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Fundamentals of Machine Learning for Predictive Data
Analytics. Kelleher, Mac Namee, and D'Arcy. MIT Press

FUNDAMENTALS

MACHINE LRNING

ror PREDICTIVE DATA ANALYTICS

www.machinelearningbook. com


www.machinelearningbook.com

Robert Ross Giancarlo Salton

5/71



» Three get online resources to learn more about deep-learning:
1. Andrej Karpathy's blog available at:
karpathy.github.io
2. Christopher Olah blog (aka colah’s blog) available at:
http://colah.github.io

3. Michael Nielson's online book “Neural Networks and Deep
Learning” available at:

neuralnetworksanddeeplearning.com/
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What is Deep Learning?
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Figure: Deep Learning

1Inspired by slide from Kevin Duh (Deep Learning Tutorial)



Learn Object Models
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Learn Object Parts
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Learn Edge Detectors

Convolutional Deep Belief Networks
for Scalable Unsupervised Learning
of Hierarchical Representations,

Lee et al. In ICML 2009.
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Deep Learning and Language



» Language is sequential and has lots of words.
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Figure: Recurrent Neural Network

hy = ¢((Whn-he—1) + (Wip - x¢))

ye = ¢(Why - hy)
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» An RNN is as deep as your sentence is long.
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Figure: RNN unrolled through time.
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» If you are at time t and you try to backpropogate to time k
you will find that you derivatives become zero (vanishing
gradient)?

» This is because you will have to do t-k multiplications3

» The implication of this is that the input at k will not influence
the output at t

» If you need a long memory to learn you task a standard RNN
won't work!

2or explode (exploding gradient)

When we calculate the derivative of the error with respect to the transition parameters Wy, we need to

apply the Chain Rule (d%f(g (x)) = %(X)f(g (x)) x d%g(x)) to go back through the network k steps

because h; is dependent on hy_1 this results in Wj, being multiplied by itself many times
14/71



> In order for an RNN to have a long memory each cell in the
network needs to learn:

1. when to forget
2. when to write something new to memory
3. when to write something out

» LSTM cells do this by using a gating mechanism based on
component wise multiplication

15/71



& ®

©
i i ;
A £ || A J‘
I

I
(2] ® &)

Figure: The repeating module in a standard RNN contains a single layer.

4

4
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Figure: The repeating module in an LSTM contains four interacting
layers.

5http ://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Figure: The cell state is kind of like a conveyor belt.
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6http ://colah.github.io/posts/2015-08-Understanding-LSTMs/
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fi ft = O'(Wf'[ht,17l't] + bf)

Figure: What information will we throw away from the cell state: the
forget gate.

7
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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ig =0 (Wi-[he—1, 2] + by)
Cy = tanh(We-[hs—1, 2] + be)

Figure: What information will we add to the cell state: the input gate
and calculating a new vector C

8http ://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Ci_y
X +
f‘T “r'%% Co=fexCroy +irx Cy

Figure: Update the cell state: applying our forget and input decisions
9

ghttp ://colah.github.io/posts/2015-08-Understanding-LSTMs/
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ot =0 (Wo [he—1,2¢] + bo)
ht = o¢ x tanh (Ct)

Figure: What should we output: a filtered version of the cell state

10

1
Ohttp ://colah.github.io/posts/2015-08-Understanding-LSTMs/
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» Language is sequential and has lots of words.
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» One-hot (1-of-k)
cat=[000000000100000]
dog=[01000000000000 0]
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» One-hot (1-of-k)
cat=[000000000100000]
dog=[01000000000000 0]

> Dimensionality is the size of the vocabulary

> Representation does not 'naturally’ encode the semantic
relationship between words

24 /71



» Fortunately we use neural networks to learn low-dimensional
word vectors (embeddings) directly from a corpus.

11See inter alia.: A Neural Probabilistic Language Model (Bengio et al., 2003); Natural Language Processing
(Almost) from Scrath (Collobert et al, 2011); Efficient Estimation of Word Representations in Vector Space
(Mikolov et al,. 2013), aka. word2vec (skip-gram and cbow); Glove: Global Vectors for Word Representation
(Pennington et al., 2014)
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» Fortunately we use neural networks to learn low-dimensional
word vectors (embeddings) directly from a corpus.

