)

S. Chatzikyriakidis CLASP seminar 27/98

Automation tactics

The tactics tauto, intuition

◮ The first is used for propositional intuitionistic tautologies
◮ The latter for first-order intuitionistic logic tautologies

Coq < Theorem TAUTO: A\/B->B\/A.

1 subgoal

============================

A \/ B -> B \/ A

TAUTO < tauto.

Proof completed.

S. Chatzikyriakidis CLASP seminar 28/98

Imported modules

A number of other more advanced tactics can be used by importing
different Coq packages

◮ E.g. the Classical module can be imported, which includes classical
tautologies rather than intuitionistic

Theorem CLASSICAL: not (not A)-> A.

◮ The Omega module can be used in order to deal with goals that need
Presburger arithmetic in order to be solved

Theorem neq_equiv : forall x:nat, forall y:nat, x <> y <->

◮ Libtactics is a collection of advanced tactics, basically advanced
variations of the standard tactics

⋆ For example, the destructs tactic is the recursive application of the
destruct tactic

Theorem DESTRUCTS: (A/\B/\C/\D)->B.

S. Chatzikyriakidis CLASP seminar 29/98

MTT semantics in Coq

Encoding MTT semantics based on theoretical work using Type
Theory with Coercive Subtyping in Coq

◮ Coq is a natural toolkit to perform such a task
⋆ The type theory implemented in Coq is quite close to Type Theory with

Coercive Subtyping
⋆ Thus, the TT does not need to be implemented!
⋆ What we need, is a way to encode the various assumptions as regards

linguistic semantics and then reason about them

S. Chatzikyriakidis CLASP seminar 30/98

The CN universe

Common nous in MTTs are seen as types rather than predicates

Zhaohui Luo proposed the introduction of a universe of CN
interpretations (Luo 2011, 2012 among others)

◮ A collection of the names of types that interpret common nouns
◮ Coq does not support universe construction

⋆ Only the pre-defined universes can be used
⋆ In this sense, we define CN to be Coq’s pre-defined Set universe

Definition CN:= Set.

Parameters Man Human Animal Object:CN

S. Chatzikyriakidis CLASP seminar 31/98

Subtyping relations

In order for type many-sortedness to have any advantages over more
coarse grained typing (like the e typing in MG), a subtyping
mechanism is needed

◮ We have already seen the use of coercive subtyping as an adequate
subtyping mechanism

◮ Coq uses a similar mechanism (albeit with minor formal differences)
◮ Subtyping in Coq is also based on the notion of coercion.

⋆ An example is shown below:

Axiom MH: Man->Human. Coercion MH: Man>->Human.

Axiom HA: Human->Animal. Coercion HA: Human>->Animal.

S. Chatzikyriakidis CLASP seminar 32/98

Types for verbs

The type of propositions is identified with Prop.
◮ Verbs are function types returning a Prop type once one or more

(depending on valency) arguments have been provided
⋆ However, given type many sortedness the arguments needed for

individual verbs will be dependent on the specific verb in each case
⋆ Thus, Walk will be specified as Animal → Prop while fall as

Object → Prop

Parameter walk: Animal-> Prop.

Parameter fall: Object-> Prop.

S. Chatzikyriakidis CLASP seminar 33/98

Quantifiers, adjectives, adverbs

Following work by Luo (2011, 2012) and Chatzikyriakidis and Luo
(2013a,b,2014), quantifiers are given an inductive type, taking an
A : CN argument and returns the type (A → Prop) → Prop

Adjectives are defined as simple predicates.

VP adverbs are defined as predicate modifiers extending over the
universe CN, while sentence adverbs as functions from propositions to
propositions

Parameter some: forall A:CN, (A->Prop)->Prop

Parameter handsome: Human -> Prop

Parameter slowly: forall A:CN, (A->Prop)->(A->Prop).

Parameter fortunately: Prop ->Prop.

S. Chatzikyriakidis CLASP seminar 34/98

Quantifiers, adjectives, adverbs

More must be said about the lexical semantics of all these categories.

For example, in the case of some the following will be assumed
◮ Same typing but has further information on the lexical semantics of

some (i.e. existential quantification)

Definition some:= fun A:CN, fun P:(A->Prop)=> exists x: A,

P(x).

◮ More will be said about the lexical semantics as we proceed

S. Chatzikyriakidis CLASP seminar 35/98

Adjectival modification using dependent record types

Intersective and subsective adjectival modification have been treated
as involving Σ types.

This is the analysis we follow here
◮ We however follow Luo (2012) and use dependent record types instead

of Σ types (which are equivalent)
⋆ The first projection is declared as a coercion
⋆ Thus, for handsome man, we get the inference man

Record handsomeman:CN:=mkhandsomeman{ c :>Man;_: handsome c }.

S. Chatzikyriakidis CLASP seminar 36/98

Reasoning with NL

As soon as NL categories are defined, Coq can be used to reason
about them

◮ In effect, we can view a valid NLI as a theorem

⋆ Thus, we formulate NLIs as theorems
⋆ The antecedent and consequent must be of type Prop in order to be

used in proof mode
⋆ Thus, the first can be formulated as a theorem, but not the second:

Theorem EX:(walk) John-> some Man (walk).

Theorem WA:walk -> drive.

S. Chatzikyriakidis CLASP seminar 37/98

Reasoning with NL

The same tactics that can be used in proving mathematical theorems
are used for NL reasoning

◮ The aim is to predict correct NLIs while avoiding unwanted inferences

⋆ For example, given the semantics for quantifier some, one can
formulate the following theorem and further try to prove it

Theorem EX: (walk) John-> some Man (walk).

