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Probabilistic Semantics

Classical Semantic Theories

I Classical semantic theories (Montague (1974)), as well as dynamic
(Kamp and Reyle (1993)) and underspecified (Fox and Lappin
(2010)) frameworks use categorical type systems.

I A type T identifies a set of possible denotations for expressions in T .

I The theory specifies combinatorial operations for deriving the
denotation of an expression from the values of its constituents.

I These theories cannot represent the gradience of semantic properties
that is pervasive in speakers’ judgements concerning truth,
predication, and meaning relations.
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Probabilistic Semantics

Semantic Classification and Learning

I There is a fair amount of evidence indicating that language
acquisition in general crucially relies on probabilistic learning (Clark
and Lappin (2011)).

I It is not clear how a reasonable account of semantic learning could be
constructed on the basis of the categorical type systems that either
classical or revised semantic theories assume.

I Such systems do not appear to be efficiently learnable from the
primary linguistic data (with weak learning biases).

I There is little (or no) psychological data to suggest that classical
categorical type systems provide biologically determined constraints
on semantic learning.
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Probabilistic Semantics

Using Probability to Model Gradience and Learning

I A semantic theory that assigns probability rather than truth
conditions to sentences is in a better position to deal with gradience
and learning.

I Gradience is intrinsic to the theory by virtue of the fact that values
are assigned to sentences in the continuum of real numbers [0,1],
rather than Boolean values in {0,1}.

I A probabilistic account of semantic learning is facilitated if the target
of learning is a probabilistic representation of meaning.

I Both semantic interpretation and semantic learning are characterised
as reasoning under uncertainty.
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Probabilistic Semantics

Two Strategies

I On a top-down approach one sustains classical categorical type and
model theories, and then specifies a function that assigns probability
values to the possible worlds that the model provides.

I The probability value of a sentence relative to a model M is the sum
of the probabilities of the worlds in which it is true.

I On a bottom-up approach one defines a probabilistic type theory.

I The probability value of a sentence is the output of a function that
encodes probabilistic semantic type judgements associated with its
predicative syntactic constituents.
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Probabilistic Semantics

A Top-Down Theory

I van Eijck and Lappin (2012) retain a classical type theory and the
specification of intensions for each type as functions from worlds to
extensions.

I They define a probabilistic model M as a tuple 〈D,W ,P〉 with D a
domain, W a set of worlds for that domain (predicate interpretations
in that domain), and P a probability function over W , i.e., for all
w ∈W , P(w) ∈ [0, 1], and

∑
w∈W P(w) = 1.

I An interpretation of a language L in a model M = 〈D,W ,P〉 is given
in terms of the standard notion w |= φ:

[[φ]]M :=
∑

wi∈W∧wi |=φ

P(wi )
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Probabilistic Semantics

The Probability Calculus

I This definition of a model entails that [[¬φ]]M = 1− [[φ]]M .

I Also, if φ |= ¬ψ, i.e., if Wφ ∩Wψ = ∅, then
[[φ ∨ ψ]]M =

∑
w∈Wφ∨ψ

P(w) =∑
w∈Wφ

P(w) +
∑

w∈Wψ
P(w) =

[[φ]]M + [[ψ]]M .

I These equations satisfy the axioms of Kolmogorov’s (1950)
probability calculus.
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Probabilistic Semantics

Advantages of the Top-Down Approach

I This theory retains classical type and model theories to determine the
value of a sentence in a world.

I Therefore, it uses well understood formal systems at both levels of
representation.

I It applies a standard probability calculus for computing the probability
value of a sentence.
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Probabilistic Semantics

Disadvantages of the Top-Down Approach

I It requires probabilities to be assigned to entire worlds in the model,
with sentences receiving probability values derivatively from these
assignments.

I Representing worlds (maximally consistent sets of propositions, or
ultrafilters in a proof theoretic lattice of propositions) poses serious
problems of tractability (Lappin (2014), Cooper et al. (2014)).

I The probability value of a sentence can only be computed relative to
those of the other sentences of the language that specify the set of
worlds (or possible situations).

I This holism seems to exclude the possibility of learning individual
classifiers and type judgements independently of each other.
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Probabilistic Semantics

A Bottom-Up Approach

I A bottom-up approach avoids the representability problem by
assigning probabilities to individual type judgements as classifier
applications.

I The probability of a sentence is determined relative to a bounded set
of situation types, which can be learned as classifiers for situations.

I A bottom-up probabilistic semantics requires a probabilistic type
theory.