» How?

11See inter alia.: A Neural Probabilistic Language Model (Bengio et al., 2003); Natural Language Processing
(Almost) from Scrath (Collobert et al, 2011); Efficient Estimation of Word Representations in Vector Space
(Mikolov et al,. 2013), aka. word2vec (skip-gram and cbow); Glove: Global Vectors for Word Representation
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» Fortunately we use neural networks to learn low-dimensional
word vectors (embeddings) directly from a corpus.

» How?

» Train the network to predict the word that is missing from the
middle of an n-gram (or predict the n-gram from the word)
and use the trained network weights to represent the word in
vector space.11

11See inter alia.: A Neural Probabilistic Language Model (Bengio et al., 2003); Natural Language Processing
(Almost) from Scrath (Collobert et al, 2011); Efficient Estimation of Word Representations in Vector Space
(Mikolov et al,. 2013), aka. word2vec (skip-gram and cbow); Glove: Global Vectors for Word Representation
(Pennington et al., 2014)
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“a word is characteriezed by the company it keeps”

— Firth, 1957

“words which are similar in meaning occur in similar contexts’

— Rubenstein & Goodenough, 1965

“a representation that captures much of how words are used in
natural context will capture much of what we mean by
meaning’

— Landauer & Dumais, 1997

26
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12Efficient Estimation of Word Representations in Vector Space (Mikolov etal., 2013)
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Input layer Hidden layer Output layer
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http://wuw.folgertkarsdorp.nl/word2vec-an-introduction/
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WOMAN
/ AUNT

UNCLE

MAN

QUEEN

KING

QUEENS

KINGS

QUEEN

KING

vec(King) — vec(Man) + vec(Woman) ~ vec(Queen)

15

15 Linguistic Regularities in Continuous Space Word Representations (Mikolov et al.;72013)
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Language Models



> A language model can compute:
1. the probability of an upcoming word:

P(wWa|wi, ..., wy_1)
2. the probability for a sequence of words'®

P(wa,...,wy)

16We can go from 1. to 2. using the Chain Rule of Probability
P(wy, wa, w3) = P(wy)P(w|wi)P(ws|wy, w2)
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» Language models are useful for machine translation because
they help with:
1. word ordering
P(Yes I can help you) > P(Help you | can yes)'’
2. word choice

P(Feel the Force) > P(Eat the Force)

17
Unless its Yoda that speaking
34/71



» How can RNN be trained for language modelling?'®

1. Step ty:
1.1 Initialise ho
2. Step ty:

2.1 Input first word wq

2.2 Calculate y1, the probability distribution over the vocabulary
for the next word w» given the first word wy and the context
vector ho'®

2.3 Error vector is computed using cross entropy between y; and a
vector using 1-of-k encoding for the desired w»?

2.4 Weights updated with standard backprop.

3. Step to:
3.1 Input second word w»
3.2

18 . . L .
For a more detailed explanation of training RNNs for language modelling see: Recurrent neural network
based language model, Mikolov et al. 2010.
Typically we use a Softmax to ensure that y; is a valid probability distribution
20
H(p,q) = — >, p(x) log q(x). See https://jamesmccaffrey.wordpress.com/2013/11/05/
why-you-should-use-cross-entropy-error-instead-of-classification-error-or-mean-squared-error-for-neural

for a nice discussion on why to use cross entropy
35/71
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Cell sensitive to po:

ing of the Berezina lies in the fact
proved the fallacy of all the plans for
and the soundness of the only possible
kKutuzov and the general mass of the army
to follow the enemy up. The French crowd
speed and all its energy was directed
i a wounded animal and it was imposs
shown not so much by the arrangements it
took place at the bridges. When the

people from Moscow and women with children
ransport, all--carried on by vis inertiae- -
and into the ice-covered water and d3

Cell that turns on inside quotes:

Cell that robustly activates inside if statement

¥
A large portion of cells are not easily interpretable. Here is a typical example:
P 1 1

]

b Te

dit pack_string(Welid *Hbufp, siize_ ¢/ FMremain, s¥ize it/ Lenl)

n 0
i filelds, PUAITHL MAX

23http ://karpathy.github.i0/2015/05/21/rnn-effectiveness/ o =2 = £
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Machine Translation
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» When we are translating a word in a source sentence the
decision of what word to choose for the translation may be
dependent on:

