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A knowledge representation framework for robots

I Information fusion: interactively combining, comparing and
reasoning with information from perceptual and conceptual
domains

I Layered approach (Kruijff et al., 2007)
I meaning representations are modular and independent
I interfaces to mediate between the levels

I TTR (Cooper, 2012; Cooper et al., 2014): from types of
sensory readings to types of information states (ISs) (Dobnik
et al., 2014)
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Why TTR?

I Agent centred: an agent makes judgements that an object a
is of type T or a : T

I Type system is learned as agent interacts with its environment
(perception, Dobnik et al. (2013)) and other agents (dialogue,
(Larsson, 2013))

I Open to revision as agent enters new environments or
dialogue contexts

I Convergence of the type system across agents is ensured by
being located in the same perceptual and linguistic contexts

I A different view in computational linguistics but a standard
view in mobile robotics (Dissanayake et al., 2001)
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The flexibility of the type system

I Rich type system: a = ind26

sr = [[34,24],[56,78]. . . ]
loc = [45,78,0.34]

 :

 a : Ind
sr : list(list(Real))
loc : list(Real)



I Intensionality: a situation may be assigned more than one
record type Left, Near, At, Behind

I Sub-typing: Chair v Object v Physical entity v Entity and if
s : Chair then s : Object, s : Physical entity and s : Entity

I Component types: s : Left and s : Table-Left-Chair

I Dependent types: s : Table-Left-Chair and s : Table and s :
Left
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The computational cost of type judgements

I Each type assignment involves a binary judgement

I An agent with n types can make n judgements of each
situation

I A learning agent is faced with 2n possible assignments

n = 3, 23 = 8: {}, {T1}, {T2}, {T3}, {T1,T2}, {T1,T3},
{T2,T3} and {T1,T2,T3}

5 / 29



The computational cost of type judgements

I Each type assignment involves a binary judgement

I An agent with n types can make n judgements of each
situation

I A learning agent is faced with 2n possible assignments

n = 3, 23 = 8: {}, {T1}, {T2}, {T3}, {T1,T2}, {T1,T3},
{T2,T3} and {T1,T2,T3}

5 / 29



The computational cost of type judgements

I Each type assignment involves a binary judgement

I An agent with n types can make n judgements of each
situation

I A learning agent is faced with 2n possible assignments

n = 3, 23 = 8: {}, {T1}, {T2}, {T3}, {T1,T2}, {T1,T3},
{T2,T3} and {T1,T2,T3}

5 / 29



The computational cost of type judgements

I Each type assignment involves a binary judgement

I An agent with n types can make n judgements of each
situation

I A learning agent is faced with 2n possible assignments

n = 3, 23 = 8: {}, {T1}, {T2}, {T3}, {T1,T2}, {T1,T3},
{T2,T3} and {T1,T2,T3}

5 / 29



The computational cost of type judgements

I Each type assignment involves a binary judgement

I An agent with n types can make n judgements of each
situation

I A learning agent is faced with 2n possible assignments
n = 3, 23 = 8: {}, {T1}, {T2}, {T3}, {T1,T2}, {T1,T3},
{T2,T3} and {T1,T2,T3}

5 / 29



Sub-typing as a lattice

I Sub-typing can be inferred by comparing record structures

I (Hough and Purver, 2014) organise types in a lattice by
subtype relation for incremental inference

I Allows us to prune sub-types of an incompatible type

I Taxonomic or categorical relations

I Do humans judge situations from most general to most
specific?
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Thematic relations

I Require priming what to expect in the current state given the
knowledge about the world.

I Thematic relations: spatial, temporal, causal or functional
relations between individuals occuring in the same situations
Lin and Murphy (2001); Estes et al. (2011)

I Type resources (Cooper, 2008) that are employed and learned
in different situational contexts
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In this talk

I What drives the creation of resources/thematic relations?

I How are bundles of types selected and primed in particular
situational contexts?

I How can we model them computationally - for an application
of TTR in a situated robot?
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Attention

I Bottom-up attention: not under conscious control and task
independent

I Top-down attention: consciously directed and task
dependent/primed

I A shared resource that can spread across multiple tasks to
different degrees depending on the difficulty of the task and
attention policy (Kahneman, 1973)

I What are the conditions under which the perception of task
irrelevant distractors is prevented and at what stage?
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Attention driven judgements

I Load Theory (LT) (Lavie et al., 2004):
I Perceptional selection: the more perceptual load the less

capacity to perceive distractor objects
I Cognitive control: active processing prioritisation of

task-relevant stimuli and reduction of perceived distractors

I Attention driven judgements:
I Pre-attentive
I Task and context induced
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Pre-attentive judgements