S. Chatzikyriakidis CLASP seminar 38/98

An NLI example

One of the inferences we should be able to get when a proper name
acts as an argument of the verb is one where an element of the same
type as the proper name acts as the argument of the same verb

◮ Basically, from a sentence like John walks, we should infer that a man
walks

◮ We formulate the theorem

Theorem EX: (walk) John-> some Man (walk).

◮ We unfold the definition for some and use intro

EX < intro.

1 subgoal

H : walk John

============================

exists x : Man, walk x

◮ We use the exists tactic to substitute x for John. Using assumption the
theorem is proven

S. Chatzikyriakidis CLASP seminar 39/98

An NLI example

To the contrary, we should not be able to prove the opposite

Theorem EX: some Man (walk) -> (walk) John.

Indeed, no proof can be found in this case.
◮ We unfold some and use intro

EX < intro.

1 subgoal

H : exists x : Man, walk x

============================

walk John

◮ From this point on, we can use any of the elim, induction, case tactics
but at the end we reach a dead end
EX < intro.

1 subgoal

H : exists x : Man, walk x

x : Man

H0 : walk x

============================

walk John

S. Chatzikyriakidis CLASP seminar 40/98

Automation?

From a theoretical point a view, having a system that can reason
about NL semantics in such a straightforward way is already
something

◮ From the practical side however, in order to develop something like this
into a more practical device, automation needs to be possible

⋆ For the simple case we have been discussing, automation is possible
once we unfold the definition for some

⋆ The tactic eauto will solve the theorem in one step

EX< unfold some.

1 subgoal

============================

walk John -> exists x : Man, walk x

EX < eauto.

Proof completed.

⋆ Still, this is not yet full automation. What can we do?

S. Chatzikyriakidis CLASP seminar 41/98

The tactic language Ltac

Besides the predefined tactics offered by Coq or these imported by
various Coq packages, Coq offers a way for the user to define his own
proof-tactics

◮ This is achieved by Ltac

⋆ A programming language inside Coq that can be used to build new
user-defined tactics

⋆ Using Ltac we can define the following tactic that will fully automate
the example we are interested in

Ltac EXTAC:= cbv; eauto.

⋆ The cbv tactic performs all possible reductions using δ, β, ζ and ι
⋆ In our case, δ reduction is applied first unfolding the definition and

then β reduction
⋆ The tactic compute that embodies cbv can also be used

S. Chatzikyriakidis CLASP seminar 42/98

The tactic language Ltac

What we need is automated tactics that work for a range of examples
and not tactics that work on a case by case basis

◮ For example, the tactic EXTAC , though simple enough, has the power
to automate quite a few inferences

⋆ One can further prove:

all Man (walk)->walk John.

all Man (walk)->walk John->some Man (walk).

⋆ Also cases where subtyping is involved, like the following:

all Animal (walk)->walk John.

S. Chatzikyriakidis CLASP seminar 43/98

The tactic language Ltac

However, the following cannot be proven with EXTAC :

all Man (walk)-> some Man (walk).

◮ We get the following error:

Coq < Theorem EX2: all Man (walk) -> some Man (walk).

1 subgoal

============================

all Man (fun x : Man => walk x) -> some Man (fun x : Man =>

walk x)

EX2< EXTAC.

No more subgoals but non-instantiated existential variables:

Existential 1 = ?463 : [H : forall x : Man, walk x |- Man]

◮ This means that eauto did not manage to instantiate an existential,
which was then eliminated by a computation

◮ The solution is to instantiate the value “manually”

S. Chatzikyriakidis CLASP seminar 44/98

The tactic language Ltac

For example, we can substitute x for John using the exists tactic
◮ We can define a similar tactic that instantiates the variable using exists

and then calls EXTAC

Ltac EXTAC1 x:= cbv; try exists x;EXTAC.

◮ The command try + tactic, tries to perform the tactic, and if it fails, it
moves on

◮ This will suffice to prove automatically all the NL examples we have
considered so far

S. Chatzikyriakidis CLASP seminar 45/98

NL Inference

The task of determining whether an NL hypothesis H can be deduced
from an NL premise P
A central task in both theoretical and computational semantics

◮ As Cooper et al. (1996) aptly put it: “inferential ability is not only a
central manifestation of semantic competence but is in fact centrally
constitutive of it”

⋆ Inferential ability as the best way to test the semantic adequacy of NLP
systems

⋆ An adequate NLP system should be able to predict correct inferences
like (1)-(3) without further generating unwanted inferences like (4) or
(5)

(1) John walks and Mary talks ⇒ Mary talks

(2) Some men run fast ⇒ Some men run

(3) John walks ⇒ Some one walks

(4) John walks and Mary talks ; If John walks, Mary talks

(5) No men run fast ; No men run

S. Chatzikyriakidis CLASP seminar 46/98

NL inference platforms: FraCas

Platforms for NLI - The Fracas test suite
◮ Came out of the FraCas consortium, a large collaboration in the 90’s to

create resources for computational semantics
◮ Contains 349 NLIs, with one or more premises

⋆ Categorized by semantic section: e.g. Quantifiers, adjectives temporal
reference etc.

⋆ A number of premises (usually single premised), followed by the
hypothesis in the form of a question

S. Chatzikyriakidis CLASP seminar 47/98

The FraCas test suite

Typical examples

(6) No delegate finished the report.

