MTT-semantics is both model-theoretic and proof-theoretic

Zhaohui Luo Royal Holloway University of London

Model-theoretic & Proof-theoretic Semantics

- Model-theoretic (traditional):
 - Denotations as central (cf, Tarski, ...)
 - ♦ Montague: NL → simple type theory → set theory
- Proof-theoretic (logics):
 - Inferential roles as central (Gentzen, Prawitz, Dummett, Brendom, ...)
 - E.g., logical operators given meaning via inference rules
- MTT-semantics:
 - Semantics in style of Montague semantics
 - But, in Modern Type Theories

- Example argument for <u>traditional</u> set-theoretic sem.
 - Or, an argument against non-set-theoretic semantics
- "Meanings are out in the world"
 - Portner's 2005 book on "What is Meaning" typical view
 - Assumption that set theory represents (or even is) the world
 - Comments:
 - This is an illusion! Set theory is just a theory in FOL, not "the world".
 - A good/reasonable formal system can be as good as set theory.

Claim:

Formal semantics in Modern Type Theories (MTT-semantics) is both model-theoretic and proof-theoretic.

- → NL → MTT (representational, model-theoretic)
 - MTT as meaning-carrying language with its types representing collections (or "sets") and signatures representing situations
- → MTT → meaning theory (inferential roles, proof-theoretic)
 - MTT-judgements, which are semantic representations, can be understood proof-theoretically by means of their inferential roles

- ❖ Traditional model-theoretic semantics: Logics/NL → Set-theoretic representations
- ❖ Traditional proof-theoretic semantics of logics: Logics → Inferences
- ❖ Formal semantics in Modern Type Theories:
 NL → MTT-representations → Inferences

ESSLLI 2014

Why important for MTT-semantics?

- Model-theoretic powerful semantic tools
 - Much richer typing mechanisms for formal semantics
 - Powerful contextual mechanism to model situations
- Proof-theoretic practical reasoning on computers
 - Existing proof technology: proof assistants (Coq, Agda, Lego, ...)
 - Applications of to NL reasoning
- Leading to both
 - Wide-range modelling as in model-theoretic semantics
 - Effective inference based on proof-theoretic semantics

Remark: new perspective & new possibility not available before!

This talk is based on:

- Collaborative work on MTTs and MTT-semantics with many people including, in recent years, among others:
 - S. Chatzikyriakidis (MTT-semantics)
 - S. Soloviev and T. Xue (coercive subtyping)
 - G. Lungu (signatures)
 - R. Adams, Callaghan, Pollack, ... (MTTs)

Several papers including

Z. Luo. Formal Semantics in Modern Type Theories: Is It Model-theoretic, Prooftheoretic, or Both? Invited talk at Logical Aspects of Computational Linguistics 2014.

This talk consists of three parts:

I. What is MTT-semantics?

Introduction to MTTs and overview of MTT-semantics

II. Model-theoretic characteristics of MTT-semantics

Signatures – extended notion of contexts to represent situations

III. Proof-theoretic characteristics of MTT-sem

 Meaning theory of MTTs – inferential role semantics of MTTjudgements

I. Modern Type Theories & MTT-semantics

- Type-theoretical semantics: general remarks
 - Types v.s. sets
- Modern Type Theories
 - Basics and rich type structure
- MTT-semantics
 - Linguistic semantics: examples

I.1. Type-theoretical semantics

- Montague Grammar (MG)
 - ❖ Richard Montague (1930 1971)
 - In early 1970s: Lewis, Cresswell, Parsons, ...
 - Later developments: Dowty, Partee, ...

- "Dynamic semantics/logic" (cf, anaphora)
- Discourse Representation Theory (Kemp 1981, Heim 1982)
- Situation semantics (Barwise & Berry 1983)
- Formal semantics in modern type theories (MTTs)
 - Ranta 1994 and recent development (this talk), making it a fullscale alternative to MG, being better, more powerful & with applications to NL reasoning based on proof technology (Coq, ...).