I This theory provides the basis for an account of semantic learning in
which situation type classifiers are acquired probabilistically through
sampling and observation driven Bayesian inference.
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Probabilistic Semantics

Austinian Propositions

I We take probability to be distributed over situation types (Barwise
and Perry (1983)).

I An Austinian proposition is a judgement that a situation is of a
particular type, and we treat it as probabilistic.

I It expresses a subjective probability in that it encodes the belief of an
agent concerning the likelihood that a situation is of that type.

I The core of an Austinian proposition is a type judgement of the form
s : T , which is expressed probabilistically as p(s : T ) = r , where r ∈
[0,1].
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Rich Type Theory

Probabilistic TTR: Basic Types and PTypes

Our type system is based on Cooper’s (2012) Type Theory with Records
(TTR), and it includes the following types.

I Basic Types are not constructed out of other objects introduced in
the theory.

I If T is a basic type, p(a : T ) for any object a is provided by an
assignment of probabilities to judgements involving basic types.

I PTypes are constructed from a predicate and an appropriate
sequence of arguments.

I man(john,18:10) is the type of situation where John is a man at time
18:10.

I A probability model provides probabilities p(e : r(a1, . . . , an)) for
ptypes r(a1, . . . , an).

I We take both common nouns and verbs to provide the components out
of which PTypes are constructed.
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Rich Type Theory

Meets and Joins

I Meets and Joins give, for T1 and T2, the meet, T1 ∧ T2 and the
join T1 ∨ T2, respectively.

I a : T1 ∧ T2 just in case a : T1 and a : T2.

I a : T1 ∨ T2 just in case either a : T1 or a : T2 (possibly both).
I The probabilities for meet and join types are defined by the classical

Kolmogorov (1950) equations.

I p(a : T1 ∧ T2) = p(a : T1)p(a : T2 | a : T1)
(equivalently, p(a : T1 ∧ T2) = p(a : T1, a : T2))

I p(a : T1 ∨ T2) = p(a : T1) + p(a : T2)− p(a : T1 ∧ T2)
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Rich Type Theory

Subtypes

I Subtypes: A type T1 is a subtype of type T2, T1 v T2, just in case
a : T1 implies a : T2 no matter what we assign to the basic types.

I If T1 v T2 then a : T1 ∧ T2 iff a : T1, and a : T1 ∨ T2 iff a : T2.

I Similarly, if T2 v T1 then a : T1 ∧ T2 iff a : T2, and a : T1 ∨ T2 iff
a : T1.

I If T2 v T1, then p(a : T1 ∧ T2) = p(a : T2), and
p(a : T1 ∨ T2) = p(a : T1).

I If T1 v T2, then p(a : T1) ≤ p(a : T2).

I These definitions also entail that p(a : T1 ∧ T2) ≤ p(a : T1), and
p(a : T1) ≤ p(a : T1 ∨ T2).
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Rich Type Theory

Generalized Probabilistic Meet

I Let
∧
p

(a0 : T0, . . . , an : Tn) be the conjunctive probability of judgements

a0 : T0, . . . , an : Tn.

I
∧
p

(a0 : T0, . . . , an : Tn) =∧
p

(a0 : T0, . . . , an−1 : Tn−1)p(an : Tn | a0 : T0, . . . , an−1 : Tn−1)

I If n = 0,
∧
p

(a0 : T0, . . . , an : Tn) = 1.

I Universal quantification is an unbounded conjunctive probability, which is true if it
is vacuously satisfied (n = 0) (Paris (2010)).

I Conditional Conjunctive Probabilities:
∧
p

(a0 : T0, . . . , an : Tn | a : T ) =∧
p

(a0 : T0, . . . , an−1 : Tn−1 | a : T )p(an : Tn | a0 : T0, . . . , an−1 : Tn−1, a : T )).

If n = 0,
∧
p

(a0 : T0, . . . , an : Tn | a : T ) = 1.
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Rich Type Theory

Generalized Probabilistic Join

I Let
∨p

(a0 : T0, a1 : T1, . . . , an : Tn) be the disjunctive probability of

judgements a0 : T0, a1 : T1, . . . , an : Tn.

I
∨p

(a0 : T0, . . . , an : Tn) =∨p
(a0 : T0, . . . , an−1 : Tn−1) + p(an : Tn)−

∧
p

(a0 : T0, . . . , an−1 :

Tn−1)p(an : Tn | a0 : T0, . . . , an−1 : Tn−1)

I If n = 0,
∨p

(a0 : T0, . . . , an : Tn) = 0.