Did any delegate finished the report on time? [No] (quantifier
section)

(7) Either Smith, Jones or Anderson signed the contract. Did
John sign the contract? [UNK] (plurals)

(8) Dumbo is a large animal. Is Dumbo a small animal? [NO]
(adjectives)

(9) Smith believed that ITEL had won the contract in 1992. Did
ITEL win the contract in 1992? [UNK] (Attitudes)

S. Chatzikyriakidis CLASP seminar 48/98

Formulating the examples

As already said, the examples involve a number of premises, followed
by a question (h).

◮ We reformulate the examples as involving declarative forms in Coq
(this is a usual approach, at least with deep approaches)

⋆ In cases of yes in the FraCas test suite, we formulate a declarative
hypothesis as following from the premise

⋆ In cases of no, we formulate the negation of a declarative hypothesis as
following from the premise

⋆ In cases of UNK, for both the positive and the negated h, no proof
should be found. If it is, we overgenerate inferences we do no want

S. Chatzikyriakidis CLASP seminar 49/98

Formulating the examples

A YES example

(10) A Swede won the Nobel Prize.

Every Swede is Scandinavian.

Did a Scandinavian win the Nobel prize? [Yes, FraCas ex.
3.49]

Theorem SWE:(a Swede)(Won(a Nobel_Prize))->(a

Scandinavian)(Won(a Nobel_Prize)).

S. Chatzikyriakidis CLASP seminar 50/98

Formulating the examples

A NO example

(11) A Swede did not win the Nobel Prize.

Every Swede is Scandinavian.

Did a Scandinavian win the Nobel prize? [No]

Theorem SWE:not((a Swede)(Won(a Nobel_Prize)))->not

(a Scandinavian)(Won(a Nobel_Prize)).

S. Chatzikyriakidis CLASP seminar 51/98

Formulating the examples

An UNK example

(12) A Scandinavian won the Nobel Prize.

Every Swede is Scandinavian.

Did a Swede win the Nobel prize? [UNK, 3.65]

Theorem SWE:(a Scandinavian)(Won(a

Nobel_Prize))->(a Scandinavian)(Won(a Nobel_Prize)).

Theorem SWE:(a Scandinavian)(Won(a Nobel_Prize))->not((a

Scandinavian)(Won(a Nobel_Prize))).

S. Chatzikyriakidis CLASP seminar 52/98

Evaluating against the FraCas test suite - Quantifier

monotonicity

This section involves inferences due to quantifier monotonicity
◮ Upwards monotonicity on the first argument

(13) Some Irish delegates finished the survey on time

Did any delegates finish the survey on time? [YES]

⋆ Standard semantics for indefinites some and any (no presuppositions
encoded)

Definition some:= fun A:CN, fun P:A->Prop=> exists x:A, P(x).

S. Chatzikyriakidis CLASP seminar 53/98

Modification

The examples we are dealing involve instance of adjectival
modification

◮ Irishdelegate in this case says that something is a delegate and
furthermore Irish

◮ We follow the Σ type treatment of adjectives. The first projection, π1
is a coercion

◮ We formulate it in Coq via means of dependent records

Record Irishdelegate:CN:=mkIrishdelegate{c:> Man;_:Irish c}.

⋆ With Delegate : CN and Irish : Object → Prop

S. Chatzikyriakidis CLASP seminar 54/98

Modification

With these assumptions, nothing more is needed
◮ The inference can be proven given the coercion of π1
◮ We formulate the theorem:

Theorem IRISH: (some Irishdelegate(On_time(finish(the

survey)))->(some Delegate)(On_time (finish(the survey))).

compute.intro. elim H.intro.intro.exists x.auto.

◮ Easy to prove. Subtyping does the work. Eliminating H and using intro
we get an x : Irishdelegate that On time(finish(thesurvey))(x)) holds.
Then, given subtyping, Irishdelegate < Delegate via the first projection
π1, we also have that On time(finish(thesurvey))(x)) with x : Delegate

S. Chatzikyriakidis CLASP seminar 55/98

Subtyping again

Other similar examples involve more direct cases of subtyping

(14) A Swede won a Nobel prize

Every Swede is a Scandinavian

Did a Scandinavian win a Nobel Prize? [YES, 3.49]

The above is multi-premised, i.e. more than one premise
◮ We first define Swede and Scandinavian as being of type CN

⋆ This is a case of nominalized adjectives. At least in this guise they
function as CNs. One can give a Unit type capturing both guises (more
on Unit types later)

◮ Note that both arguments of the verb are quantifiers
◮ In order to accommodate this, we have two options

⋆ The first option is to define won as a regular transitive (leaving tense
aside for the moment since it does not play a role in proving the
inference). Then, in order to perform functional application, given the
higher types for quantifiers, one must directly translate to something
like the following: ∃x : Man,∃y : Object,win(x)(y) (scope issues are
not going to be discussed here)

S. Chatzikyriakidis CLASP seminar 56/98

Subtyping again

Alternatively, one can follow the strategy employed by Montague and
type shift the verb, thus lifting to type
((Object → Prop) → Prop) → (Human → Prop)

◮ We exemplify with both alternatives
◮ The most important part in proving the inference is the declaration of a

subtyping relation between Swede and Scandinavian, i.e.
Swede < Scandinavian

Parameter Swede Scandinavian:CN

Won: Object->Human->Prop.

Won: ((Object->Prop)->Prop)->(Human->Prop)

Axiom ss: Swede->Scandinavian.

