
Latent-Variable Grammars and Natural Language
Semantics

Shay Cohen
School of Informatics

University of Edinburgh

May 4, 2016

Modern Natural Language Processing

1980s - rule based systems

1990s - statistical methods (frequentist?)

2000s - ... statistical methods (Bayesian analysis?)

2010s - continuous representations, deep learning

Grammar Models

: Machine
Learning

? : NLP

Grammar Models

: Machine
Learning

S → NP VP
DT → the
· · ·

: NLP

Problems in Semantics Broadly Construed

Any problem in NLP that requires “understanding” text at some level

Most prominently: requires lexical understanding (such as in lexical
semantics)

By negation: anything that is not syntax!
(or, goes beyond syntax?)

Syntax in Pictures

Semantics in Pictures

PCFGs with Latent States

S

NP

D

the

N

mouse

VP

V

chased

P

him

=⇒

S1

NP3

D1

the

N2

mouse

VP2

V4

chased

P1

him

• Latent states play the role of syntactic heads, as in lexicalization

• They are not part of the observed data in the treebank

This Talk: L-PCFGs for Several Problems

We used latent-variable PCFGs to make progress on several problems:

• Syntactic parsing (the classic application of L-PCFGs)

• Machine translation

• Analyzing social media forums

• Open-domain question answering

Latent-Variable PCFGs

• The probability of a tree is the product of rules with latent states:

p(t) =
∏

p(a(h1)→ b(h2) c(h3) | a(h1))

• It is just a PCFG!

• However, we are interested in distributions over “skeletal” trees

p(skeleton(t)) =
∑
h

∏
p(a(h1)→ b(h2) c(h3) | a(h1))

• Distributions over skeletal trees are more expressive than PCFG

Main Estimation Algorithm

• Some variant of spectral learning for L-PCFGs (ACL, 2012)

• Based on the method of moments, with intuitive-to-understand
variants (EMNLP, 2015)

• Performs pretty well on syntactic parsing problems

• Very (computationally) efficient

• Allows encoding information about the latent states directly (why
is this important?)

Four Variants of the Estimation Algorithm

• SVD variant: based on singular value decomposition of empirical
count matrices (ACL, 2012; JMLR 2014)

• Convex EM variant: based on the so-called “anchor method” that
identifies features that uniquely identify latent states (ACL, 2014)

• Clustering variant: a simplified version of the SVD variant that
clusters low-dimensional representations to latent states (EMNLP,
2015)

• Simpler clustering variant: a further simplified version of the
clustering variant (EMNLP, 2015b)

The (Simpler) Clustering Variant

= (1, 1, 0, 1, 0, . . .)

1. For each node in a tree, cre-
ate a context feature vector, as a
function of the node and the nodes
surrounding it

S

NP

D

w0

N

w1

VP

V

w2

N

w3

2. Cluster these vectors to m clus-
ters using a clustering algorithm

3. Annotate each node with the
cluster ID of its feature vector.
Cluster ID = latent state

S[1]

NP[4]

D[7]

w0

N[4]

w1

VP[3]

V[1]

w2

N[1]

w3

The Method of Moments

MoM: Set up equations involving moments and parameters

Then, solve with respect to the parameters

Recent use: finding the parameters of latent variables

Simplicity of estimation

Efficiency of estimation

Theoretical guarantees

Performance

Theoretical Results of Convergence

With EM: local maximization of the log-likelihood function

If we could globally maximize the log-likelihood, estimation is likely to
be “consistent”

With method of moments: sample complexity statements in the style of:

With n samples, the deviation between the estimated
probability distribution and the “true” one is small if n is
large. The error is a function of various elements, including n,
some spectral elements of the moments and properties of the
grammar.

