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Fundamentals of Machine Learning for Predictive Data
Analytics. Kelleher, Mac Namee, and D’Arcy. MIT Press

www.machinelearningbook.com
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I Three get online resources to learn more about deep-learning:

1. Andrej Karpathy’s blog available at:

karpathy.github.io

2. Christopher Olah blog (aka colah’s blog) available at:

http://colah.github.io

3. Michael Nielson’s online book “Neural Networks and Deep
Learning” available at:

neuralnetworksanddeeplearning.com/
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What is Deep Learning?
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Inspired by slide from Kevin Duh (Deep Learning Tutorial)



Convolutional Deep Belief Networks
for Scalable Unsupervised Learning
of Hierarchical Representations,
Lee et al. In ICML 2009.

Learn Edge Detectors

Learn Object Parts

Learn Object Models
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Deep Learning and Language
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I Language is sequential and has lots of words.
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yt

ht

xtht−1

Figure: Recurrent Neural Network

ht = φ((Whh ·ht−1) + (Wxh · xt))

yt = φ(Why · ht)
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I An RNN is as deep as your sentence is long.
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Output:

Input:

y1 y2 y3 yt yt+1

h1 h2 h3 · · · ht ht+1

x1 x2 x3 xt xt+1

Figure: RNN unrolled through time.
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I If you are at time t and you try to backpropogate to time k
you will find that you derivatives become zero (vanishing
gradient)2

I This is because you will have to do t-k multiplications3

I The implication of this is that the input at k will not influence
the output at t

I If you need a long memory to learn you task a standard RNN
won’t work!

2
or explode (exploding gradient)

3
When we calculate the derivative of the error with respect to the transition parameters Whh we need to

apply the Chain Rule
(

d
dx

f (g (x)) = d
d g(x)

f (g (x))× d
dx

g (x)
)

to go back through the network k steps

because ht is dependent on ht−1 this results in Whh being multiplied by itself many times
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I In order for an RNN to have a long memory each cell in the
network needs to learn:

1. when to forget
2. when to write something new to memory
3. when to write something out

I LSTM cells do this by using a gating mechanism based on
component wise multiplication

15 / 71



Figure: The repeating module in a standard RNN contains a single layer.

4

4
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Figure: The repeating module in an LSTM contains four interacting
layers.

5

5
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Figure: The cell state is kind of like a conveyor belt.

6

6
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Figure: What information will we throw away from the cell state: the
forget gate.

7

7
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Figure: What information will we add to the cell state: the input gate
and calculating a new vector C

8

8
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Figure: Update the cell state: applying our forget and input decisions

9

9
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Figure: What should we output: a filtered version of the cell state

10

10
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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I Language is sequential and has lots of words.
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I One-hot (1-of-k)

cat = [0 0 0 0 0 0 0 0 0 1 0 0 0 0 0]

dog = [0 1 0 0 0 0 0 0 0 0 0 0 0 0 0]

I Dimensionality is the size of the vocabulary

I Representation does not ’naturally’ encode the semantic
relationship between words
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I Fortunately we use neural networks to learn low-dimensional
word vectors (embeddings) directly from a corpus.

I How?

I Train the network to predict the word that is missing from the
middle of an n-gram (or predict the n-gram from the word)
and use the trained network weights to represent the word in
vector space.11

11
See inter alia.: A Neural Probabilistic Language Model (Bengio et al., 2003); Natural Language Processing

(Almost) from Scrath (Collobert et al, 2011); Efficient Estimation of Word Representations in Vector Space
(Mikolov et al,. 2013), aka. word2vec (skip-gram and cbow); Glove: Global Vectors for Word Representation
(Pennington et al., 2014)
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“a word is characteriezed by the company it keeps”

— Firth, 1957

“words which are similar in meaning occur in similar contexts’

— Rubenstein & Goodenough, 1965

“a representation that captures much of how words are used in
natural context will capture much of what we mean by
meaning’

— Landauer & Dumais, 1997
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Efficient Estimation of Word Representations in Vector Space (Mikolov et al., 2013)
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13

13
http://www.folgertkarsdorp.nl/word2vec-an-introduction/
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14