RHUL project http://www.cs.rhul.ac.uk/home/zhaohui/lexsem.html

What typing is not:

- "a: A" is not a logical formula.
 - ❖ 7 : Nat
 - Different from a logical formula is_nat(7)
- * "a : A" is different from the set-theoretic membership relation " $a \in S$ " (the latter is a logical formula in FOL).
- What typing is related to (in linguistic semantics):
 - Meaningfulness (ill-typed → meaningless)
 - Semantic/category errors (eg, "A table talks.")
 - Type presuppositions (Asher 2011)

Simple v.s. modern type theories

Church's simple type theory

- As in Montague semantics
- Base types ("single-sorted"): e and t
- * Composite types: $e \rightarrow t$, $(e \rightarrow t) \rightarrow t$, ...
- Formulas in HOL (eg, membership of sets)
 - ❖ Eg, s : e \rightarrow t is a set of entities (a ∈ s iff s(a))

Modern type theories

- Many types of entities "many-sorted"
 - Table, Man, Human, Phy, ... are types
- Different MTTs have different embedded logics:
 - Martin-Löf's type theory (1984): (non-standard) first-order logic
 - Impredicative UTT (Luo 1994): higher-order logic

Types v.s. Sets

- Both types and sets represent "collections of objects"
 - So, both may be used to represent collections in formal semantics ("model-theoretic").
 - But, their similarity stops here.
 - MTT-types are "manageable".
 - Some set-theoretical operations in set theory are destructive – they destroy salient MTT-properties.
 - Eg, intersection/union operations, a resulting theory is usually undecidable (see below).

- Decidability of type-checking: an example difference
 - "a: A" is decidable in STT (Church/Montague) or MTTs.
 - ❖ In contrast, the set membership "a∈S" in set theory is not decidable.
 - This decidability is essential for embedded logics in TTs.
 - HOL in STT and propositions-as-types logics for MTTs
 - Eg, we must be able to effectively apply HOL-rules in STT
 - Eg, in a <u>propositions-as-types</u> logic, we must be able to effectively check whether a is a proof of A (ie, a : A).
 - Working logics are necessary for formal semantics.

- MTTs have proof-theoretic <u>meaning theories</u>, while set theory does not:
 - MTTs are proof-theoretically specified by natural deduction rules (cf, Martin-Löf's meaning theory).
 - Meanings of MTT-judgements are given by means of their inferential roles – proof-theoretic semantics.

I.2. MTTs (1) – Types

Propositional types(Curry-Howard's propositions-as-types principle)

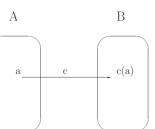
3	formula	type	example
3	$A \supset B$	$A \rightarrow B$	If, then
	∀x:A.B(x)	∏x:A.B(x)	Every man is handsome.

- Inductive and dependent types
 - * $\Sigma(A,B)$ (intuitively, { (a,b) | a : A & b : B(a) })
 - [handsome man] = Σ ([man], [handsome])
 - \star $\Pi x:A.B(x)$ (intuitively, { f: $A \rightarrow \cup_{a \in A} B(a) \mid a : A \& b : B(a) })$
 - A+B, AxB, Vect(A), ...
- Universes
 - A universe is a type of (some other) types.
 - ❖ Eg, CN a universe of the types that interpret CNs
- ❖ Other types: Phy, Table, A•B, ...

MTTs (2): Coercive Subtyping

- History: studied from two decades ago (Luo 1997) for proof development in type theory based proof assistants
- Basic idea: subtyping as abbreviation
 - ♦ A≤B if there is a (unique) coercion c from A to B.
 - Eg. Man \leq Human; \sum (Man, handsome) \leq Man; ...

- Coercive subtyping is adequate for MTTs
- Note: traditional subsumptive subtyping is not.
- Subtyping essential for MTT-semantics
 - ⋄ [walk] : Human→Prop, [Paul] = p : [handsome man]
 - * [Paul walks] = [walk](p) : Prop
 because p : [handsome man] ≤ Man ≤ Human



MTTs (3): examples

- Predicative type theories
 - Martin-Löf's type theory
 - Extensional and intensional equalities in TTs
- Impredicative type theories
 - Prop
 - Impredicative universe of logical propositions (cf, t in simple TT)
 - ❖ Internal totality (a type, and can hence form types, eg Table→Prop, Man →Prop, ∀X:Prop.X,
 - ❖ F/F[∞] (Girard), CC (Coquand & Huet)
 - ECC/UTT (Luo, implemented in Lego/Plastic)
 - CIC_p (Coq-team, implemented in Coq/Matita)