Inside Features Used

Consider the VP node in the following tree:
S

NP

D

the

N

cat

VP

V

saw

NP

D

the

N

dog
The inside features consist of:

• The pairs (VP, V) and (VP, NP)

• The rule VP → V NP

• The tree fragment (VP (V saw) NP)

• The tree fragment (VP V (NP D N))

• The pair of head part-of-speech tag with VP: (VP, V)

Outside Features Used

Consider the D node in
the following tree:

S

NP

D

the

N

cat

VP

V

saw

NP

D

the

N

dog
The outside features consist of:

• The fragments NP

D∗ N

, VP

V NP

D∗ N

and S

NP VP

V NP

D∗ N

• The pair (D, NP) and triplet (D, NP, VP)

• The pair of head part-of-speech tag with D: (D, N)

Results

Out-of-the-box accuracy of the clustering variant:

English: 86.48%
German: 75.04%

Regular spectral algorithm (Cohen et al., 2013):

English: 88.53%
German: 77.71%

Diversity in Parsing

• Models in the clustering variant are very compact

• Idea: create multiple models and combine them together

• Three ways to combine models together

• I will focus on MaxEnt reranking (Charniak and Johnson, 2005)

Creating Multiple Models

• Basic idea: noise the feature representations

• We used dropout and Gaussian noise (Wang et al., 2013)

• Dropout: zero randomly a small fraction of the features

• Gaussian noise: add random Gaussian noise to pre-clustered vectors

Oracle Results with Multiple Models

Oracle results:

English: 95.73%
German: 90.12%

Regular spectral algorithm (Cohen et al., 2013):

English: 92.81%
German: 83.45%

Final Results with Diversity

Final results, MaxEnt reranking:

English: 90.18%
German: 83.38%

Regular spectral algorithm (Cohen et al., 2013):

English: 89.06%
German: 80.64%

Optimizing the Latent State Number

Each nonterminal a is associated with ma latent states

Spectral learning gives a natural way to choose the number of latent
states based on the number of non-zero singular vectors

This criterion does not take into account interactions between different
nonterminals

Can we improve that?

The Berkeley parser has proved that coarse-to-fine techniques that
carefully select the number of latent states are very useful

Algorithm for Latent State Optimization

A beam search algorithm

The value in the queue is F1 measure on a development set

We iterate through the nonterminals, and change the number of latent
states, training, calculating accuracy and updating the queue

Major advantage: the training algorithm is relatively fast, so this is
mangageable

Traversal of multidi-
mensional vectors (la-
tent state numbers),
each giving an F1

score

Results

Language Berkeley Spectral Optimized

Basque 74.7 79.6 80.5 ?
French 79.9 78.0 78.1
German 80.1 76.4 79.4
Hebrew 87.0 86.5 89.0 ?
Hungarian 85.2 86.5 88.4 ?
Korean 78.5 76.5 80.0 ?
Polish 86.7 90.5 91.2 ?
Swedish 80.6 76.4 79.4

Experiments: Language Modeling

Saul and Pereira (1997):

p(w2|w1) =
∑
h

p(w2|h)p(h|w1).

h

w1 w2

This model is a specific case of L-PCFG

Experimented with bi-gram modeling for the Brown corpus and
Gigaword corpus

Results: Perplexity

Brown NYT
m 128 256 test 128 256 test

bigram Kneser-Ney 408 415 271 279

trigram Kneser-Ney 386 394 150 158

EM
iterations

388
9

365
8

364
284
35

265
32

267

pivot 426 597 560 782 886 715

Results: Perplexity

Brown NYT
m 128 256 test 128 256 test

bigram Kneser-Ney 408 415 271 279

trigram Kneser-Ney 386 394 150 158

EM
iterations

388
9

365
8

364
284
35

265
32

267

pivot 426 597 560 782 886 715

pivot+EM
iterations

310
1

327
1

357
279
19

292
12

281

• Initialize EM with our algorithm’s output

• EM converges in much fewer iterations

• Called “two-step estimation” (Lehmann and Casella, 1998)

This Talk: L-PCFGs for Several Problems

We used latent-variable PCFGs to make progress on several problems:

• Syntactic parsing (the classic application of L-PCFGs)