Coercion ss: Swede >-> Scandinavian.

Theorem SWEDE1: (a Swede)(won (a Nobel_Prize))->(a

Scandinavian (won(a Nobel_Prize)).

Theorem SWEDE2: exists x:Swede, exists y:Nobel_Prize, won(x)(y)->exists

S. Chatzikyriakidis CLASP seminar 57/98

The Swede example

Formulation with the verb type-lifted

SWEDE22<Theorem SWEDE22: (a Swede)(Won2(a Nobel_Prize))->

(a Scandinavian)(won(a Nobel_Prize)).

We first use cbv to unfold the definitions. Then intros:

SWEDE22 < intros.

1 subgoal

H : exists x : Swede,

Won2 (fun P : Object -> Prop => exists x0: Nobel_Prize,

P x0) x

============================

exists x : Scandinavian,Won2 (fun P : Object -> Prop =>

exists x0 : Nobel_Prize, P x0) x

Elimination (elim) can now be used followed by eauto. This suffices
to prove the goal.

S. Chatzikyriakidis CLASP seminar 58/98

The Swede example

Formulation with the verb regularly typed

Theorem SWEDE2: exists x:Swede, exists y:Nobel_Prize,

Won(y)(x)->exists x:Scandinavian, exists y:Nobel_Prize,

won(y)(x).

There are no definitions to unfold and intro cannot apply.

The natural solution is to be use eauto. However, this will give us the
following error:

SWED < eauto.

No more subgoals but non-instantiated existential

variables:

Existential 1 = ?535 : [|- Swede]

Existential 2 = ?536 : [|- Nobel_Prize]

This basically says that non-instantiated variables generated by eapply
have been lost prior to instantiation

S. Chatzikyriakidis CLASP seminar 59/98

The Swede example
The solution is to instantiate these variables

◮ In this sense, we can introduce a number of variables (parameters) of
type Human and a number of variables (parameters) of type Object

◮ We can use one of these variables to instantiate the existentials
◮ Starting with the proof, we basically instantiate both existentials

⋆ We then apply eauto, and the proof is completed (with d : Swede and
n : Scandinavian.

SWED < exists d.

1 subgoal

============================

exists y : Nobel_Prize,

Won1 y d -> exists x : Scandinavian, exists y0 : Nobel_Prize,

Won1 y0 x

SWED < exists n.

1 subgoal

============================

Won1 n d -> exists x : Scandinavian, exists y : Nobel_Prize,

Won1 y x

SWED < eauto.

Proof completed.

S. Chatzikyriakidis CLASP seminar 60/98

A NO example

Monotonicity on the first argument

(15) No delegate finished the report on time

Did any Scandinavian delegate finish the report on time?
[NO, FraCas 3.70]

We try to prove the negation of the hypothesis

Theorem SCAN: (no delegate)(On_time Human(finish(the

report)))->not((some Scandinaviandelegate)(On_time Human

(finish(the report)))).

We apply cbv to unfold the definitions followed by intros

Then, the tactic jauto can be used to complete the proof
◮ jauto is similar to eauto but can further open up conjunctions and

existentials (what we need here)

S. Chatzikyriakidis CLASP seminar 61/98

An UNK example

Again from the monotonicity on the first argument part of the suite

(16) Some delegates finished the survey on time

Did any Irish delegates finish the survey on time? [UNK,
FraCas 3.71]

Indeed the above cannot be proven given that the subtyping relation
is from Irishdelegate < delegate and not the other way around

◮ Basically, we end up with something like the following, and the proof
cannot further continue

IRISH < AUTO.

H0 : exists x : delegate, On_time (finish (the survey)) x

x : delegate

H1 : On_time (finish (the survey)) x

============================

exists x0 : Irishdelegate,

On_time (finish (the survey)) (let (c0, _) := x0 in c0)

◮ Trying to substitute x for x0 fails since the terms are of different types!

S. Chatzikyriakidis CLASP seminar 62/98

Monotonicity on the second argument

In this section we find examples like the following:

(17) Some delegates finished the survey on time

Did some delegates finish the survey? [UNK, FraCas 3.71]

The inference in these cases comes from the veridicality of
VP-adverbials like ontime

◮ In order to capture this, we will have to see how VP veridical adverbials
can be defined.

⋆ In order to do this we first introduce the auxiliary object ADVver , for
veridical VP-adverbials

(18) ADVver : ΠA : cn.Πv : A → Prop. Σp : A → Prop.∀x : A.p(x) ⊃
v(x)

S. Chatzikyriakidis CLASP seminar 63/98

Monotonicity on the second argument

Continued

(19) ADVver : ΠA : cn.Πv : A → Prop. Σp : A → Prop.∀x :
A.p(x) ⊃ v(x)

Note that this is minimally different from
∀A : CN, (A → Prop) → (A → Prop), the only addition is the second
part of the Σ specifying that in case p(x) holds (the clause with the
adverbial), then V (x) also holds (the same sentence without the
adverbial)

Now, we define on time to be the first projection of this auxiliary
object

(20) on time = λA : cn.λv : A → Prop. π1(ADV (A, v))

S. Chatzikyriakidis CLASP seminar 64/98

Monotonicity on the second argument

We formulate these assumptions in Coq

Parameter ADV: forall (A : CN) (v : A -> Prop),sigT

(fun p : A -> Prop => forall x : A, p x -> v x).