MTTs (4): Technology and Applications

- Proof technology based on type theories
 - Proof assistants ALF/Agda, Coq, Lego/Plastic, NuPRL, ...
- Applications of proof assistants
 - Math: formalisation of mathematics (eg, 4-colour Theorem in Coq)
 - CS: program verification and advanced programming
 - Computational Linguistics
 - E.g., MTT-sem based NL reasoning in Coq (Chatzikyriakidis & Luo 2014)

I.3. MTT-semantics

- Formal semantics in modern TTs
 - Formal semantics in the Montagovian style
 - But, in modern type theories (not in simple TT)
- Key differences from the Montague semantics:
 - ❖ CNs interpreted as <u>types</u> (not predicates of type $e \rightarrow t$)
 - Rich type structure provides fruitful mechanisms for various linguistic features (CNs, Adj/Adv modifications, coordination, copredication, linguistic coercions, events, ...)
- Some work on MTT-semantics
 - Ranta (1994): basics of MTT-semantics
 - A lot of recent developments

MTT-semantics

Category	Semantic Type	
S	Prop	
CNs (book, man,)	types (each CN is interpreted as a type: [book]. [man],)	
IV	A→Prop (A is the "meaningful domain" of a verb) A→Prop (A is the "meaningful domain" of an adjective)	
Adj		

ESSLUI 2014 21

MTT-semantics: examples

- Sentences as propositions: [A man walks] : Prop
- Common nouns as types: [man], [handsome man], [table]: Type
- ❖ Verbs as predicates: [shout] : [human]→Prop
 - * [A man shouts] = ∃m:[man]. [shout](m) : Prop
 - ❖ Only well-typed because [man] ≤ [human] subtyping is crucial.
- ❖ Adjectives as predicates: [handsome] : [man]→Prop
 - ❖ Modified CNs as Σ -types: [handsome man] = Σ ([man], [handsome])
 - ❖ Subtyping is crucial: [handsome man] ≤ [man]
- Adverbs as polymorphic functions:
 - ❖ [quickly] : Π A:CN. (A→Prop)→(A→Prop), where CN is universe of CNs

MTT-sem: more examples of linguistic features

Anaphora analysis

* MTTs provide alternative mechanisms for proper treatments via Σ -types [Sundholm 1989] (cf, DRTs, dynamic logic, ...)

Linguistic coercions

Coercive subtyping provides a promising mechanism (Asher & Luo 2012)

Copredication

- Cf, [Pustejovsky 1995, Asher 2011, Retoré et al 2010]
- Dot-types [Luo 2009, Xue & Luo 2012, Chatzikyriakidis & Luo 2015]
- Generalised quantifiers (Sundholm 1989, Lungu & Luo 2014)
 - ♦ [every] : Π A:CN. (A→Prop)→Prop
 - [Every man walks] = [every]([man], [walk])

Event semantics (Luo 2016)

Event types as dependent types Evt(h) (rather than just Event)

MTT-semantics: implementation and reasoning

- MTT-based proof assistants (see earlier)
- Implementation of MTT-semantics in Coq
 - UTT v.s. CIC_p,
 - They are implemented in Lego/Plastic and Coq, respectively.
 - They are essentially the same.
 - Coq supports a helpful form of coercions
 - Reasoning about NL examples (Chatzikyriakidis & Luo 2014)
 - Experiments about new theories
 - Theory of predicational forms (Chatzikyriakidis & Luo 2016a)
 - CNs with identity criteria (Chatzikyriakidis & Luo 2016b)

II. MTT-sem: Model-theoretic Characteristics

- In MTT-semantics, MTT is a <u>representational</u> language.
- MTT-semantics is model-theoretic
 - Types represent collections see earlier slides on using rich types in MTTs to give semantics.
 - Signatures represent situations (or incomplete possible worlds).

Types and signatures/contexts are embodied in judgements: $\Gamma \vdash_{\Sigma} a : A$

where A is a type, Γ is a context and Σ is a signature.