• Machine translation

• Analyzing social media forums

• Open-domain question answering

Machine Translation

Hierarchical phrase-based MT: use a synchronous grammar

Rewrite pairs of phrases that are mutual translations

There is a single nonterminal X

Example rule: X → 〈X good day |X god dag 〉

The Need for Context

X

X

die Tür

X

geht X

schnell

auf

X

X

the door

X

opens X

quickly

• Context in translation models is not sufficient for long sentences

• Solution: add latent variables to X
X is now typed with a category that is not observed in data

Machine Translation

Synchronous L-PCFGs for hierarchical translation (Saluja et al., 2014)

Chinese to English Experiments

System BLEU score (test)

Hiero 55.3

EM, m = 8 49.8
EM, m = 16 53.0

Spectral, m = 8 53.6
Spectral, m = 16 55.8

Spectral grammars are much smaller

They use “minimal grammars” instead of “composed grammars”

Assume each pair of sentences has a single synchronous derivation

This Talk: L-PCFGs for Several Problems

We used latent-variable PCFGs to make progress on several problems:

• Syntactic parsing (the classic application of L-PCFGs)

• Machine translation

• Analyzing social media forums

• Open-domain question answering

Discussion Forums

Discussion Forums

p0 Bob: When I play a recorded video on my camera,
it looks and sounds fine. On my computer,
it plays at a really fast rate and sounds like
Alvin and the Chipmunks!

p1 Kate: I’d find and install the machine’s latest audio
driver.

p2 Mary: The motherboard supplies the clocks for au-
dio feedback. So update the audio and
motherboard drivers.

p3 Chris: Another fine mess in audio is volume and
speaker settings. You checked these?

p4 Jane: Yes, under speaker settings, look for hard-
ware acceleration. Turning it off worked for
me.

p5 Matt: Audio drivers are at this link. Rather than
just audio drivers, I would also just do all
drivers.

p0 Bob: When I play a recorded video on my camera,
it looks and sounds fine. On my computer,
it plays at a really fast rate and sounds like
Alvin and the Chipmunks!

p1 Kate: I’d find and install the machine’s latest audio
driver.

p2 Mary: The motherboard supplies the clocks for au-
dio feedback. So update the audio and
motherboard drivers.

p3 Chris: Another fine mess in audio is volume and
speaker settings. You checked these?

p4 Jane: Yes, under speaker settings, look for hard-
ware acceleration. Turning it off worked for
me.

p5 Matt: Audio drivers are at this link. Rather than
just audio drivers, I would also just do all
drivers.

p0 Bob: When I play a recorded video on my camera,
it looks and sounds fine. On my computer,
it plays at a really fast rate and sounds like
Alvin and the Chipmunks!

p1 Kate: I’d find and install the machine’s latest audio
driver.

p2 Mary: The motherboard supplies the clocks for au-
dio feedback. So update the audio and
motherboard drivers.

p3 Chris: Another fine mess in audio is volume and
speaker settings. You checked these?

p4 Jane: Yes, under speaker settings, look for hard-
ware acceleration. Turning it off worked for
me.

p5 Matt: Audio drivers are at this link. Rather than
just audio drivers, I would also just do all
drivers.

p0 Bob: When I play a recorded video on my camera,
it looks and sounds fine. On my computer,
it plays at a really fast rate and sounds like
Alvin and the Chipmunks!

p1 Kate: I’d find and install the machine’s latest audio
driver.

p2 Mary: The motherboard supplies the clocks for au-
dio feedback. So update the audio and
motherboard drivers.

p3 Chris: Another fine mess in audio is volume and
speaker settings. You checked these?

p4 Jane: Yes, under speaker settings, look for hard-
ware acceleration. Turning it off worked for
me.

p5 Matt: Audio drivers are at this link. Rather than
just audio drivers, I would also just do all
drivers.

Conversation Trees

S[11]

T[3]

p0

X[5]

T[6]

p1

X[8]

T[7]

p2

X[12]

T[2]

p3

X[7]

T[4]

p4

X[5]

T[6]

p5

A terminal node is a whole post now!