I Existential quantification is an unbounded disjunctive probability,
which is false if it lacks a single non-nil probability instance (n = 0).
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Rich Type Theory

Function Types

I Function Types give, for any types T1 and T2, the type (T1 → T2).

I This is the type of total functions with domain the set of all objects
of type T1 and range included in objects of type T2.

I The probability that a function f is of type (T1 → T2) is the
probability that everything in its domain is of type T1, that everything
in its range is of type T2, and that everything not in its domain which
has some probability of being of type T1 is not, in fact, of type T1

I p(f : (T1 → T2)) =
∧

a∈dom(f )
p

(a : T1, f (a) : T2)(1−
∨

a 6∈dom(f )

p
(a : T1))
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Rich Type Theory

Function Types: Example 1

I Suppose that T1 is the type of event where there is a flash of
lightning, and T2 is the type of event where there is a clap of thunder.

I Let f map lightning events to thunder events, and and let f have as
its domain all events which have been judged to have probability
greater than 0 of being lightning events.

I Assume all putative lightning events are clear examples of lightning
and are associated by f with clear events of thunder.

I If there are four such pairs of events, then the probability of f being
of type (T1 → T2) is (1× 1)4 = 1.
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Rich Type Theory

Function Types: Example 2

I Alternatively, suppose that for for of the four events f associates a
lightning event with a silent event.

I Then the probability of f being of type (T1 → T2) is
(1× 1)3 × (1× 0) = 0.

I One clear counterexample is sufficient to show that the function is
definitely not of the type (T1 → T2).
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Rich Type Theory

Increasing the Size of the Domain of a Function Type

I If the probabilities of the antecedent and the consequent type
judgements are higher than 0, the probability of the entire judgement
on the existence of a functional type f will decline in proportion to
the size of dom(f ).

I If, for example that there are k elements a ∈ dom(f ), where for each
such a, p(a : T1) = p(f (a) : T2) ≥ .5.

I Every ai that is added to dom(f ) will reduce the value of
p(f : (T1 → T2)), even if it yields higher values for p(a : T1) and
p(f (a) : T2).

I This is due to the fact that we are treating the probability of
p(f : (T1 → T2)) as the likelihood of there being a function that is
satisfied by all objects in its domain.

I The larger the domain, the less probable that all elements in it fulfill
the functional relation.

Staffan Larsson Bayesian nets in pTTR
CLASP seminar 2016-04-06 (with some edits based on discussion at the seminar) 23

/ 69



Rich Type Theory

Function Type Judgements as Universally Quantified
Assertions

I We are interpreting a functional type judgement of this kind as a
universally quantified assertion over the pairing of objects in dom(f )
and range(f ).

I The probability of such an assertion is given by the conjunction of
assertions corresponding to the co-occurrence of each element a in f ’s
domain as an instance of T1 with f (a) as an instance of T2.

I Functions which leave out some of the objects with lower likelihood of
being of type T1 should also have a probability of being of type
(T1 → T2).

I This factor in the probability is represented by the second element of
the product in the formula.
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Rich Type Theory

Negation and Instantiation of Types

I Negation: ¬T , of type T , is the function type (T → ⊥), where ⊥ is
a necessarily empty type and p(⊥) = 0.

I It follows from our rules for function types that p(f : ¬T ) = 1 if
dom(f ) = ∅, (T is empty, and 0 otherwise).

I We also assign probabilities to judgements concerning the
(non-)emptiness of a type, p(T ).

I Our account of negation entails that p(T ∨ ¬T ) = 1, and (ii)
p(¬¬T ) = p(T ).

I Therefore, we sustain classical Boolean negation and disjunction, in
contrast to Martin-Löf’s (1984) intuitionistic type theory.

Staffan Larsson Bayesian nets in pTTR
CLASP seminar 2016-04-06 (with some edits based on discussion at the seminar) 25

/ 69



Rich Type Theory

Dependent Types

I Dependent Types are functions from objects to types.

I Given appropriate arguments as functions they will return a type.

I Therefore, the account of probabilities associated with functions
above applies to dependent types.
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Rich Type Theory

Record Types

I Record Types are sets of ordered pairs (fields) whose first member is
a label and whose second member is an object of some type, possibly
itself a record, where records are functional on labels (each label in a
record can only occur once in the record’s left projection).

I If T is a record type, ` is a label not occuring in T , T is a dependent
type requiring n arguments, and 〈π1, . . . , πn〉 is an n-place sequence
of paths in T , then T ∪ {〈`, 〈T , 〈π1, . . . , πn〉〉〉} is a record type.