Definition on_time:= fun A:CN, fun v:A->Prop=> projT1

(ADV(v)).

Let us see whether this definition suffices to prove the inference in
(19).

IRISH2 < Theorem IRISH2: (some delegate)(on_time

(finish(the survey)))->(some delegate)((finish

(the survey))).

S. Chatzikyriakidis CLASP seminar 65/98

Monotonicity on the second argument

Continued

We unfold the definitions and use destruct for ADV (basically it
unfolds the definition for ADV)

IRISH2 < cbv. intro. destruct ADV in H.

1 subgoal

x : Human -> Prop

f0 : forall x0 : Human, x x0 -> finish (the survey) x0

H : exists x0 : delegate, x x0

============================

exists x0 : delegate, finish (the survey) x0

We apply induction or elim to H
◮ The difference between the two is that induction will add the inductive

hypotheses into the context while elim will not
◮ Applying eauto after this, will complete the proof

S. Chatzikyriakidis CLASP seminar 66/98

A note on veridical adverbs/adverbials

The way proposed to capture veridicality can be generalized to all VP
adverbs/adverbials.

◮ For example if one is interested in getting the veridicality inferences
right, ignoring other issues pertaining to the lexical semantics of each
adverbial, then the auxiliary object can be used in all these cases

◮ Thus, adverbs like slowly, fast etc. can given a similar definition to
on time

(21) advver = λA : cn.λv : A → Prop. π1(ADVver (A, v))

◮ A similar strategy can be used for veridical sentence adverbs. We first
define an auxiliary object:

(22) ADVSver : Πv : Prop. Σp : Prop.p ⊃ V

◮ Then veridical sentence adverbs/adverbials like fortunately, ironically
can be defined as:

(23) advSver = λv : Prop. π1(ADVSver (v))

S. Chatzikyriakidis CLASP seminar 67/98

A note on veridical adverbs/adverbials

We can check this in Coq

Coq < Theorem FORT: fortunately (walk John)-> walk John

1 subgoal

============================

fortunately (walk John) -> walk John

We unfold the definitions and apply destruct to ADVS .

FORT < cbv. destruct ADVS.

x : Prop

w : x -> walk John

============================

x -> walk John

Using assumption will complete the proof

S. Chatzikyriakidis CLASP seminar 68/98

Cases with more premises

Example cases involving more than one premise

(24) Each European has the right to live in Europe

Every European is a person

Every person who has the right to live in Europe can travel
freely within Europe

Can each European travel freely within Europe? [Yes, FraCas
3.20]

For reasons of brevity some elements will be treated
non-compositionally

◮ But: only those that do not play any role in inference
◮ Thus, to leave in Europe will be assumed as a single lexical item, since

its treatment does not play any role in the specific inference
⋆ Interesting case: Does each european hat the right to live in Europe

imply that each European has the right to live?

S. Chatzikyriakidis CLASP seminar 69/98

Cases with more premises

We assume to live to be a regular predicate. Then, we further
assume that in Europe, freely and within Europe to be predicate
modifiers

◮ It is not difficult to give entries for prepositions in and within
separately, but we will keep it simple in this case

Parameter in_Europe: forall A:CN, (A->Prop)->(A->Prop).

Parameter can: forall A:CN, (A->Prop)->(A->Prop).

Parameter travel: Object->Prop.

Parameter freely: forall A:CN, (A->Prop)->(A->Prop).

Parameter within_Europe: forall A:CN, (A->Prop)->(A->Prop).

S. Chatzikyriakidis CLASP seminar 70/98

Cases with more premises

Let us formulate the example:
◮ The first premise is straightforward
◮ The second premise is encoded as a coercion and thus does not have to

be present in the proof explicitly
◮ The third premise is an implication relation (if a person... then)
◮ Careful with the parentheses: the above two premises must imply the

conclusion

Theorem EUROPEAN: ((each European)(have

(the righttoliveinEurope))/\forall x:person, ((have

(the righttoliveinEurope)x)->Can (within_Europe(freely

(travel)))x))->(each European)(Can (within_Europe(freely

(travel)))).

◮ Once formulated correctly, it is to prove
◮ Using cbv to unfold the definitions, we can use intuition and complete

the proof

S. Chatzikyriakidis CLASP seminar 71/98

One further example - at least two

We define at least two as follows:

Definition at_least_two:= fun A:CN, fun P:A->Prop=>exists

exists y: A, P(x)/\(P(y))/\ not(x=y).

With this one can deal with inferences like the following:

(25) At least two female commissioners spent time at home

At least two commissioners spent time at home [Yes, FraCas
3.63]

S. Chatzikyriakidis CLASP seminar 72/98

Adjectives section

The adjectival class is notoriously non-homogeneous and a rather
problematic class

◮ Behaviour in terms of inference depends on the specific adjective
⋆ The FraCas test suite uses a somehow different terminology than that

usually found in the literature
⋆ Affirmative/non-affirmative distinction: This is basically the subsective,

non-subsective distinction in mainstream terminology.
a. Affirmative: Adj(N)(x) ⇒ N(x)
b. Non-affirmative: Adj(N)(x)⇒ ¬ N(x) or undefined

S. Chatzikyriakidis CLASP seminar 73/98

Affirmative adjectives

The Σ type account for adjectives suffices

(26) John has a genuine diamond

Does John have a diamond? [Yes, FraCas 3.197]

Let us formulate the theorem

Theorem GENUINE: (a genuine_diamond)(has John)->

(a diamond)(has John).