Conversation Trees

We have grammar rules such as S[11] → T [3]X[5]X[12]X[5]

Each latent state corresponds to a bag of words, a topic

The topic dominates the set of posts in the thread at the bottom

S[11]

T[3]

p0

X[5]

T[6]

p1

X[8]

T[7]

p2

X[12]

T[2]

p3

X[7]

T[4]

p4

X[5]

T[6]

p5

Linear ordering of posts: by time (PCFG not enough!)

Data and Task

• 13,352 threads of computer troubleshooting posts from cnet.com

• Number of posts per thread ranges from 1 to 394

• Threads are structured as dependency trees (reply structure)

• Convert the reply structure to a conversation tree

• Given a set of posts, we try to recover the thread structure

hp0h hp1h hp2h hp3h hp4h hp5h

What Features We Use?

• The depth of a node

• Number of siblings

• Number of posts a node dominates

• Bag of words in dominated posts by a node

• ... and others

Further Extensions

• Latent-variable context-free rewriting systems

• Allow discontinuous spans for a given nonterminal

• This allows us to have non-projective reply structure

hp0h hp1h hp2h hp3h hp4h hp5h

Recovery of Conversation Trees

Method G-p G-r NG-p NG-r F (final score)

Right branching 35 100 100 0 0
All to root 100 0 56.8 87.6 0
Random 52.2 16.8 54.9 75.1 31.7

PCFG 39.4 58.3 48.8 36.1 45.0
PLCFRS 36.3 65.3 55.7 31.6 44.4

Bottom-line: PCFG does the best on average

Number of latent states used: a few dozens per nonterminal

Handling discontinuities does not help that much in total

Recovery of Conversation Trees

Non-projective trees:

PCFG: 43.0%

PLCFRS: 44.1%

LCFRS help with non-projective trees

This Talk: L-PCFGs for Several Problems

We used latent-variable PCFGs to make progress on several problems:

• Syntactic parsing (the classic application of L-PCFGs)

• Machine translation

• Analyzing social media forums

• Open-domain question answering

Open-Domain Question Answering

With the advent of new datasets, open-domain question answering has
become a new challenge

Current (industry) systems have relatively high precision, but really low
recall

The way a question is asked is very important

What if it were asked in several different ways? What if we asked the
same question more than once?

A Simple QA System Wrapper

1. Take an input question q

2. Generate paraphrases for it: q1, . . . , qm

3. Use the QA system to get answers a and a1, . . . , am

4. Take a majority vote or another approach to synthesize an answer
from a, a1, . . . , am.

L-PCFGs as a Generator

L-PCFGs are a generative model

Each latent state captures a summary of the tree below it

Does the latent state capture enough information to generate a
paraphrase of the tree below it?

Unfortunately, the answer is no.

L-PCFGs as a Generator

L-PCFGs are a generative model

Each latent state captures a summary of the tree below it

Does the latent state capture enough information to generate a
paraphrase of the tree below it?

Unfortunately, the answer is no.

Lattice Constraints

what kind

just what

what

exactly what

what sort

language

linguistic

do

people

members of the public

human beings

people ’s

the population

the citizens

in

Czech Republic

Czech

the Czech Republic

Czech

Cze

Republic

speak

talking about

express itself

talk about

to talk

is speaking

?

• Constrain the generation to a lattice

• Original question: what language do people in Czech Republic
speak?

The lattice is created by taking words and phrases from the original
sentence together with others from the Paraphrase Database

Generation of Question Paraphrases

• Paraphrases are generated from an L-PCFG while constraining
them to the lattice

• A classifier filters “bad” paraphrases based on simple sentence
statistics (such as BLEU score with respect to the original question)

• The classifier is learned from a small amount of manually
annotated data with positive and negative examples of paraphrases

• The end result is a black-box that given a question, outputs
paraphrases for that question

• The questions are syntactically diverse

How is the L-PCFG Trained?

