
Efficient Divide-and-Conquer Parsing of Practical
Context-Free Languages

Jean-Philippe Bernardy Koen Claessen

CLASP Seminar, Nov 14, 2016

Parallel Parsing

FP workhorse: lists

:

1 :

2 :

3 :

4 []

0

4

7

9

10

I Built-in
sequentiality

I Bad!

Parallel Parsing

FP workhorse: lists

:

1 :

2 :

3 :

4 [] 0

4

7

9

10

I Built-in
sequentiality

I Bad!

Parallel Parsing

FP workhorse: lists

:

1 :

2 :

3 :

4 [] 0

4

7

9

10

I Built-in
sequentiality

I Bad!

Parallel Parsing

FP workhorse: lists

:

1 :

2 :

3 :

4 [] 0

4

7

9

10

I Built-in
sequentiality

I Bad!

Parallel Parsing

FP workhorse: lists

:

1 :

2 :

3 :

4 [] 0

4

7

9

10

I Built-in
sequentiality

I Bad!

Parallel Parsing

FP workhorse: lists

:

1 :

2 :

3 :

4 [] 0

4

7

9

10

I Built-in
sequentiality

I Bad!

Parallel Parsing

FP workhorse: lists

:

1 :

2 :

3 :

4 [] 0

4

7

9

10

I Built-in
sequentiality

I Bad!

Parallel Parsing

FP workhorse: lists

:

1 :

2 :

3 :

4 [] 0

4

7

9

10

I Built-in
sequentiality

I Bad!

Parallel Parsing

FP workhorse: lists

:

1 :

2 :

3 :

4 [] 0

4

7

9

10

I Built-in
sequentiality

I Bad!

Parallel Parsing

Exploiting parallelism: sum over a tree

1 2 3 4 5 6 7 8

I Picture a little computer at each node.

I The program “flows down” and the data “flows up”.

I Computers of the future will have such a fractal structure.

Parallel Parsing

Exploiting parallelism: sum over a tree

1 2 3 4 5 6 7 8

3 7 11 15

I Picture a little computer at each node.

I The program “flows down” and the data “flows up”.

I Computers of the future will have such a fractal structure.

Parallel Parsing

Exploiting parallelism: sum over a tree

1 2 3 4 5 6 7 8

3 7 11 15

10 26

I Picture a little computer at each node.

I The program “flows down” and the data “flows up”.

I Computers of the future will have such a fractal structure.

Parallel Parsing

Exploiting parallelism: sum over a tree

1 2 3 4 5 6 7 8

3 7 11 15

10 26

36

I Picture a little computer at each node.

I The program “flows down” and the data “flows up”.

I Computers of the future will have such a fractal structure.

Parallel Parsing

Exploiting parallelism: sum over a tree

1 2 3 4 5 6 7 8

3 7 11 15

10 26

36

I Picture a little computer at each node.

I The program “flows down” and the data “flows up”.

I Computers of the future will have such a fractal structure.

Parallel Parsing

Chart parsing

2 3 4 5 6 7 8

1

she 2

eats 3

a 4

fish 5

with 6

a 7

fork

G (CNF)

S → NP VP

VP → VP PP

VP → VP NP

VP → eats

PP → P NP

NP → Det N

NP → she

P → with

N → fish

N → fork

Det → a

Ri ,i+1 = {A | A→ wi ∈ G}
Rij = {A | k ∈ [i + 1..j − 1],B ∈ Rik ,C ∈ Rkj , A→ BC ∈ G}

Parallel Parsing

Chart parsing

2 3 4 5 6 7 8

1

she 2

eats 3

a 4

fish 5

with 6

a 7

fork

G (CNF)