I r : T ∪ {〈`, 〈T , 〈π1, . . . , πn〉〉〉} just in case r : T , r .` is defined, and
r .` : T (r .π1, . . . , r .πn).
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Rich Type Theory

Record Types

The probability that an object r is of a record type T :

1. p(r : Rec) = 1 if r is a record, 0 otherwise

2. p(r : T1 ∪ {〈`,T2〉}) =
∧
p

(r : T1, r .` : T2)

3. If T : (T1 → (. . .→ (Tn → Type) . . .)), then
p(r : T ∪ {〈`, 〈T , 〈π1, . . . , πn〉〉〉}) =∧
p

(r : T , r .` : T (r .π1, . . . , r .πn) | r .π1 : T1, . . . , r .πn : Tn)

Staffan Larsson Bayesian nets in pTTR
CLASP seminar 2016-04-06 (with some edits based on discussion at the seminar) 28

/ 69



Rich Type Theory

Probabilistic Austinian Propositions

I Probabilistic Austinian propositions are records of type sit : Sit
sit-type : Type
prob : [0,1]


I They assert that the probability that a situation s is of type Type

with the value of prob.

I The definition of [[ · ]]p specifies a compositional procedure for
generating an Austinian proposition (record) of this type from the
meanings of the syntactic constituents of a sentence.
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Semantic Classification and Learning

Observations as Type Judgements

I We assume that agents track observed situations and their types,
modelled as probabilistic Austinian propositions.

I An observation of a red object might yield the following probabilistic
Austinian proposition for some a:Ind, s1:red(a)


sit =

[
ref = a
cred = s1

]
sit-type =

[
ref : Ind
cred : red(ref)

]
prob = 0.7


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Semantic Classification and Learning

Computing the Probability of a Type Judgement

I When an agent A encounters a new situation s and wants to know if
it is of type T or not, he/she uses probabilistic reasoning to
determine the value of pA,J(s : T ).

I This denotes the probability that agent A assigns with respect to prior
judgements J to s being of type T .
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Semantic Classification and Learning

Summing probabilities of type judgements
I An agent makes judgements based on a finite string of probabilistic

Austinian propositions, J.
I For a type, T , JT represents that set of probabilistic Austinian

propositions j such that j .sit-type v T .

JT = {j | j ∈ J, j .sit-type v T}

I If T is a type and J a finite string of probabilistic Austinian
propositions, then ||T ||J represents the sum of all probabilities
associated with T in J

||T ||J =
∑
j∈JT

j .prob

I P(J) is the sum of all probabilities in J

P(J) =
∑
j∈J

j .prob
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Semantic Classification and Learning

Priors on Type Judgements

I priorJ(T ) represents the prior probability that anything is of type T
given J.

priorJ(T ) =
|| T ||J
P(J)

if P(J) > 0, and 0 otherwise.
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Semantic Classification and Learning

A Type Theoretic Bayesian Rule for Conditional Probability

I pJ(T1||T2) is the probability that agent A assigns with respect to
prior judgements J to some situation s being of type T1, given that A
judges s to be of type T2.

I A computes these conditional probabilities with the equation

pJ(T1||T2) =
|| T1 ∧ T2 ||J
|| T2 ||J

, if || T2 ||J 6= 0

Otherwise,
pJ(T1||T2) = 0
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Semantic Classification and Learning

pJ(T1||T2) =
|| T1 ∧ T2 ||J
|| T2 ||J

where

||T ||J =
∑
j∈JT

j .prob

is equivalent to

pJ(T1||T2) =

∑
j∈JT1∧T2

j .prob∑
j∈JT2

j .prob

Note that we may not store probabilities for conjunctive types such as
T1 ∧ T2 directly. Instead, we will need to compute them from probabilities
of the conjucts T1 and T2.
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Semantic Classification and Learning

I This is a TTR variant of the standard Bayesian formula for computing
conditional probabilities:

p(A | B) =
| A&B |
| B |

I Instead of counting categorical judgements, we are summing
probabilities of judgements.

