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Introduction Grounding Semantics

Grounding Semantics

Building AI systems that connect word meanings to experience
I Practical interest:

Such systems can use language in powerful new ways
I Theoretical interest:

Only such systems could have meanings intrinsically

See e.g., Harnad 1990; Roy & Pentland 2002; Cohen et al 2002;
Yu & Ballard 2004; Steels & Belpaeme 2005.
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Introduction Grounding Semantics

Recent Progress

Captioning images (e.g., Young et al 2014)
I Given a picture
I Give a natural language summary of what’s happening

a brown dog and a tan one

Image from flickr user Joanne Bacon (jlbacon) via Young et al’s data set.
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Introduction Grounding Semantics

How Grounding Works

By combining visual classifiers, compositional semantics, and
models of natural communication

I For example, you need to associate color terms like tan
with appropriate regions of color space

Key issue: How to you handle vagueness
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Introduction Vagueness

Vagueness

Vague predicates have borderline cases:

definitely blue borderline blue definitely not blue
definitely not green borderline green definitely green

Stone (Rutgers) Semantics, Logic and Probability Oct 18, 2016 5 / 69



Introduction Vagueness

Challenges of Borderline Cases

Within discourse, you need to use logic.

A: It’s blue or it’s green.
B: It’s not blue.
A: It must be green.

This is true even for borderline cases.
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Introduction Vagueness

Challenges of Borderline Cases

Across discourses, you need to use common sense.
I People would be very likely to call this blue:

I People would be very reluctant to call this blue:
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Introduction Vagueness

One Interpretation

Language users respect logic
I they reason consistently and coherently
I they don’t say the same thing is blue at one moment,

not blue the next
Language users respect probability, to prefer likely judgments

I they track others’ likely meanings
I they describe things in ways others expect

Stone (Rutgers) Semantics, Logic and Probability Oct 18, 2016 8 / 69



Introduction Vagueness

Challenge of Vagueness

Not clear that logic and probability are really compatible.
I As illustrated by Sorites paradox
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Introduction Vagueness

Sorites, I

This color is definitely blue:
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Introduction Vagueness

Sorites, II

If two colors are very similar, if one is blue then so is the other:
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Introduction Vagueness

Sorites, III

Therefore, this color is definitely blue:

But this is absurd!
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Introduction Outline

Outline of the Rest of the Talk

Thre main parts
I An emerging theory of vagueness

Context is uncertain
Meaning is fixed in context

I An implementation
Describing colors in English with learned models

I Important open problems
But first, some background about color
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Color Definition

Color is a sensation

A sophisticated abstraction of the world
I summarizes complexity and ambiguity of lighting
I product of the human visual system
I exploits human sensory apparatus and experience

See Fairchild 2013, Hughes et al 2013
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Color Physics

Illumination

Everyday lighting involves varying distributions of energy

When we look at an object, we have no way to sense how it was
illuminated
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Color Physics

Reflectance

Light hits objects and scatters off
I The surface absorbs some wavelengths and emits others
I Depends on angle of incoming light and viewing angle
I Also depends on material: is it shiny, glossy, dull?

Image by GianniG46 via Wikimedia Commons
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Color Physics

Eventually light hits your eyes

Three kinds of cones in the retina measure intensity
I Measure energy profiles across spectral intervals

for red, green, and blue
I Values are products of illumination and reflectance

Image from OpenStax Human Anatomy and Physiology
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Color Perception

From retina to color

Color of objects gives brain’s estimate of diffuse reflectance
I Inferred by complex processing, not read off retina

Visual system can “unmultiply” numbers
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Color Perception

Example

=
illumination

×

reflectance

Image by Doug DeCarlo after Ted Adelson
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Color Perception
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illumination
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reflectance
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Color Perception

From retina to color

Color of objects gives brain’s estimate of diffuse reflectance
I Approximately invariant to ambiguities from illumination,

material, noise
I Draws on heuristics, experience (prior expectations), and

statistical inference
I Describes how object looks across the visible spectrum

See e.g., Barrow and Tannenbaum 1978; Tappen et al 2005; Sharan et al
2008.
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Color Perception

Color as spectrum

Colors summarize spectral profiles, not wavelengths of light
I We have pure primaries like red, green and blue

I But also saturated mixtures like yellow, cyan and magenta

Physically, this is where the color wheel comes from
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Color Perception

Color as 3D Space

Color reflects not only differences in hue
I Differences of saturation: muted to bright colors
I Differences of value: dark to light intensity

3D HSV space

Image by Michael Horvath
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Color Language

Describing colors

We can distinguish millions of color values, but we typically
group them into categories

Image from Randall Munroe
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Color Language

Basic color terms

I Basic categories are convex regions
I They are subject to strong perceptual constraints
I There are strong crosslinguistic universals

See e.g., Berlin 1991; Regier et al 2005, 2007; Kay et al 2009
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Color Language

Describing colors

Not just basic color terms
I We also have subordinate categories (beige, lavender),

named subcategories (royal blue, olive green),
modified ones (dark blue, bright purple), and
blends (reddish-orange).