I Perceptional selection mechanism of LT

I Iconic representations Harnad (1990)

I Ullman (1984): basic representations of visual environment
and visual routines

I Segmentation of a visual scene into entities and background

I Linked to agent’s biology and embodiment, sensors and
actuators: finite in number and “basic”

I Fundamental to the agent’s basic operation: made
continuously

I The judgements are pushed to the IS at a rate determined by
LT
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Task-induced and context-induced judgements

I Cognitive control mechanism of LT

I An agent is making a cup of tea in the kitchen on the second
floor at FLOV

I Task-induced judgements: primed by a default set of objects
and actions associated with the task

I Context-induced judgements: primed by the context in which
the task is taking place

I Both kinds of judgements interact

I Making a judgement belonging to a task or a context primes
the agent to further judgements of that task or context
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Control mechanism for TI and CI judgements

I Organisation of agent’s type inventory in memory according to
thematic relations (Lin and Murphy, 2001; Estes et al., 2011)

I How is type inventory organised this way used in making
primed typed judgements following the LT?
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Cognitive states

I An agent experiences the world through perception,
embodiment and linguistic interaction

I Experiencing tasks and contexts, an agent forms associations
between types co-occuring in its memory

I Associations clusters are modelled as cognitive states

I An agent is not conscious of its states

I . . . but they prime the agent to particular types of situations

I An agent may be in one or more state at the same time

I A particular type may be associated with more than one state
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Cognitive states, II

Relations between states are computationally more tractable than
relations between types

I States are built bottom up as agent discovers new situations

I Constrained by the environment in which it operates

I Can only discover a finite set of states in its lifetime

I Has a strong learning bias for making generalisations
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Cognitive states: computational model

I Latent Dirichlet Allocation (LDA) Blei et al. (2003):
document.word := topic and memory.type := state

I Hierarchical Dirichlet Process Teh et al. (2006) for unknown
number of topics/states
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Decision about states

We need. . .

I Update mechanism for the posterior distribution over states

I A decision mechanism regarding which types to be primed to
based on the posterior probability distribution over states
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Posterior probability over states

I Probability of states at t − 1

I The task and context judgements the agent has made
following the priming at t − n, n is the length of history

I Pre-attentive judgements at t reflecting perceptual change in
its world

P(st |Pret ,Taskt−1,Contt−1,ASt−1) =

η × P(Pret ,Taskt−1,Contt−1,ASt−1|st)
× P(st)
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Posterior probability over states, II

I Assuming conditional independence:

P(st |Pret ,Taskt−1,Contt−1,ASt−1) =

η × P(Pret |st)× P(Taskt−1|st)
× P(Contt−1|st)× P(ASt−1|st)× P(st)
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Priming of types, I

I Select st ∈ S with the maximum a posteriori probability

I Load the types from st into short-term memory
I + and –:

+ simple
– agent assumes it is only in 1 state
– may end up switching between two states
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Priming of types, II

I Rank and prune the state set using the posterior probability:
active relevant states (AS)

I The threshold determined by available resources: perceptual
selection and cognitive control

I Renormalise the probability distribution over AS

I Compute a posterior probability over the set of types in AS
using a Bayes optimal classifier

I Using the posterior probability over types, rank and prune the
set of types

I Load the set of unpruned types into working memory

21 / 29



Probability of a type

P(Ti ,t |Pret ,Taskt−1,Contt−1,ASt−1) =∑
si∈ASt

P(Ti |si )×

P(si |Pret ,Taskt−1,Contt−1,ASt−1)

+ A type is associated with more than one state

+ More than one state may be active at one time

+ Types and states as associated probabilistically: P(Ti |si )
+ Several states may be maximising a probability of a particular

type

+ The system is more stable in making decisions than argmax
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Probability of a type, II

+ The more judgements we make the more we reduce the
ambiguity of being in several states.

– Calculating posterior probabilities of types in active states is
computationally more expensive than calculating probabilities
of states

+ The aggressiveness of the pruning criteria: Load Theory
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Conclusions and future work

I Attention-driven type judgements in an interacting agent
inspired by discovery of thematic relations and sharing of
cognitive resources

I Agent maintains:
I a distribution set of cognitive states
I a distribution over set of types in the active states
I the number of active states is controlled by available cognitive

resources

I A general problem for agent making classification:
I visual search in robotics (Sjöö, 2011; Kunze et al., 2014)
I situated dialogue: disambiguation of speakers utterances/topic

priming
I situated dialogue: generating new utterances/topic modelling
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