I Our “training data” is not limited to categorical observations
I Instead we assume that it consists of probabilistic observations of

situations being of certain types

I Still, we keep the assumption from Naive Bayes classifiers that the
evidence are independent of each other

I Later, we will remove this restriction
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Semantic Classification and Learning

A simple Bayes Net

A

C

B

I A and B are the evidence variables, each with a probilitity distribution
over their respective possible values (the probabilities of the values for
each variable summing to 1)

I For a binary variable X, the values are X and not-X
I For a discrete non-binary variable X, there are more than 2 values
I (Variables may also be non-discrete)

I C is the conclusion variable
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Semantic Classification and Learning

Variable types in TTR

I To do Bayesian inference in probabilistic TTR, we need a notion
corresponding to a variable in Bayesian inference

I Assume a single (discrete) variable with a range of possible (mutually
exclusive) values

I We introduce an variable type V whose range is a set of value types
R(V ) = {TV

1 , . . . ,T
V
n } such that

TV
j v V for 1 ≤ j ≤ n

TV
j ⊥TV

i for all i , j such that 1 ≤ i 6= j ≤ n

p(r : V ) ∈ {0, 1} =
∑

T∈R(V )

p(r : T )
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Semantic Classification and Learning

I V is an variable type

I R(V ) = {TV
1 , . . . ,T

V
n } is the set of n possible value types such that

(1)TV
j v V for 1 ≤ j ≤ n

(2)TV
j ⊥TV

i for all i , j such that 1 ≤ i 6= j ≤ n

(3) p(r : V ) ∈ {0, 1} =
∑

T∈R(V )

p(r : T )

I (1) says that all value types for a variable type V are subtypes of V .

I (2) says that all value types for a given variable type V are mutually
exclusive, i.e. there are no objects that are of two value types for V .

I (3) says that unless the probability of a situation being of a variable
type V is 0 (i.e., the variable has no value for the situation), the
probabilites of the situation being of each of the value types for V
sum to one
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Semantic Classification and Learning

(Aside)

I (3) encodes a conceptual difference between the probability that
something has a property (such as colour, p(r :Colour)), and the
probability that it has a certain value of a variable (e.g. p(r :Green)).

I If the probability distribution over different values (colours) sums to
1, the probability that the object in question has a colour is 1.

I However, the probability that an object has colour is either 0 or 1.

I We thus assume that there are categorical ontological/conceptual
inferences of the type “physical objects have colour” that always have
probability 1.
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Semantic Classification and Learning

Variable types for evidence and conclusion

Associated with a classifier κ is

I a collection of m evidence variable types Eκ1 , . . . ,E
κ
m

I associated sets of evidence value types R(Eκ1 ), . . . ,R(Eκm)

I a conclusion variable type Cκ

I an associated set of conclusion value types R(Cκ)

E1

C

E2 ... En
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Semantic Classification and Learning

I To classify a situation r using a classifier κ, the evidence is acquired
by observing and classifying r with respect to the evidence types.

I This can be done using another layer of probabilistic classification
based on yet another layer of evidence types, or by probabilistic or
non-probabilistic classification of low-level sensory readings resulting
directly from observations
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Semantic Classification and Learning

The TTR Bayes classifier

I We define a TTR Bayes classifier κ as a function from a situation s to
a set of probabilistic Austinian propositions defining a probability
distribution over the values of the conclusion variable type Cκ, given
probability distributions over the values of each evidence variable type
Eκ1 , . . . ,E

κ
m.

I If the classifier is a function

κ : Sit→ Set(

 sit : Sit
sit-type : Type
prob : [0,1]

)

such that if r :Sit, then

κ(r) = {

 sit = r
sit-type = T c

prob = pκJ(r : T c)

 | T c ∈ R(Cκ)}
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Semantic Classification and Learning

I For our classifier κ, we are interested in the marginal probability
pκJ(r : T c) of the situation being of a conclusion value type T c in
light of the evidence.

I We obtain the marginal probabilities of the different possible
conclusions by factoring, for each evidence variable type, the
conditional probabilities of any situation being of the conclusion type
given that it is of the various associated evidence value types with the
probabilities of r being of the respective evidence types

pκJ (r : T c) =∑
TE1∈R(Eκ1 )

...
TEm∈R(Eκm)

pJ(T c ||TE1 ∧ . . . ∧ TEm)pJ(r : TE1) . . . pJ(r : TEm)

I Note that p(T0||T1 ∧ . . . ∧ Tn) is equivalent to p(T0||T1, . . . ,Tn).
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Semantic Classification and Learning

pκJ (r : T c) =
∑

TE1∈R(Eκ1 )
...

TEm∈R(Eκm)

pJ(T c ||TE1 ∧ . . .∧TEm)pJ(r : TE1) . . . pJ(r : TEm)

I Note that we are summing across all combinations of all evidence
value types for all the evidence variable types associated with κ.

I Note also that we do not here single out one conclusion type as the
winner; this is of course possible also (using argmax).