I Some of these turn out to be very frequent.
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Color Language

Empirical Method

Crowdsourcing Color Descriptions
I In 2010, Randall Munroe (xkcd.com) conducted an online

survey, gathering 3.4 million color judgments
I Our subset: 2.17 million data points across 829 color

descriptions
I Pruned spam words, non-English speakers, and infrequent

descriptions
We can use this data to explore color meanings at large scale
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Vagueness

Vagueness

1. Context dependent meanings
2. Unceratin contexts
3. Continuous modeling
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Vagueness Context Dependence

Context-sensitivity

The meaning of a vague word depends on context
I Words target distinctions that matter to us now
I The goal is efficient communication

Kamp 1975; Lewis 1979; Kyburg and Morreau 200; Graff Fara 2000
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Vagueness Context Dependence

Context-sensitivity for color

Context associates colors with a specific range of hues

blue range

greenest blue purplest blue

Meanings are defined by thresholds or boundaries in color
space

Kennedy 2007
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Vagueness Uncertain Context

Probabilistic Context

We have only partial information about these boundaries
I A range of possible meanings may be in play
I But the way we use words commits us to certain distinctions
I As conversation unfolds, we accumulate constraints
I We eventually discover what distinctions to make

Modeled via probability distributions

Barker 2002; Lassiter 2009
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Vagueness Uncertain Context

Illustration for Color

Sample of possible boundaries for blue

blue range

blue range

blue range

blue range
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Vagueness Uncertain Context

Illustration for Blue

Suppose we agree that this color counts as blue:

Then we rule out these meanings:

blue range

blue range
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Vagueness Uncertain Context

Illustration for Blue

Suppose we agree that this color counts as blue:

And narrow down to these ones:

blue range

blue range
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Vagueness Formal Model

Formal Model

Use probability density functions to capture this uncertainty
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I Random variables τ Lower and τUpper

I In any context, category fits value y if τ Lower ≤ y ≤ τUpper
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Vagueness Formal Model

Formal Model

Use probability density functions to capture this uncertainty

µl µu

Hue

0.00

0.05

0.10

0.15

0.20

0.25
P

ro
ba

bi
lit

y

YτLower τUpper

I Track a posterior over τ Lower and τUpper in context
I Using prior and observed categorization examples
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Vagueness Formal Model

Formal Model

Use probability density functions to capture this uncertainty
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I Prior over τ Lower and τUpper is estimated from data
I in terms of parameters µLower and µUpper that give limits for
τ Lower and τUpper
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Vagueness Formal Model

Formal Model

Use probability density functions to capture this uncertainty
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I Prior over τ Lower and τUpper is estimated from data
I in terms of a Γ distribution (standard statistical tool) that

models how flexible thresholds are

Stone (Rutgers) Semantics, Logic and Probability Oct 18, 2016 38 / 69



Vagueness Formal Model

Formal Model

Mathematical summary—Applicability of a category k to a color
x in context, written

P(k true|x)

takes hue, saturation and value into account simultaneously:

=
∏

d∈(H,S,V )

P(τ L,d
k < xd

i < τU,d
k ) =

∏
d∈(H,S,V )

φd
k (xd )

φd
k (xd ) =


P(xd > τ L,d

k ), xd ≤ µL,d
k

P(xd < τU,d
k ), xd ≥ µU,d

k

1, otherwise
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Computation

Computational Experiments

1. Learning a color lexicon
2. Using a color lexicon
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Computation Learning a color lexicon

Model Challenges

Munroe’s data associates color values with descriptions
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Yellowish Green data

But we need a linking assumption to infer meaning
I Potential problem: pragmatics intervenes
I Choices could involve implicature and “theory of mind”

Anderson 1991; Smith et al 2013; Goodman and Lassiter 2013
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Yellowish Green data

But we need a linking assumption to infer meaning
I Key question: what are speaker’s communicative goals and

assumptions about the listener

Anderson 1991; Smith et al 2013; Goodman and Lassiter 2013
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Computation Learning a color lexicon

Model Challenges

Munroe’s data associates color values with descriptions

Hue

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

ba
bi

lit
y

φHueY ellowishGreen

Yellowish Green data

But we need a linking assumption to infer meaning
I First stab: no obvious signature of implicature in the

histograms

Anderson 1991; Smith et al 2013; Goodman and Lassiter 2013
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Computation Learning a color lexicon

Our Model: Rational Observer

Our assumptions about crowd contributors
I They want to say things they expect to be true
I They want match baseline rates of word use

They don’t have a communicative goal of informativeness
I So listeners can’t second-guess

why speakers said as much (or as little) as they did
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Computation Learning a color lexicon

Formal Details

Color Value
(X)

Possible
Label

( ksaidktrue) ( )