S → NP VP

VP → VP PP

VP → VP NP

VP → eats

PP → P NP

NP → Det N

NP → she

P → with

N → fish

N → fork

Det → a

Rij = all non-terminals generating the input substring wi ..j

Rij = {A | k ∈ [i + 1..j − 1],B ∈ Rik ,C ∈ Rkj , A→ BC ∈ G}

Parallel Parsing

Chart parsing

2 3 4 5 6 7 8

NP 1

she VP 2

eats Det 3

a N 4

fish P 5

with Det 6

a N 7

fork

G (CNF)

S → NP VP

VP → VP PP

VP → VP NP

VP → eats

PP → P NP

NP → Det N

NP → she

P → with

N → fish

N → fork

Det → a

Ri ,i+1 = {A | A→ wi ∈ G}

Rij = {A | k ∈ [i + 1..j − 1],B ∈ Rik ,C ∈ Rkj , A→ BC ∈ G}

Parallel Parsing

Chart parsing

2 3 4 5 6 7 8

NP S S S 1

she VP VP VP 2

eats Det NP 3

a N 4

fish P PP 5

with Det NP 6

a N 7

fork

G (CNF)

S → NP VP

VP → VP PP

VP → VP NP

VP → eats

PP → P NP

NP → Det N

NP → she

P → with

N → fish

N → fork

Det → a

Ri ,i+1 = {A | A→ wi ∈ G}
Rij = {A | k ∈ [i + 1..j − 1],B ∈ Rik ,C ∈ Rkj , A→ BC ∈ G}

Parallel Parsing

Parsing Specification (1)

Structure on sets of non-terminals:

x + y = x ∪ y

x · y = {N | A ∈ x ,B ∈ y , N → AB ∈ G}

Structure on matrices:

(A + B)ij = Aij + Bij

(A · B)ij =
∑
k

Aik · Bkj

Is · associative?

Parallel Parsing

Parsing Specification (1)

Structure on sets of non-terminals:

x + y = x ∪ y

x · y = {N | A ∈ x ,B ∈ y , N → AB ∈ G}

Structure on matrices:

(A + B)ij = Aij + Bij

(A · B)ij =
∑
k

Aik · Bkj

Is · associative?

Parallel Parsing

Parsing Specification (1)

Structure on sets of non-terminals:

x + y = x ∪ y

x · y = {N | A ∈ x ,B ∈ y , N → AB ∈ G}

Structure on matrices:

(A + B)ij = Aij + Bij

(A · B)ij =
∑
k

Aik · Bkj

Is · associative?

Parallel Parsing

Parsing Specification (2)

Find smallest R, such that

R =I (w) + R · R (1)

(I (w))i ,i+1 = {A | A→ wi ∈ G} (2)

Parallel Parsing

Chart parsing as Divide and Conquer

1 2 3 4 5 6 7 8

Parallel Parsing

Chart parsing as Divide and Conquer

1 2 3 4 5 6 7 8

3 7 11 15

Parallel Parsing

Chart parsing as Divide and Conquer

1 2 3 4 5 6 7 8

3 7 11 15

10 26

Parallel Parsing

Chart parsing as Divide and Conquer

1 2 3 4 5 6 7 8

3 7 11 15

10 26

36

Parallel Parsing

Efficiency

I space usage quadratic in the size of input string

I runtime cubic in the size of input string

The combination operator takes cubic time

Parallel Parsing

A sparse matrix

2 3 4 5 6 7 8

NP S S S 1

she VP VP VP 2

eats Det NP 3

a N 4

fish P PP 5

with Det NP 6

a N 7

fork

#A ≤

α
∑

(i ,j)∈dom(A)

1

(j − i)2



Parallel Parsing

Cheap combination

The square to fill is sparse

I To fill it should be quick

I Good space usage

I Good time-usage

Parallel Parsing

How much work?

BCP

C

S

P

P

Parallel Parsing

How much work?

S

BCP

C

S

P

P

Parallel Parsing

How much work?

C

S

BCP

C

S

P

P

Parallel Parsing

How much work?

B

C

S

BCP

C

S

P

P

Parallel Parsing

How much work?