I Instead, the classifier as defined only returns a probability disitribution
over the evidence types.

I Of course, an agent sooner or later has to prune some low-probability
possibilities and normalise to maintain a Bernouilli distribution over
the remaining possibilities.
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Semantic Classification and Learning

Classification

pκJ (r : T c) =
∑

TE1∈R(Eκ1 )
...

TEm∈R(Eκm)

pJ(T c ||TE1 ∧ . . .∧TEm)pJ(r : TE1) . . . pJ(r : TEm)

I Our agent gets pJ(r : TE1) . . . pJ(r : TEm) by observing the situation
r the she wants to classify

I pJ(T c ||TE1 ∧ . . . ∧ TEm) can be computed in two ways:
I From a joint probability distribution
I Using Bayes rule for conditional probabilities

I Obtaining the probabilities required for computing
pJ(T c ||TE1 ∧ . . . ∧ TEm) constitutes the learning component
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Semantic Classification and Learning

An example: the Apple game

I Teacher shows fruits, agent makes a guess, teacher provides correct
answer, agent learns

I Conclusion variable type Fruit with value types: Apple, Pear
I Evidence variable types

I Col(our), with value types R(Col) = {Green,Red}
I Shape, with value types R(Shape) = {Ashape,Pshape}

Shape

Fruit

Colour
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Semantic Classification and Learning

Shape

Fruit

Colour

FruitC (r) = {

 sit = r
sit-type = T c

prob = pκ
J(r : T c)

 | T c ∈ R(CFruitC )}

pFruitCJ (r : T Fruit) =

∑
TCol∈R(Col)

T Shape∈R(Shape)

pJ(T Fruit ||TCol ∧ T Shape)pJ(r : TCol)pJ(r : T Shape)
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Semantic Classification and Learning

pFruitCJ (r : Apple) =

∑
TCol∈R(Col)

T Shape∈R(Shape)

pJ(Apple||TCol ∧ T Shape)pJ(r : TCol)pJ(r : T Shape) =

pJ(Apple||Green ∧ Ashape)pJ(r : Green)pJ(r : Ashape)+

pJ(Apple||Green ∧ Pshape)pJ(r : Green)pJ(r : Pshape)+

pJ(Apple||Red ∧ Ashape)pJ(r : Red)pJ(r : Ashape)+

pJ(Apple||Red ∧ Pshape)pJ(r : Red)pJ(r : Pshape)
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Semantic Classification and Learning

Learning

I Where does pJ(T c ||TE1 ∧ . . . ∧ TEm) come from?
I From previous experience, i.e. J

I Can be computed in different ways
I Using Bayes rule
I Using a joint probability distribution

I What kinds of probabilities are stored in J?
I For nodes with no parents, a probability distribution over the values
I For nodes with parents, conditional probabilities for all combinations of

evidence variable value types and conclusion value types
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Semantic Classification and Learning

Learning using Bayes rule for conditional probabilities

I Bayes rule:

p(C |E1, . . . ,En) =
p(E1, . . . ,En|C )priorJ(C )

priorJ(E1, . . . ,En)

I Chain rule for conditional probabilities:

p(E1, . . . ,En|C ) = p(E1|C )p(E2|E1,C ) . . . p(En|E1, . . . ,En−1,C )

I Given conditional indepence of evidence (not true in general for Bayes
nets)

p(E1, . . . ,En|C ) = p(E1|C )p(E2|C ) . . . p(En|C )

priorE1, . . . ,En = priorJ(E1) . . . priorJ(En)

I This is what will change when we move to full Bayes Nets
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Semantic Classification and Learning

Learning using Bayes rule for conditional probabilities
(TTR version)

I Bayes rule:

pJ(C ||E1 ∧ . . . ∧ En) =
pJ(E1 ∧ . . . ∧ En||C )priorJ(C )

priorJ(E1 ∧ . . . ∧ En)

I Chain rule for conditional probabilities:

pJ(E1, . . . ,En||C ) = pJ(E1||C )pJ(E2||E1,C ) . . . pJ(En||E1, . . . ,En−1,C )

I Given conditional indepence of evidence

pJ(E1 ∧ . . . ∧ En||C ) = pJ(E1||C )pJ(E2||C ) . . . pJ(En||C )

priorJ(E1 ∧ . . . ∧ En) = priorJ(E1) . . . priorJ(En)
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Semantic Classification and Learning

Learning (Bayes rule) in the Apple game

pFruitCJ (r : T Fruit) =

∑
TCol∈R(Col)