- **!** Contexts are of the form $\Gamma = X_1 : A_1, ..., X_n : A_n$
- Signatures, similar to contexts, are finite sequences of entries, but
 - their entries are introducing <u>constants</u> (not variables; i.e., cannot be abstracted – c.f, Edinburgh LF (Harper, Honsell & Plotkin 1993)), and
 - besides membership entries, allows more advanced ones such as manifest entries and subtyping entries (see later).

Situations represented as signatures

- ❖ Beatles' rehearsal: simple example
 - **♦** Domain: $\Sigma_1 \equiv D : Type$,

 $John:D,\ Paul:D,\ George:D,\ Ringo:D,\ Brian:D,\ Bob:D$

- * Assignment: $\Sigma_2 \equiv B: D \rightarrow Prop, \ b_J: B(John), \ ..., \ b_B: \neg B(Brian), \ b_B': \neg B(Bob), \ G: D \rightarrow Prop, \ g_J: G(John), \ ..., \ g_G: \neg G(Ringo), \ ...$
- Signature representing the situation of Beatles' rehearsal:

$$\Sigma \equiv \Sigma_1, \ \Sigma_2, \ ..., \ \Sigma_n$$

We have, for example,

 $\Gamma \vdash_{\Sigma} G(John)$ true and $\Gamma \vdash_{\Sigma} \neg B(Bob)$ true.

"John played guitar" and "Bob was not a Beatle".

Manifest entries

- More sophisticated situations
 - E.g., infinite domains
 - Traditional contexts with only membership entries are not enough
- In signatures, we can have a <u>manifest entry</u>:

 $x \sim a : A$

where a: A.

- Informally, it assumes x that behaves the same as a.
- Formally, it is an abbreviation of a emmbership entry and a subtyping entry (omitted).

Manifest entries: examples

```
\Sigma_1 \equiv D : Type,

John : D, Paul : D, George : D, Ringo : D, Brian : D, Bob : D

\Sigma_2 \equiv B : D \rightarrow Prop, \ b_J : B(John), ..., \ b_B : \neg B(Brian), \ b'_B : \neg B(Bob),

G : D \rightarrow Prop, \ g_J : G(John), ..., \ g_G : \neg G(Ringo), ...
```


 $D \sim a_D : Type, \ B \sim a_B : D \rightarrow Prop, \ G \sim a_G : D \rightarrow Prop,$

where

 $a_D = \{John, Paul, George, Ringo, Brian, Bob\}$

 $a_B: D \to Prop$, the predicate 'was a Beatle',

 $a_G: D \rightarrow Prop$, the predicate 'played guitar',

with a_D being a finite type and a_B and a_G inductively defined. (Note: Formally, "Type" should be a type universe.)

❖Infinity:

- Infinite domain D represented by infinite type Inf
 D ~ Inf : Type
- Infinite predicate with domain D:

 $f \sim f\text{-defn} : D \rightarrow Prop$

with f-defn being inductively defined.

"Animals in a snake exhibition":

 $Animal_1 \sim Snake : CN$

Subtyping entries in signatures

Subtyping entries in a signature:

$$c: A \leq B$$

where c is a functional operation from A to B.

Eg, we may have

```
D \sim \{ John, ... \} : Type, c : D \leq Human
```

- Note that, formally, for signatures,
 - we only need "coercion contexts" but do not need "local coercions" [Luo 2009, Luo & Part 2013];
 - this is meta-theoretically much simpler (Lungu & Luo 2016)

Remarks

- Using contexts to represent situations: historical notes
 - Ranta 1994 (even earlier?)
 - Further references [Bodini 2000, Cooper 2009, Dapoigny/Barlatier 2010]
 - Remark: contexts introduce variables → signatures are proper ways to represent situations as they introduce constants.
- Preserving TT's meta-theoretic properties is important!
 - Using the traditional notion of contexts is (of course) OK.
 - Our signatures with membership/manifest/subtyping entries are OK as well (meta-theory done by G. Lungu).
 - Extensions/changes need be careful: e.g., one may ask: are we preserving logical consistency under the propositions-as-types principle?