14
http://www.codeproject.com/Tips/788739/Visualization-of-High-Dimensional-Data-using-t-SNE
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vec(King)− vec(Man) + vec(Woman) ≈ vec(Queen)15

15
Linguistic Regularities in Continuous Space Word Representations (Mikolov et al., 2013)
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Language Models
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I A language model can compute:

1. the probability of an upcoming word:

P(wn|w1, . . . ,wn−1)

2. the probability for a sequence of words16

P(w1, . . . ,wn)

16
We can go from 1. to 2. using the Chain Rule of Probability

P(w1,w2,w3) = P(w1)P(w2|w1)P(w3|w1,w2)
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I Language models are useful for machine translation because
they help with:

1. word ordering

P(Yes I can help you) > P(Help you I can yes)17

2. word choice

P(Feel the Force) > P(Eat the Force)

17
Unless its Yoda that speaking
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I How can RNN be trained for language modelling?18

1. Step t0:

1.1 Initialise h0

2. Step t1:

2.1 Input first word w1

2.2 Calculate y1, the probability distribution over the vocabulary
for the next word w2 given the first word w1 and the context
vector h0

19

2.3 Error vector is computed using cross entropy between y1 and a
vector using 1-of-k encoding for the desired w2

20

2.4 Weights updated with standard backprop.

3. Step t2:

3.1 Input second word w2

3.2 . . .

18
For a more detailed explanation of training RNNs for language modelling see: Recurrent neural network

based language model, Mikolov et al. 2010.
19

Typically we use a Softmax to ensure that yt is a valid probability distribution
20

H(p, q) = −
∑

x p(x) log q(x). See https://jamesmccaffrey.wordpress.com/2013/11/05/

why-you-should-use-cross-entropy-error-instead-of-classification-error-or-mean-squared-error-for-neural-network-classifier-training/

for a nice discussion on why to use cross entropy
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21
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Machine Translation
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I When we are translating a word in a source sentence the
decision of what word to choose for the translation may be
dependent on:

1. the words that become before the word in the source sentence
2. the words that we have already output in the target sentence
3. and and the words that come after the word in the source

sentence.

I So, it makes sense to process the full source sentence before
we start translating (that allows us to look ahead in the
source during translation).
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2425

Figure: Encoder-Decoder Architecture

24
For details see Sequence to Sequence Learning with Neural Networks (Sutskever et al. 2014)

25
Note: the decoder in this architecture is a language model 41 / 71



I We want to minimise Jt

Jt =
∑

(x ,y)∈D

−log p(y |x)

I where D is a parallel training corpus and the log probability of
each sentence generated is calculated using: 26

log p(y |x) =
m∑
j=1

log p(yj |y<j , x)

26
For details see Effective Approaches to Attention-based Neural Machine Translation (Luong et al, 2015)
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Global attention model

I add a neural network to the architecture that learns the
weights for each word in the encoder at each time step in the
decoder

I this network uses St−1 as input and the output is used in the
calculation of St
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27

27
For details see Neural machine translation by jointly learning to align and translate (Bahadanau et al. 2014).

Note this architecture uses a global attention model, Gated Recurrent Units and bidirectional input.
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Local Attention Model

I Idea: apply a normal distribution over global attention weights

I Define a window size (e.g., 10 words either side of a word)

and let sd = |window |
2

I At each time step in the decoder

1. calculate a global attention distribution
2. a NN predicts pos. of the word in the input to center the

window on, inputs include st and the length of the input
sentence.

3. Let

x =
(word offset)2

2× (sd)2

4. Attention weights for words inside the window =
e−x × global attention weight

5. Attention weights for words outside the window = 0
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For details see Effective Approaches to Attention-based Neural Machine Translation (Luong et al. 2015).