T Shape∈R(Shape)

pJ(T Fruit ||TCol ∧ T Shape)pJ(r : TCol)pJ(r : T Shape)

pJ(T Fruit ||TCol ∧ T Shp) =
pJ(TCol ∧ T Shape ||T Fruit)priorJ(T Fruit)

priorJ(TCol ∧ T Shape)
=

pJ(TCol ||T Fruit)pJ(T Shape ||T Fruit)priorJ(T Fruit)

priorJ(TCol)priorJ(T Shape)

So where do these conditional probabilities come from?
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Semantic Classification and Learning

Learning using a joint probability distribution

I Summing over alternatives

pJ(T c ||TE1 ∧ . . . ∧ TEm) =
pJ(T c ∧ TE1 ∧ . . . ∧ TEm)

pJ(TE1 ∧ . . . ∧ TEm)
=

pJ(T c ∧ TE1 ∧ . . . ∧ TEm)∑
T∈R(C) pJ(T ∧ TE1 ∧ . . . ∧ TEm)

I This requires either storing probabilities for a large number of
conjunctive types, or a way of computing them from simpler types

I Storing them is computationally complex

I How could they be computed?
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Semantic Classification and Learning

A problem

I Conditional probabilities in Bayes nets are computed in the same way
as in a Naive Bayes model, i.e. by counting instances of different
values of variables (e.g. the number of situations where A and B both
hold)

I This assumes a model where judgements are binary

I We want to instead sum together probabilities of previous
judgements, including situations being of conjunctive types (A ∧ B)

pJ(T1||T2) =
||T1 ∧ T2||J
||T2||J

=

∑
j∈JT1∧T2

j .prob∑
j∈JT2

j .prob
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Semantic Classification and Learning

I We want to compute conditional probabilities of the form

pJ(T1||T2) =
||T1 ∧ T2||J
||T2||J

=

∑
j∈JT1∧T2

j .prob∑
j∈JT2

j .prob

I More specifically, for example (for some
TCol ∈ R(Col),T Shape ∈ R(Shape))

pJ(TCol ||T Fruit) =

∑
j∈J

TCol∧TFruit
j .prob∑

j∈J
TFruit

j .prob

I So we need to have probabilities for judgements involving conjunctive

types T1 ∧ T2, e.g.

 sit = s
sit-type = Red∧Ashape
prob = 0.7


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Semantic Classification and Learning

I We need to have probabilities for judgements involving conjunctive

types T1 ∧ T2, e.g.

 sit = s
sit-type = Red∧Ashape
prob = 0.7


I Where do we get such a probability?

I Our model will only output non-conjunctive probabilities r : T c where
T c ∈ R(C )

I It also has access to observational probabilities of the evidence of the
form r : TE where TE ∈ R(E ) for some evidence variable type E

I Can the conjunctive probability be computed from these
non-conjunctive probabilities?

I Recall that unless T1 and T2 are independent,

pJ(a : T1 ∧ T2) = pJ(a : T1)pJ(a : T2 | a : T1)

I TCol and T Fruit do not seem to be independent
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Semantic Classification and Learning

Solution?

I In standard Bayesian probability theory, probabilities of conjuncts
A&B are computed by counting the number of instances (cases,
situations) where A and B both hold, regardless of whether they are
dependent or not

I Estimation of probability from the model is not the same as
computing the probability using the probability calculus (even if the
model consists of probabilities rather than counts)

I Hence, we can do the same in probabilistic TTR

I For meet types T1 ∧ T2, we want the probability of a situation s
being of T1 and T2, based both on the probabilities stored in J for s
being of the meet type and on the probabilities stored in J for s : T1

and s : T2
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Semantic Classification and Learning

Solution: revise how probabilities are estimated

I If J is a finite string of probabilistic Austinian proposition and T is a
type, then ||T ||J represents the sum of all probabilities associated
with T in J

I If T is a meet type T1 ∧ T2, then

||T1 ∧ T2||J =
∑

j∈JT1∧T2

j .prob +
∑

j1∈JT1
j2∈JT2

j1.sit=j2.sit

j1.prob · j2prob

Otherwise,

||T ||J =
∑
j∈JT

j .prob

I Note that the judgements involving T1 and T2 must concern the
same situation
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Remaining issue

I What are the consequences of including in JT probabilities of
subtypes of T?