• We use the Paralex corpus – 18M paraphrase pairs with 2.4M
distinct questions

• Parse the questions using the BLLIP parser

• Estimate an L-PCFG with 24 latent states

• How to capture semantic information?

Bi-Layered L-PCFGs

• Add another layer of latent states:

SBARQ-33-403

WHNP-7-291

WP-7-254

what

NN-45-142

day

SQ-8-925

AUX-22-300

is

NN-41-854

nochebuena

• The second layer has many more latent states (hundreds) and uses
a different feature set

• Example feature: bag of words in the inside / outside trees

Semantic Parsing Using Paraphrases

The basic system is from Reddy et al. (2014)

What language do people in Czech Republic speak?

Semantic Parsing Using Paraphrases

The basic system is from Reddy et al. (2014)

What language do people in Czech Republic speak?

What language do people in Czech
Republic speak? What is Czech Republic’s

language? What language do people speak in
Czech Republic? . . .

Semantic Parsing Using Paraphrases

The basic system is from Reddy et al. (2014)

What language do people in Czech Republic speak?

What language do people in Czech
Republic speak? What is Czech Republic’s

language? What language do people speak in
Czech Republic? . . .

λe.speak.arg1(e, people)
∧speak.arg2(e, language?)

∧speak.in(e,CzechRepublic)

CCG

Semantic Parsing Using Paraphrases

The basic system is from Reddy et al. (2014)

What language do people in Czech Republic speak?

What language do people in Czech
Republic speak? What is Czech Republic’s

language? What language do people speak in
Czech Republic? . . .

λe.speak.arg1(e, people)
∧speak.arg2(e, language?)

∧speak.in(e,CzechRepublic)

people y

target e1

x e1

language e1

Czech
Republic

sp
ea
k.a

rg
2

sp
ea
k.
ar
g1

sp
ea
k
.in

sp
ea
k
.arg

1

speak.arg2

speak.in

type

ty
p
e

CCG

Semantic Parsing Using Paraphrases

The basic system is from Reddy et al. (2014)

What language do people in Czech Republic speak?

Results

Algorithm F1 score

Berant and Liang (2014) 39.9
Bordes et al. (2014) 39.2
Dong et al. (2014) 40.8
Yao (2015) 44.3
Bao et al. (2015) 45.3
Bast and Haussmann (2015) 49.4
Berant and Liang (2015) 49.7
Yih et al. (2015) 52.5
Reddy et al. (2016) 50.3

PPDB 47.7
Bi-layered 48.1

Remarks

• The method does not perform as well as state of the art

• It is partially because paraphrases are done at word level

• Now looking at doing this at a phrase level

• Starting to look more and more like an MT problem

Final Remarks

Another Example: Unsupervised Parsing

The bear ate the fish

𝑤1 , 𝑤2 , 𝑤3 , 𝑤4 , 𝑤5 , 𝑧1, 𝑧2, 𝑧3

𝒙 = (𝐷𝑇,𝑁𝑁, 𝑉𝐵𝐷, 𝐷𝑇,𝑁𝑁)

𝑢(𝒙)

((DT NN) (VBD (DT NN)))

w1 w2 w3

z3

z1

w4 w5

z2

w1 w2 w3

z3z1

w4 w5

z2

Latent structure is a bracketing (Parikh et al., 2014)

Similar in flavor to tree learning algorithms (e.g. Anandkumar, 2011)

Very different flavor from the four estimation algorithms

Another Example: Inference Efficiency

Tensor decomposition for the reduction of grammar constant

Can be used for L-PCFGs (Cohen and Collins, 2012)

Can be used for PCFGs (Cohen et al., 2013)

Turns a chart algorithm into linear in the number of nonterminals

Related algorithm: Rabusseau et al. (2015)

Summary

Summary:

• Latent states + Grammars = Expressive, powerful formalism

• There are theoretically-motivated, efficient ways for estimation

• Various applications