We unfold the definitions, use intros, elim H and eauto. The proof is
completed

GENUINE < cbv. intros. elim H. eauto.

Proof completed.

In a more economical way, cbv and jauto will also suffice to complete
the proof

S. Chatzikyriakidis CLASP seminar 74/98

Opposites

In this category, we find opposite adjectives like small/large in the
FraCas test suite

◮ What we want to get are the following inferences

(27) Small(N) ⇒ ¬ Large(N).

Large(N) ⇒ ¬ Small(N)

¬ Small(N) ; Large(N).

¬ Large(N) ; Small(N)

◮ These are a little bit tricky to get
⋆ The problem is that there are other sizes than a binary opposition

small-large, e.g. normalsized items
⋆ We can use this intuition to find a way out of the problem
⋆ First define the element that its negation is implied by the other, i.e.

large in our case
⋆ We just give a regular predicate type for large
⋆ Now, small is going to be defined as not being large AND not being

normalsized (in fact additional sizes can be introduced, depends on the
sizing granularity one assumes)

S. Chatzikyriakidis CLASP seminar 75/98

Opposites

The definition for small

Definition small:= fun A:CN, fun a:A=> not (large (a)

/\ not (normalsized (a)).

Checking against the examples

(28) Mickey is a small animal

Is Mickey a large animal? [No, FraCas 3.204)

This is easily proven. We want to prove its negation

Theorem MICKEY: (Small Animal Mickey) ->not(Large Animal

Mickey).

Unfolding the definitions, intros, elim and eauto or just cbv and jauto
will complete the proof

◮ Note how powerful jauto is. We are pretty much able to complete the
proof in two steps (almost automation (we will exploit jauto when
developing automated tactics))

S. Chatzikyriakidis CLASP seminar 76/98

Opposites

The next example from FraCas shows an inference that we should not
get, i.e. ¬ large ⇒ small

(29) Fido is not a large animal

Is Fido a small animal? [UNK, FraCas 3.207)

We formulate the theorem

Theorem FIDO: not(Large Animal Fido) ->Small Animal Fido.

We cannot complete the proof

The same goes for the same theorem with the implicatum negated

S. Chatzikyriakidis CLASP seminar 77/98

Comparison classes

Adjectives that assume a comparison class like for example small/big
(small for an N, big for an N) and adjectives that do not like
four-legged

◮ Let us see cases that do not assume a comparison class like four-legged
⋆ We assume a simple predicate type Animal → Prop
⋆ Let us see a FraCas example

(30) Dumbo is a four-legged animal

Is Dumbo four-legged? [Yes, FraCas 3.203)

⋆ We formulate the theorem (avoiding a discussion on how the copula
should be treated here if at all)

Theorem dfdss:exists x:Animal, four_legged(x)/\Dumbo=x->

four_legged(Dumbo).

⋆ We substitute Dumbo for x and use jauto. This suffices to complete
the proof

S. Chatzikyriakidis CLASP seminar 78/98

Comparison classes

Adjectives like big/small assume a comparison class
◮ The idea is that something like big elephant, means big for an elephant

but not big in general
⋆ This is basically the subsective class of adjectives where the adjective

noun combination implies the noun only (e.g. skilful surgeon(x) ⇒

surgeon(x))
⋆ Chatzikyriakidis and Luo (2013) deal with these types of adjectives by

introducing a polymorphic type extending over the cnuniverse

(31) ΠA : CN.A → Prop

⋆ The idea is that typing is dependent on the choice of A. If A is of type
Animal then the type will be Animal → Prop, if A is of type Human,
the typing would be Human → Prop and so on

S. Chatzikyriakidis CLASP seminar 79/98

Comparison classes

This polymorphic type along with the lexical semantics given for
small will predict the correct inferences

◮ Consider the following example

(32) All mice are small animals

Mickey is a large mouse

Is Mickey a large animal? [No, FraCas 3.210)

◮ We formulate the theorem

Theorem MICKEY2: (all Mouse (Small Animal)/\ Large Mouse

Mickey)->not(Large Animal Mickey)

◮ We unfold the definitions and apply intro, followed by two applications
of induction or destruction of H

◮ In the second use, we have to introduce the value for x ourselves,
Mickey in our case. Otherwise we can use edestruct or einduction

S. Chatzikyriakidis CLASP seminar 80/98

Comparison classes

Continued

H : forall x : Mouse,(Large Animal x -> False) /\

(Normalsized Animal x -> False)

H0 : Large Mouse Mickey

H1 : Large Animal Mickey -> False

H2 : Normalsized Animal Mickey -> False

============================

Large Animal Mickey -> False

Applying assumption completes the proof

The other examples in the section can be proven in a similar way

S. Chatzikyriakidis CLASP seminar 81/98

Comparatives

Two ways to deal with comparatives: One without measures, one
with measures

◮ Both proposals were put forth in Chatzikyriakidis and Luo (2014)
◮ The examples in the test suite do not need the explicit introduction of

measures so we will concentrate on the approach without measures
⋆ The same of idea of using an auxiliary object first is used. Thus, in the

case of SMALLER THAN one can define the following:

(33) SHORTER THAN : Σp : Human → Human →

Prop. ∀h1, h2, h3 : Human. p(h1, h2) ∧ p(h2, h3) ⊃
p(h1, h3) ∧ ∀h1, h2 : Human.p(h1, h2) ⊃ short(h2) ⊃ short(h1)

(34) shorter than = π1(SHORTER THAN)

⋆ This basically captures the transitive properties of comparatives as well
as the fact that an x being A er than something does not mean that
this x is also A (being shorter than something does not guarantee
shortness)

⋆ It does however just in case the y that x is in a A er relation with, is A

S. Chatzikyriakidis CLASP seminar 82/98

Comparatives

Let us see an example

(35) The PC-6082 is faster than the ITEL-XZ

The ITEL-xz is fast

Is the PC-6082 fast? [Yes, FraCas 3.220)

We define faster than in the sense described

Parameter FASTER_THAN : forall A : CN, {p : A -> A ->

Prop & forall h1 h2 h3 : A, (p h1 h2 /\ p h2 h3 ->

p h1 h3) /\ (forall h4 h5 : A, p h4 h5 -> Fast1 A h4 ->

Fast1 A h5)}.