Note this architecture uses a local attention model, LSTMs and reversed input.
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Handling Idioms

I Use both global and local attention

I Switch between the attentions when idiom is detected

I Intuition is that perplexity inside an idiom is low
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Handling Idioms
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Beyond MT: Image Annotation
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29
Image from Show, Attend and Tell: Neural Image Caption Generation with Visual Attention (Xu et al. 2015).
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I The standard system architecture in image captioning systems
is to combine:

1. a Convolutional Neural Network (used for image processing)
2. with a Recurrent Neural Network (implementing a language

model and used to generate the caption)
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Figure: A fully connected feed forward neural network

30

30
Image taken from Neural Networks and Deep Learning by Michael Nielson available at

neuralnetworksanddeeplearning.com/
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Figure: Illustration of a local receptive field

31

31
Image taken from Neural Networks and Deep Learning by Michael Nielson available at

neuralnetworksanddeeplearning.com/
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Figure: Local receptive field at Position 1

32

32
Image taken from Neural Networks and Deep Learning by Michael Nielson available at

neuralnetworksanddeeplearning.com/
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Figure: Local receptive field at Position 2
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33
Image taken from Neural Networks and Deep Learning by Michael Nielson available at

neuralnetworksanddeeplearning.com/

55 / 71

neuralnetworksanddeeplearning.com/


I The neurons in the first hidden layer all share the same
weights and bias

I In other words they all learn to react to a same feature (or
pattern) in the input just at different locations in the image
(i.e., each neuron monitors its own local receptive field for the
feature).

I We use the term feature map to describe the map from the
input layer to the hidden layer.
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Figure: One Network multiple Feature Maps
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34
Image taken from Neural Networks and Deep Learning by Michael Nielson available at

neuralnetworksanddeeplearning.com/
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Figure: Pooling: discards exact positional information

35

35
Image taken from Neural Networks and Deep Learning by Michael Nielson available at

neuralnetworksanddeeplearning.com/
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Figure: Complete Network with a Final Fully Connected Output Layer
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36
Image taken from Neural Networks and Deep Learning by Michael Nielson available at

neuralnetworksanddeeplearning.com/
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Convolutional Deep Belief Networks
for Scalable Unsupervised Learning
of Hierarchical Representations,
Lee et al. In ICML 2009.

Learn Edge Detectors

Learn Object Parts

Learn Object Models
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Image from Show, Attend and Tell: Neural Image Caption Generation with Visual Attention (Xu et al. 2015).
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Image from Show, Attend and Tell: Neural Image Caption Generation with Visual Attention (Xu et al. 2015).
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Image from Show, Attend and Tell: Neural Image Caption Generation with Visual Attention (Xu et al. 2015).
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40
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Image from Show, Attend and Tell: Neural Image Caption Generation with Visual Attention (Xu et al. 2015).
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Image from Show, Attend and Tell: Neural Image Caption Generation with Visual Attention (Xu et al. 2015). 65 / 71



42

42
Image from Show, Attend and Tell: Neural Image Caption Generation with Visual Attention (Xu et al. 2015). 66 / 71



Conclusions
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I It may be possible for a CNN network to learn a vague spatial
relationship between the outputs of different objects models
(neurons in higher layers firing) but if this is what is
happening then I believe the model is learning something like
man+left+women and I don’t believe the model will be able
to generalise from this:

object1+left+object2 6= object2+left+object1
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I Although these systems generate spatial descriptions it is my
contention that they do not have an explicit spatial
representation and instead they are simply using the language
model to predict what spatial term to use given the landmark
and target object

Possible Implications

I Perspective 1: although DL seems to be making great strides
in processing and integrating multimodal data at the moment
DL architectures still struggle with spatial language

I Perspective 2: these systems seem to do fine on a lot of
examples without any spatial representations, so when are
representations necessary (maybe functional relationships are
reflected in linguistic co-ocurrence patterns . . . )
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I One of the things I really like about deep learning is that it
provides a natural way to learn multimodal representations.

I However, we seemed to have moved from designed features to
fitting hyper-parameters!

I learning rate, mini-batch size, number of layers, number of
units per layer, regularization constant, non-linearity,
initialisation parameters, number of training epochs.

I So, how to do deep learning in an eco-friendly way is the real
challenge.
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Thank you for your attention

john.d.kelleher@dit.ie

@johndkelleher

www.comp.dit.ie/jkelleher

www.machinelearningbook.com
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