LB

C

S

BCP

C

S

P

P

Parallel Parsing

Deriving Efficient Transitive Closure Algorithm

Problem: find R such that R = R · R + W .

W =

[
A X
0 B

]
R =

[
A′ X ′

0 B ′

]
[
A′ X ′

0 B ′

]
=

[
A′ X ′

0 B ′

]
·
[
A′ X ′

0 B ′

]
+

[
A X
0 B

]

A′ = A′A′ + A

X ′ = A′X ′ + X ′B ′ + X

B ′ = B ′B ′ + B

Parallel Parsing

Deriving Efficient Transitive Closure Algorithm

Problem: find R such that R = R · R + W .

W =

[
A X
0 B

]
R =

[
A′ X ′

0 B ′

]

[
A′ X ′

0 B ′

]
=

[
A′ X ′

0 B ′

]
·
[
A′ X ′

0 B ′

]
+

[
A X
0 B

]

A′ = A′A′ + A

X ′ = A′X ′ + X ′B ′ + X

B ′ = B ′B ′ + B

Parallel Parsing

Deriving Efficient Transitive Closure Algorithm

Problem: find R such that R = R · R + W .

W =

[
A X
0 B

]
R =

[
A′ X ′

0 B ′

]
[
A′ X ′

0 B ′

]
=

[
A′ X ′

0 B ′

]
·
[
A′ X ′

0 B ′

]
+

[
A X
0 B

]

A′ = A′A′ + A

X ′ = A′X ′ + X ′B ′ + X

B ′ = B ′B ′ + B

Parallel Parsing

Deriving Efficient Transitive Closure Algorithm

Problem: find R such that R = R · R + W .

W =

[
A X
0 B

]
R =

[
A′ X ′

0 B ′

]
[
A′ X ′

0 B ′

]
=

[
A′ X ′

0 B ′

]
·
[
A′ X ′

0 B ′

]
+

[
A X
0 B

]

A′ = A′A′ + A

X ′ = A′X ′ + X ′B ′ + X

B ′ = B ′B ′ + B

Parallel Parsing

Deriving Efficient Chart Concatenation

Problem: find Y such that Y = AY + YB + X = V (A,X ,B).

Parallel Parsing

Deriving Efficient Chart Concatenation

Problem: find Y such that Y = AY + YB + X = V (A,X ,B).

Y =

[
Y11 Y12

Y21 Y22

]
X =

[
X11 X12

X21 X22

]

A =

[
A11 A12

0 A22

]
B =

[
B11 B12

0 B22

]

Parallel Parsing

Deriving Efficient Chart Concatenation

Problem: find Y such that Y = AY + YB + X = V (A,X ,B).

Y =

[
Y11 Y12

Y21 Y22

]
X =

[
X11 X12

X21 X22

]

A =

[
A11 A12

0 A22

]
B =

[
B11 B12

0 B22

]

[
Y11 Y12

Y21 Y22

]
=

[
A11 A12

0 A22

]
·
[
Y11 Y12

Y21 Y22

]
+

[
Y11 Y12

Y21 Y22

]
·
[
B11 B12

0 B22

]
+

[
X11 X12

X21 X22

]

Parallel Parsing

Deriving Efficient Chart Concatenation

Problem: find Y such that Y = AY + YB + X = V (A,X ,B).[
Y11 Y12

Y21 Y22

]
=

[
A11 A12

0 A22

]
·
[
Y11 Y12

Y21 Y22

]
+

[
Y11 Y12

Y21 Y22

]
·
[
B11 B12

0 B22

]
+

[
X11 X12

X21 X22

]
Y11 = A11Y11 + A12Y21 + Y11B11 + 0 + X11

Y12 = A11Y12 + A12Y22 + Y11B12 + Y12B22 + X12

Y21 = 0 + A22Y21 + Y21B11 + 0 + X21

Y22 = 0 + A22Y22 + Y21B12 + Y22B22 + X22

Parallel Parsing

Deriving Efficient Chart Concatenation

Problem: find Y such that Y = AY + YB + X = V (A,X ,B).