1. the words that become before the word in the source sentence

2. the words that we have already output in the target sentence

3. and and the words that come after the word in the source
sentence.
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» When we are translating a word in a source sentence the
decision of what word to choose for the translation may be
dependent on:

1. the words that become before the word in the source sentence
2. the words that we have already output in the target sentence
3. and and the words that come after the word in the source
sentence.
» So, it makes sense to process the full source sentence before
we start translating (that allows us to look ahead in the
source during translation).

40 /71



belle| |est| |vie| [La 9425

Figure: Encoder-Decoder Architecture

24 For details see Sequence to Sequence Learning with Neural Networks (Sutskever et al. 2014)

Note: the decoder in this architecture is a language model 41/71



» We want to minimise J;

Je= > —log p(ylx)

(x,y)€D

» where D is a parallel training corpus and the log probability of
each sentence generated is calculated using: 2°

log p(y|x) = log p(y;ly<j: x)
j=1

26 For details see Effective Approaches to Attention-based Neural Machine Translation (Luong et al, 2015)
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Global attention model

» add a neural network to the architecture that learns the
weights for each word in the encoder at each time step in the
decoder

» this network uses S;_1 as input and the output is used in the
calculation of S;

43 /71



Life

good

<eos>

el [vie] s [peie]

27 . . . L . .
For details see Neural machine translation by jointly learning to align and translate (Bahadanau et al. 2014).
Note this architecture uses a global attention model, Gated Recurrent Units and bidirectional input.

27
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Local Attention Model

» ldea: apply a normal distribution over global attention weights

> Define a window size (e.g., 10 words either side of a word)

and let sd =

|window |
2

» At each time step in the decoder

1.
2.

calculate a global attention distribution

a NN predicts pos. of the word in the input to center the
window on, inputs include s; and the length of the input
sentence.

Let
(word offset)?

S 2x(sd)?

X =

. Attention weights for words inside the window =

e ™ x global attention weight

. Attention weights for words outside the window = 0

45 /71



Life

belle

est

vie

La

2 For details see Effective Approaches to Attention-based Neural Machine Translation (Luong et al. 2015).

Note this architecture uses a local attention model, LSTMs and reversed input.

28
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Handling Idioms

» Use both global and local attention
» Switch between the attentions when idiom is detected

> Intuition is that perplexity inside an idiom is low

47 /71



Handling ldioms

Global
Attention

Attention
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Beyond MT: Image Annotation



14x14 Feature Map

&

1. Input 2. Convolutional 3. RNN with attention 4. Word by
Image Feature Extraction over the image word

generationgg

Image from Show, Attend and Tell: Neural Image Caption Generation with' Visual“Attention (Xu et-al. 2015).
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» The standard system architecture in image captioning systems

is to combine:
1. a Convolutional Neural Network (used for image processing)

2. with a Recurrent Neural Network (implementing a language
model and used to generate the caption)

51/71



hidden layer 1  hidden layer 2  hidden layer 3

'

input layer

- output layer

R R

S

Figure: A fully connected feed forward neural network

30

3Olmage taken from Neural Networks and Deep Learning by Michael Nielson available at
neuralnetworksanddeeplearning.com/
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Figure: Illustration of a local receptive field
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1
3 Image taken from Neural Networks and Deep Learning by Michael Nielson available at
neuralnetworksanddeeplearning.com/ o = =

DA
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Figure: Local receptive field at Position 1
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32 . . . .
Image taken from Neural Networks and Deep Learning by Michael Nielson available at
neuralnetworksanddeeplearning.com/
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Figure: Local receptive field at Position 2
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33 . . . .
Image taken from Neural Networks and Deep Learning by Michael Nielson available at
neuralnetworksanddeeplearning.com/
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» The neurons in the first hidden layer all share the same
weights and bias

> In other words they all learn to react to a same feature (or
pattern) in the input just at different locations in the image
(i.e., each neuron monitors its own local receptive field for the
feature).