Definition faster_than:= fun A:CN=>projT1 (FASTER_THAN A).

With this, examples like (35) can be proven

More on comparatives and inference in Chatzikyriakidis and Luo
(2014)

S. Chatzikyriakidis CLASP seminar 83/98

Epistemic, Intensional and Reportive Attitudes

Section on the FraCas dealing with verbs that presuppose the truth of
their propositional complement (e.g. know) and verbs that do not
(e.g. believe)

◮ For verbs like believe just a typing with no additional semantics will do

(36) believe : Prop → Human → Prop

⋆ For a treatment of belief intensionality in MTTs, see Ranta (1994),
Chatzikyriakidis and Luo (2013), Chatzikyriakidis (2014)

◮ For verbs that presuppose the truth of their complement, we can use a
strategy similar to the one used for veridical adverbs

◮ We define an auxiliary object first and then the lexical entry

(37) KNOW = Σp : Human → Prop → Prop. ∀h : Human∀P :
Prop. p(h,P) ⊃ P

know = π1(KNOW)

S. Chatzikyriakidis CLASP seminar 84/98

Epistemic, Intensional and Reportive Attitudes

Examples like the following can be treated:

(38) John knows that Itel won the contract

Did Itel win the contract? [Yes, FraCas 3.334]

(39) Smith believed that Itel had won the contract Did Itel win the
contract? [UNK, FraCas 3.335]

Theorem KNOW:know John((Won1 (the Contract) ITEL))->

(Won1 (the Contract) ITEL) .

We unfold the definitions, destruct the auxiliary object and then use
eapply

S. Chatzikyriakidis CLASP seminar 85/98

Plurals

The section on plurals in the FraCas contains various subsections

Conjoined plurals. Examples like the following

(40) Smith, Jones and Anderson signed the contract

Did Jones sign the contract? [Yes, FraCas 3.81]

We can define conjunction using the same technique of using an
auxiliary item

◮ The following proposal was put forth in Chatzikyriakidis and Luo
(2014) for the three place conjunction (see the paper on how to
propose a generalized n-ary conjunction)

(41) AND3 : ΠA : LType. Πx , y , z : A. Σa : A. ∀p : A →

Prop. p(a) ⊃ p(x) ∧ p(y) ∧ p(z).
and3 = λA : LType.λx , y , z : A. π1(AND3(A, x , y , z))

S. Chatzikyriakidis CLASP seminar 86/98

Plurals

We formulate these assumptions in Coq

◮ We use Type instead of Ltype given that universe construction is not
an option in Coq

◮ We these assumptions we can deal with examples like (42)
◮ We formulate the theorem

Theorem CONJ:(Signed(the Contract)(and3 Smith Jones

Anderson)-> (Signed(the Contract)Smith)).

◮ We unfold the definitions and destruct AND3

x : Man

a : forall p:Man->Prop,p x->p Smith/\ p Jones /\ p Anderson

============================

Signed (the Contract)x->Signed(the Contract) Smith

◮ We use apply a and then eauto to complete the proof
◮ Similar entries can be assumed for disjunction

S. Chatzikyriakidis CLASP seminar 87/98

Plurals

Dependent plurals

(42) All APCOM managers have company cars

John is an APCOM manager

Does John have a company car? [Yes, FraCas 3.2.4)

Again, we introduce some form non-compositionality for APCOM
managers and company cars, since compositionaliity of these
expressions does not play any role in the proof

◮ The semantics given for all guarantee the completion of the proof

S. Chatzikyriakidis CLASP seminar 88/98

Temporal reference

We introduce a simple model of tense

◮ We introduce first the parameter Time : Type
⋆ We have a precedence relation ≤ and a specific object now : Time,

standing for ‘the current time’ or the ‘default time’
⋆ We can define Time as an inductive with one of its constructors being

the following:

(43) DATE : date → Time

⋆ Where date consists of the triples (y ,m, d) ranging over integers for
years, months and days respectively

S. Chatzikyriakidis CLASP seminar 89/98

Temporal reference

Now, a present verb will say that the proposition expressed holds at
the default time while a past tense verb at a time prior to the default
time.

◮ A number of inferences can be captured in this way. Let us see one:

(44) ITEL has a factory in Birmingham

Does ITEL currently have a factory in Birmingham? [Yes,
FraCas 3.251]

◮ We define currently to take an argument P : Time → Prop and specify
that P(defaultt), P holds in the default time

◮ The present tense of the verb will also specify that P holds at the
default time.

Definition currently:=fun P : Time -> Prop=> P default_t

Definition Has:=fun (x : Object)(y : Human) (t : Time)=>

Have x y t /\ t = default_t.