Y11 = A11Y11 + A12Y21 + Y11B11 + 0 + X11

Y12 = A11Y12 + A12Y22 + Y11B12 + Y12B22 + X12

Y21 = 0 + A22Y21 + Y21B11 + 0 + X21

Y22 = 0 + A22Y22 + Y21B12 + Y22B22 + X22

Y11 = A11Y11 + X11 + A12Y21 + Y11B11

Y12 = A11Y12 + X12 + A12Y22 + Y11B12 + Y12B22

Y21 = A22Y21 + X21 + 0 + Y21B11

Y22 = A22Y22 + X22 + Y21B12 + Y22B22

Parallel Parsing

Deriving Efficient Chart Concatenation

Problem: find Y such that Y = AY + YB + X = V (A,X ,B).

Y11 = A11Y11 + X11 + A12Y21 + Y11B11

Y12 = A11Y12 + X12 + A12Y22 + Y11B12 + Y12B22

Y21 = A22Y21 + X21 + 0 + Y21B11

Y22 = A22Y22 + X22 + Y21B12 + Y22B22

Y11 = V (A11, X11 + A12Y21 , B11)
Y12 = V (A11, X12 + A12Y22 + Y11B12, B22)
Y21 = V (A22, X21 , B11)
Y22 = V (A22, X22 + Y21B12 , B22)

Parallel Parsing

Deriving Efficient Chart Concatenation

Problem: find Y such that Y = AY + YB + X = V (A,X ,B).

Y =

[
Y11 Y12

Y21 Y22

]
X =

[
X11 X12

X21 X22

]

A =

[
A11 A12

0 A22

]
B =

[
B11 B12

0 B22

]

Y11 = V (A11, X11 + A12Y21 , B11)
Y12 = V (A11, X12 + A12Y22 + Y11B12, B22)
Y21 = V (A22, X21 , B11)
Y22 = V (A22, X22 + Y21B12 , B22)

No circular dependencies! Done!

Parallel Parsing

Valiant’s algorithm for transitive closure

Y = V (A,X ,B)

XA

B

Parallel Parsing

Valiant’s algorithm for transitive closure

Y = V (A,X ,B)

A11

A22

A12

B12B11

B22

X21

X11

X22

X12

Parallel Parsing

Valiant’s algorithm for transitive closure

Y = V (A,X ,B)

A11

A22

A12

B12B11

B22

X21

X11

X22

X12

Parallel Parsing

Valiant’s algorithm for transitive closure

Y = V (A,X ,B)

A11

A22

A12

B12B11

B22

Y21

X11

X22

X12

Parallel Parsing

Valiant’s algorithm for transitive closure

Y = V (A,X ,B)

A11

A22

A12

B12B11

B22

Y21

Y11

X22

X12

Parallel Parsing

Valiant’s algorithm for transitive closure

Y = V (A,X ,B)

A11

A22

A12

B12B11

B22

Y21

Y11

Y22

X12

Parallel Parsing

Valiant’s algorithm for transitive closure

Y = V (A,X ,B)

A11

A22

A12

B12B11

B22

Y21

Y11

Y22

Y12

Parallel Parsing

Haskell Implementation: Sparse Matrix Structure

import Prelude (Eq (. .))
class RingLike a where
zero :: a
(+) :: a→ a→ a
(·) :: a→ a→ a

data M a = Q (M a) (M a) (M a) (M a) | Z | One a

q Z Z Z Z = Z
q a b c d = Q a b c d

one x = if x ≡ zero then Z else One x

Parallel Parsing

Haskell Implementation: algorithm

instance (Eq a,RingLike a)⇒ RingLike (M a) where -- ...