I The connection between the probability of a situation being of a type T
and the same situation being of a subtype of T is not straightforward

I If we include subtypes, we get a lower bound of the summed probability
of T (since the probability of a situation s being of a subtype of T can
never be higher than the probability s being of type T )

I Alternatively, we can say

JT = {j |j ∈ J, j .sit-type = T}

instead of

JT = {j |j ∈ J, j .sit-type v T}
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Continued: learning using a joint probability distribution
I Summing over alternatives

pJ(T c ||TE1 ∧ . . . ∧ TEm) =
pJ(T c ∧ TE1 ∧ . . . ∧ TEm)

pJ(TE1 ∧ . . . ∧ TEm)
=

pJ(T c ∧ TE1 ∧ . . . ∧ TEm)∑
T∈R(C) pJ(T ∧ TE1 ∧ . . . ∧ TEm)

=
||T c ∧ TE1 ∧ . . . ∧ TEm ||J∑

T∈R(C) ||T ∧ TE1 ∧ . . . ∧ TEm ||J

I In case no relevant meet types are in J, this reduces to

||T c ||J · ||TE1 ||J · . . . · ||TEm ||J∑
T∈R(C) ||T ||J · ||TE1 ||J · . . . · ||TEm ||J

I If we compute the conditional probabilities when needed, it is
sufficient to store the probabilistic Austinian propositions for
judgements j where j .sit is an evidence value type or a conclusion
value type
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Semantic Classification and Learning

Towards full Bayes nets

I Bayes rule:

pJ(C ||E1 ∧ . . . ∧ En) =
pJ(E1 ∧ . . . ∧ En||C )priorJ(C )

priorJ(E1 ∧ . . . ∧ En)

I Chain rule for conditional probabilities:

pJ(E1, . . . ,En||C ) = pJ(E1||C )pJ(E2||E1,C ) . . . pJ(En||E1, . . . ,En−1,C )

I Cannot assume conditional indepence of evidence, instead need to
include dependencies as given by arcs in net

pJ(E1 ∧ . . . ∧ En||C ) = pJ(E1||C )pJ(E2||C ) . . . pJ(En||C )

priorJ(E1 ∧ . . . ∧ En) = priorJ(E1) . . . priorJ(En)
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Bayes net in Apple game

Colour

Fruit

Shape
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Semantic Classification and Learning

Learning in the Apple game with full Bayes net

pFruitCJ (r : T Fruit) =

∑
TCol∈R(Col)

T Shape∈R(Shape)

pJ(T Fruit ||TCol ∧ T Shape)pJ(r : TCol)pJ(r : T Shape)

If we are learning using Bayes rule:

pJ(T Fruit ||TCol ∧ T Shp) =
pJ(TCol ∧ T Shape ||T Fruit)priorJ(T Fruit)

priorJ(TCol ∧ T Shape)
=

pJ(TCol ||T Shape ∧ T Fruit)pJ(T Shape ||T Fruit)priorJ(T Fruit)

priorJ(TCol ∧ T Shape)
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Conclusions

Conclusions

I Our probabilistic formulation of a rich type theory with records
provides the basis for a compositional semantics in which functions
apply to categorical semantic objects in order to return functions from
categorical interpretations to probabilistic judgements.

I For sentences, the rules generate probabilistic Austinian propositions.

I This framework differs from classical model theoretic semantics, inter
alia, in that the basic types and type judgements at the foundation of
the type system correspond to perceptual judgements concerning
objects and events in the world, rather than to entities in a model and
set theoretic constructions defined on them.
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Conclusions

Conclusions

I We have offered a schematic view of semantic learning in which
observations of situations in the world support the acquisition of
Bayes Classifiers.

I The basic probabilistic types of our type theoretical semantics are
extracted from these classifiers.

I The proposed type theory specifies the interface between
observation-based learning of classifiers for objects and situations, and
the computation of complex semantic values for the expressions of a
natural language.

I Our general model of interpretation achieves a highly integrated
bottom-up treatment of linguistic meaning and perceptually-based
cognition.

I It situates meaning in learning how to make observational judgements
concerning the likelihood of situations obtaining in the world.

Staffan Larsson Bayesian nets in pTTR
CLASP seminar 2016-04-06 (with some edits based on discussion at the seminar) 68

/ 69



Conclusions

Future Work

I Bayesian reasoning from observation provides the incremental basis
for learning and refining predicative types.

I In future work we will explore implementations of our learning theory
in order to study the viability of our probabilistic type theory as an
interface between perceptual judgement and compositional semantics.

I We hope to show that, in addition to its cognitive and theoretical
interest, our proposed framework will yield results in robotic language
learning, and dialogue modelling.
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