» We use the term feature map to describe the map from the
input layer to the hidden layer.
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28 ® 28 input neurons first hidden layer: 3 x 24 x 24 neurons

Figure: One Network multiple Feature Maps
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34 . . . .
Image taken from Neural Networks and Deep Learning by Michael Nielson available at
neuralnetworksanddeeplearning.com/
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hidden neurons (output from feature map)

max-pooling units
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30

Figure: Pooling: discards exact positional information
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35 . . . .
Image taken from Neural Networks and Deep Learning by Michael Nielson available at
neuralnetworksanddeeplearning.com/
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Figure: Complete Network with a Final Fully Connected Output Layer
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36 . . . .
Image taken from Neural Networks and Deep Learning by Michael Nielson available at
neuralnetworksanddeeplearning.com/
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Learn Object Models
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Learn Edge Detectors

Convolutional Deep Belief Networks
for Scalable Unsupervised Learning
of Hierarchical Representations,

Lee et al. In ICML 2009.
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14x14 Feature Map

&

1. Input 2. Convolutional 3. RNN with attention 4. Word by
Image Feature Extraction over the image word

generationﬁ7

Image from Show, Attend and Tell: Neural Image Caption Generation with' Visual“Attention (Xu et-al. 2015).
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bird flying over body water

38Image from Show, Attend and Tell: Neural Image Caption Generation with: Visual“Attention (Xu et-al. 2015).
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.

39Image from Show, Attend and Tell: Neural Image Caption Generation with Visual-Attention (Xu et al. 2015).

(a) A man and a woman playing frisbee in a field. 39
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woman(0.54) i5(0.37)

!’

frisbee(0.37) in(0.21)

park(0.35) .(0.33),

throwing(0.33)

(b) A woman is throwing a frisbee in a park. 40

40Image from Show, Attend and Tell: Neural Image Caption Generation with: Visual“Attention (Xu et-al. 2015).
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(a) A dog is laying on a bed with a book. 41

41Image from Show, Attend and Tell: Neural Image Caption Generation with Visual Attention (Xu et al. 2015). 65/
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standing(0.38)

dog(0.58)
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n(0.28)

B’

floor(0.55)

-

.23),

F

hardwood(0.58).

(b) A dog is standing on a hardwood floor.

[m] = - =

Image from Show, Attend and Tell: Neural Image Caption Generation with Visual Attention (Xu et al. 2015 )
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Conclusions
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» It may be possible for a CNN network to learn a vague spatial
relationship between the outputs of different objects models
(neurons in higher layers firing) but if this is what is
happening then | believe the model is learning something like
man+left+women and | don't believe the model will be able
to generalise from this:

object1+left+object? +# object2+left+objectl
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» Although these systems generate spatial descriptions it is my
contention that they do not have an explicit spatial
representation and instead they are simply using the language

model to predict what spatial term to use given the landmark
and target object
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» Although these systems generate spatial descriptions it is my
contention that they do not have an explicit spatial
representation and instead they are simply using the language
model to predict what spatial term to use given the landmark
and target object

Possible Implications

» Perspective 1: although DL seems to be making great strides
in processing and integrating multimodal data at the moment
DL architectures still struggle with spatial language

» Perspective 2: these systems seem to do fine on a lot of
examples without any spatial representations, so when are
representations necessary (maybe functional relationships are
reflected in linguistic co-ocurrence patterns ... )
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» One of the things | really like about deep learning is that it
provides a natural way to learn multimodal representations.

70/71



» One of the things | really like about deep learning is that it
provides a natural way to learn multimodal representations.

» However, we seemed to have moved from designed features to
fitting hyper-parameters!

> learning rate, mini-batch size, number of layers, number of
units per layer, regularization constant, non-linearity,
initialisation parameters, number of training epochs.
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» One of the things | really like about deep learning is that it
provides a natural way to learn multimodal representations.

» However, we seemed to have moved from designed features to
fitting hyper-parameters!

> learning rate, mini-batch size, number of layers, number of
units per layer, regularization constant, non-linearity,
initialisation parameters, number of training epochs.

> So, how to do deep learning in an eco-friendly way is the real
challenge.
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Thank you for your attention

john.d.kelleher@dit.ie
@johndkelleher

www.comp.dit.ie/jkelleher
www.machinelearningbook.com
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