v :: (Eq a,RingLike a)⇒ M a→ M a→ M a→ M a
v a Z b = Z
v Z (One x) Z = One x
v (Q a11 a12 Z a22) (Q x11 x12 x21 x22) (Q b11 b12 Z b22)

= q y11 y12 y21 y22
where y21 = v a22 x21 b11

y11 = v a11 (x11 + a12 · y21) b11
y22 = v a22 (x22 + y21 · b12) b22
y12 = v a11 (x12 + a12 · y22 + y11 · b12) b22

Parallel Parsing

Recursion in the grammar

BBBBBBBT

C

C

C

C

C

C

C

B → TitlePage

B → BC

Bad!
I The combination has a lot of

work to do (at least linear)

I AST is a list

Solution:
B ′ → TitlePage B

B → C∗

Parallel Parsing

Recursion in the grammar

BBBBBBBT

C

C

C

C

C

C

C

B → TitlePage

B → BC

Bad!

I The combination has a lot of
work to do (at least linear)

I AST is a list

Solution:
B ′ → TitlePage B

B → C∗

Parallel Parsing

Recursion in the grammar

BBBBBBBT

C

C

C

C

C

C

C

B → TitlePage

B → BC

Bad!
I The combination has a lot of

work to do (at least linear)

I AST is a list

Solution:
B ′ → TitlePage B

B → C∗

Parallel Parsing

Recursion in the grammar

BBBBBBBT

C

C

C

C

C

C

C

B → TitlePage

B → BC

Bad!
I The combination has a lot of

work to do (at least linear)

I AST is a list

Solution:
B ′ → TitlePage B

B → C∗

Parallel Parsing

Recursion in the grammar

BBBBBBBT

C

C

C

C

C

C

C

B → TitlePage

B → BC

Bad!
I The combination has a lot of

work to do (at least linear)

I AST is a list

Solution:
B ′ → TitlePage B

B → C∗

Parallel Parsing

Binary encoding of lists: idea

Y0

Y0

Y0

Y0

Y0

Y0

Y0

Y0

Y1

Y1

Y1

Y1

Y2

Y2 Y3

L→ Y ∗

Parallel Parsing

Binary encoding of lists: idea

Y0

Y0

Y0

Y0

Y0

Y0

Y0

Y0

Y1

Y1

Y1

Y1

Y2

Y2 Y3

L→ Y ∗

Parallel Parsing

Binary encoding of lists: idea

Y0

Y0

Y0

Y0

Y0

Y0

Y0

Y0

Y1

Y1

Y1

Y1

Y2

Y2

Y3

L→ Y ∗

Parallel Parsing

Binary encoding of lists: idea

Y0

Y0

Y0

Y0

Y0

Y0

Y0

Y0

Y1

Y1

Y1

Y1

Y2

Y2 Y3

L→ Y ∗

Parallel Parsing

Summary

I Valiant (75) does parsing using matrix multiply; yields the
most efficient known CF recognition algorithm: O(n2.3727). 1

I The very same algorithm yields parsing on “good” inputs in
O(n). The conquer step costs O(log2n) (instead of
O(n2.3727)).

I Simple, effective, flexible algorithm.

I Implemented in BNFC: push-button technology.

I It is fast: Incremental parsing of a 8000-line C program in less
than 1 millisecond.

Full details: http://cse.chalmers.se/~bernardy/PP.pdf

1Complexity of the Coppersmith-Winograd algorithm
Parallel Parsing

http://cse.chalmers.se/~bernardy/PP.pdf

Perspective

I Works with any non-associative ring-like structure. The same
algorithm supports probabilistic parsing; context sensitive; etc.
(To be efficient we need a cutoff heuristic though.)

I Maybe suitable for deep learning?

I “High level” cells activated (much more) seldom

Parallel Parsing

BONUS: Incremental computation (1)

1 2 3 4 5 6 7 8

3 7 11 15

10 26

36

Parallel Parsing

BONUS: Incremental computation (2)

Parallel Parsing