S. Chatzikyriakidis CLASP seminar 90/98

Temporal reference

We formulate the theorem (we ignore the adverbial for the moment)

Theorem sCURRENTLY: (Has (a_factory))ITEL t-> currently ((Has

We unfold the definitions and use intros, then we split the goal and
destruct the hypothesis

H : Have a_factory ITEL t

H0 : t = DATE default_y default_m default_d

============================

Have a_factory ITEL (DATE default_y default_m default_d)

subgoal 2 is:

DATE default_y default_m default_d = DATE default_y

default_m default_d

See Chatzikyriakidis and Luo (2014) for more examples

We stop here as regards the phenomena to look at
◮ See Chatzikyriakidis and Luo (2014) for more semantic phenomena e.g.

bare plurals, elementary aspect and collective predication among others

S. Chatzikyriakidis CLASP seminar 91/98

Automation

We have seen that Coq is a powerful tool to reason about NL
semantics

◮ We have seen that using more composite tactics can shorten the proofs,
e.g. using the jauto instead of the eauto tactic in cases of existentials.

⋆ The question is whether we can fully automate our proofs
⋆ It seems that we can, at least for the examples we are dealing
⋆ We have seen that a number of examples can be proven using jauto or

intuition after their definitions are unfolded. We have also seen in the
end that congruence is also a very useful tactic to deal with equalities

⋆ We can define a new composite tactic called AUTO that will basically
formed out of the tactics just mentioned

Ltac AUTO:= cbv delta;intuition;try repeat congruence;

jauto;intuition.

S. Chatzikyriakidis CLASP seminar 92/98

Automation
Using the AUTO tactic

◮ It turns out that AUTO is quite a powerful tactic
⋆ It can actually automate many of the examples we were dealing with

(and most importantly a lot more similar examples)
Theorem EX1:some Man (walk)->(some Human) walk

Theorem EX2: (walk) John-> some Man (walk).

Theorem IRISH: (some Irishdelegate)(On_time(finish(the

survey)))->(some delegate)(On_time (finish(the survey))).

Theorem SWEDE22: (a Swede) (Won2(a Nobel_Prize))->(a

Scandinavian)(Won2(a Nobel_Prize)).#

Theorem SCAN: (no delegate)(On_time Human(finish(the report)))

->not((a Scandinaviandelegate)(On_time Human (finish(the

report)))).

Theorem EUROPE:((each European)(have(the righttoliveinEurope))

/\forall x:person, ((have(the righttoliveinEurope)x)->Can

(within_Europe(freely (travel)))x))->(each European)(Can

(within_Europe(freely(travel)))).

Theorem GENUINE: (a genuine_diamond)(has John)->(a diamond)

(has John).

Theorem MICKEY: (Small Animal Mickey) ->not(Large Animal

Mickey).

S. Chatzikyriakidis CLASP seminar 93/98

Automation

AUTO will fail in cases where destruct is needed, e.g. in the cases for
factive complements, comparatives, conjunction etc.

◮ We can remedy this by introducing a tactic which trie destruct before
calling AUTO (the tactic is a little bit more complex but the details are
not needed here)

Ltac AUTOa x i:= cbv;try destruct x;try intro;

try ecase i; AUTO; try eapply i; try omega; AUTO;

intuition; try repeat congruence; jauto;intuition.

◮ Let us say we want to prove something which needs destruct

Theorem KNOW:know John((Won1 (the Contract) ITEL))->(Won1 (the

ITEL) .

◮ This can be automated with the new tactic now
◮ Now, we can combine the two tactics into one generalized GAUTO

tactic that tries to solve the goal via using one of the two automated
tactics discussed

Ltac GAUTO:= solve[AUTO|AUTOa].

S. Chatzikyriakidis CLASP seminar 94/98

Automation

GAUTO automates most of the proofs
◮ There are some further cases like collective predication that need

additional steps
⋆ Extra AUTO tactics are defined in Chatzikyriakidis and Luo (2014) for

these cases and are then added to GAUTO.
⋆ All the examples discussed in the paper are given automated proofs
⋆ How far can one go with automation?
⋆ Is automation possible when NLIs are longer?

S. Chatzikyriakidis CLASP seminar 95/98

How can we use Coq for CLASP?

What we have is a powerful reasoner implementing a rich type theory
◮ There is a rather straightforward way to encode NL semantics in Coq
◮ One of the options is to output Coq TTR record represenations
◮ This will then can be reasoned about in Coq

Let us see a simple example

S. Chatzikyriakidis CLASP seminar 96/98

A simple TTR example

TTR record types using Coq’s record type mechanism
◮ A simple non-compositional example, taken from Robin’s draft

Definition Ind:=Set.

Parameter man: Ind->Prop.

Parameter donkey: Ind->Prop.

Parameter own: Ind->Ind->Prop.

Record amanownsadonkey : Type := mkamanownsadonkey{ x : Ind;

c1 : man x; y : Ind; c2 : donkey y; c3 : own x y }.

In terms of inference, one can infer any of the fields in case an object
e : amanownsadonkey exists

One can for example infer that there is an x of type Ind that is a man
and similarly that there are x and y of type Ind that stand in an own
relation to each other

◮ If we have records as output or equivalent translations to some logic,
then we can very well use Coq to reason about the semantics

S. Chatzikyriakidis CLASP seminar 97/98

Other semantic frameworks in Coq

Simple neo-Davidsonian Brutus Semantics

S. Chatzikyriakidis CLASP seminar 98/98