Observed 
Label

Label
Parameters

K Labels

P(k said , k true,x) = P(k said |k true)P(k true|x)P(x)
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Computation Learning a color lexicon

Formal Details

P(k said , k true,x) = P(k said |k true)P(k true|x)P(x)

I Availability: P(k said |k true)
I How often is it used when it is true
I Contrast yellow-green (high availability) and

chartreuse (low availability)
I Subjective Likelihood: P(k true|x)

I Fit of the description given vague semantics
I Prior: P(x)

I Munroe’s sampling rate, unfortunately not uniform
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Computation Learning a color lexicon

Deriving the Lexicon
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Yellowish Green data

I Assume data is derived from such a process
I Fit to corpus using Markov Chain Monte Carlo

Stone (Rutgers) Semantics, Logic and Probability Oct 18, 2016 47 / 69



Computation Learning a color lexicon

Result

The Lexicon of Uncertain Color Standards
I 829 color descriptions and their parameters
I Flexible semantic representations divorced from the

methods to use them
I Happy to share this!
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Computation Learning a color lexicon

Demo
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Computation Learning a color lexicon

Evaluation

Train on 70% of target Munroe data; develop on 5%; test on 25%

Compare to two alternative models
I GM: Gaussian Model

Color prototypes with category-specific distance measures
I HM: Histogram Model

Divides HSV space into nested cells and predicts from
smoothed counts

Measure
I Model complexity
I Precision of model fit
I Performance of model labeling
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Computation Learning a color lexicon

Performance

Model predictions

TOP1 TOP5 TOP10

LUX 39.55% 69.80% 80.46%
HM 39.40% 71.79% 82.53%
GM 39.05% 69.25% 79.99%

Model complexity and fit

-LL -LLV AIC Perplexity
LUX 1.13*107 2.05*106 4.13*106 13.61
HM 1.13*107 2.05*106 4.82*106 14.41
GM 1.34*107 2.08^106 4.17*106 14.14
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Computation Learning a color lexicon

Limitations

Doesn’t handle ambiguity—as in case of melon
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Melon data
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Computation Learning a color lexicon

Limitations

Doesn’t describe shape of all categories—as in case of greenish
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Computation Using the color lexicon

Generalizing Communicative Goals

New task (cf. van Deemter 2006):
I Distinguish one color Y from another color Z
I Two directions: Generation and understanding

Probabilistic and logical approach
I What’s the probability in context
I that the meaning of a word applies to Y
I but does not apply to Z?
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Computation Using the color lexicon

Distinguishing Colors in Context

φ(Y)− φ(Z)
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Computation Using the color lexicon

Distinguishing Colors in Context

φ(Y) ∗ (1− φ(Z))
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Computation Using the color lexicon

Three dimensional case

φ1(Y) ∗ (φ2(Y)− φ3(Z))

I φ1(Y) is the product of φ(Yd ) over dimensions d where Y
and Z are contrasting borderline cases

I φ2(Y) is the product of φ(Yd ) over all other dimensions d
I φ3(Z) is the product of φ(Zd ) over all dimensions d
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Computation Using the color lexicon

Demo
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Computation Using the color lexicon

Evaluation: Label Resolution

I Evaluated using human reference data

Baumgaertner et al 2012
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Computation Using the color lexicon

Results: Label Resolution

I 196 tokens, varying difficulty levels
I Our system’s performance:

I 152 correct
I 8 incorrect, several of which seem to be cases of human

error, e.g. directors produced color labels for the wrong
swatch

I 28 out-of-vocabulary terms that are closely related to
vocabulary in our system that would have been correct
answers

I 6 out-of-vocabulary terms that are closely related to
vocabulary in our system that would have been incorrect
answers

I 2 which are completely different from any vocabulary in our
system
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Computation Using the color lexicon

Limitations

More logic is still needed to capture relationships among
descriptions
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Computation Using the color lexicon

An attested case

a tan dog and a white one, or
a brown dog and a tan one
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Conclusion

Conclusions

Vagueness is dependence on an uncertain context
I A way to explain linguistic and philosphical intuitions
I A basis for learning and using grounded meanings

Focus on the case of color
I Learned models of vague meaning from multimodal corpus
I Applied the models for new tasks
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Future Work

Looking forward

Observed several limits on representations
I Handling ambiguity
I Modeling complex categories
I Interpreting extended descriptions

Important to address these limitations
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Future Work

Looking forward

More expressive language
I Visually-grounded categories
I Spatial language
I Verbs—change over time
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Future Work

Looking forward

Studying the semantics–pragmatics interface
I Our model gives a Nash equilibrium for semantics

P(x|k said) = P(x|k true)

in keeping with Lewis 1969
I But different assumptions about goals lead to

different strategic situations
I So what kind of goals and reasoning really fit conversation?
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Future Work

Looking forward

Richer interactions
I Empirically testing dynamics of vagueness in dialogue
I Using dynamic models to plan and track conversations
I Achieving grounding

for example with situated interaction with robots
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