III. MTT-sem: Proof-theoretic Characteristics

- Proof-theoretic semantics
 - Meaning is use (cf, Wittgenstein, Dummett, Brandom)
 - Conceptual role semantics; inferential semantics
 - Inference over reference/representation
 - Two aspects of use
 - Verification (how to assert a judgement correctly)
 - Consequential application (how to derive consequences from a correct judgement)

April 2016 33

Proof-theoretic semantics in logics

- Two aspects of use via introduction/elimination rules, respectively.
- Gentzen (1930s) and studied by Prawitz, Dummett, ... (1970s)
- Meaning theory for Martin-Löf's type theory (Martin-Löf 1984)
- Further developed by philosopher Brendon (1994, 2000)

Proof-theoretic semantics for NLs

- Not much work so far
 - cf, Francez's work (Francez & Dyckhoff 2011) under the name, but different ...
- Traditional divide of MTS & PTS might have a misleading effect.
- MTT-semantics opens up new possibility a meta/representational language (MTT) has a nice proof-theoretic semantics itself.

34

Meaning Explanations in MTTs

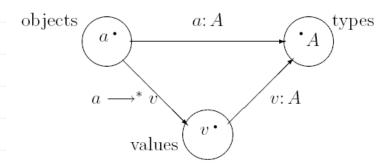
- Two aspects of use of judgements
 - How to prove a judgement?
 - What consequences can be proved from a judgement?
- Type constructors
 - They are specified by rules including, introduction rules & elimination rule.
 - * Eg, for Σ-types

$$(\Sigma \text{-I}) \qquad \qquad \frac{\Gamma \vdash_{\Sigma} a : A \quad \Gamma \vdash_{\Sigma} b : B(a) \quad \dots}{\Gamma \vdash_{\Sigma} p(a,b) : \Sigma(A,B)}$$

$$\begin{array}{ll} (\Sigma\text{-E}) & \frac{\Gamma \vdash_{\Sigma} a : A \quad \Gamma \vdash_{\Sigma} b : B(a) \quad \Gamma \vdash_{\Sigma} C : (\Sigma(A,B))Type}{\Gamma \vdash_{\Sigma} \mathcal{E}_{\Sigma}(C,\ p(a,b)) : C(p(a,b))} \end{array}$$

Verificationist meaning theory

- Verification (introduction rule) as central
- In type theory, meaning explanation via canonicity (cf, Martin-Löf); recall the following picture:



cf, strong normalisation property.

Pragmatist meaning theory

- Consequential application (elimination rule) as central
- This is possible for some logical systems
 - * For example, operator &.
- For dependent types, impossible.
 - One can only formulate the elimination rules based on the introduction operators!

Another view: both essential

- Both aspects (verification & consequential application) are essential to determine meanings.
 - Dummett
 - Harmony & stability (Dummett 1991), for simple systems.
 - For MTTs, discussions on this in (Luo 1994).
 - For a type constructor in MTTs, both introduction and elimination rules together determine its meaning.
- Argument for this view:
 - MTTs are much more complicated a single aspect is insufficient.
 - Pragmatist view:
 - impossible for dependent types (see previous page)
 - Verificationist view:
 - Example of insufficiency identity types

❖ Identity type Id_A(a,b) (eg, in Martin-Löf's TT)

- Its meaning cannot be completely determined by its introduction rule (Refl), for reflexivity, alone.
- The derived elimination rule, so-called J-rule, is deficient in proving, eg, uniqueness of identity proofs, which can only be possible when we introduce the so-called K-rule [Streicher 1993].
- So, the meaning of Id_A is given by either one of the following:
 - ❖ (Refl) + (J)
 - ❖ (Refl) + (J) + (K)

ie, elimination rule(s) as well as the introduction rule.

Concluding Remarks

Summary

- ❖ NL → MTT (model-theoretic)
 - Hence wide coverage of linguistic features
- → MTT → meaning theory (proof-theoretic)
 - Hence effective reasoning in NLs (eg, in Coq)

Future work

- Proof-theoretic meaning theory
 - E.g. impredicativity (c.f., Dybjer's recent work in on "testing-based meaning theory")
 - Meaning explanations of hypothetical judgements
- General model theory for MTTs? But ...
 - Generalised algebraic theories [Cartmell 1978, Belo 2007]
 - Logic-enriched Type Theories (LTTs; c.f., Aczel, Palmgren, ...)

