Analysis

S

# A probabilistic, mereological account of the mass/count distinction

Peter Sutton (with Hana Filip)

CLASP Seminar University of Gothenburg 30<sup>th</sup> November, 2016



Guinviel Guine

HEINRICH HEINE UNIVERSITÄT DÜSSELDORF

1/42

### The Mass/Count Distinction

- Found in many nominal systems of natural languages
- But tests to reveal distinction may vary
- Number marking languages (E.g. English, Swedish, Finnish)
  - The 'signature property' is the most general
  - Direct attachment of a numerical expression to a noun (without coercion)
  - (1) Alex bought three chairs
  - (2) ??Alex bought three muds.

Classifier languages (E.g. Mandarin, Japanese) behave differently

- ► No nouns display the signature property (need for intervening classifier).
- But increasing evidence of a count/mass distinction e.g. Sudo (2016) for Japanese:
- (3) kinoo-no jiko'de-wa tasuu-no sisha-ga deta yooda yesterday-GEN accident-LOC-TOP many-GEN fatality-NOM came.out EVID 'It seems that the accident yesterday resulted in many fatalities.'
- (4) #Taro-wa tasuu-no ase-o kaita Taro-TOP many-GEN sweat-ACC secreted Int: 'Taro sweated a lot.'

#### Mass/Count Variation: Data

- Languages differ in their count/mass lexicalization patterns.
- Even more variation in abstract and event-denoting Ns (we will focus exclusively on concrete Ns).
- There are stark similarities
  - 'Substance' denoting nouns are highly probably mass
    - mud, blood, air, slime
  - Ns denoting single discrete objects (esp. animate, large) are highly probably count
    - woman, cat, car, chair
- But many cases of cross- and intralinguistic variation

CROSSLINGUISTIC VARIATION

| furniture_ <sub>C,SG</sub>                                                    | =         | huonekalu-t <sub>+C,PL</sub> (Finnish)     |
|-------------------------------------------------------------------------------|-----------|--------------------------------------------|
| footwear_C,sg                                                                 | =         | <i>jalkine-et</i> +C,PL (Finnish)          |
| kitchenware_ <sub>C,SG</sub>                                                  | $\approx$ | küchengerät-e <sub>+C,PL</sub> (German)    |
| <i>lentil-s</i> <sub>+C,PL</sub> , <i>linssi-t</i> <sub>+C,PL</sub> (Finnish) | =         | čočka-C,SG (Czech), lešta-C,SG (Bulgarian) |
| <i>bean-s</i> <sub>+C,PL</sub>                                                | =         | bob- <sub>C,SG</sub> (Bulgarian)           |

#### INTRALINGUISTIC VARIATION

| meubel-s <sub>+C,PL</sub> | vs. | meubilair_C (furniture, Dutch) |
|---------------------------|-----|--------------------------------|
| shoe-s <sub>+C</sub>      | vs. | footwear_C                     |
| seed-s <sub>+C,PL</sub>   | vs. | seed_C                         |
| oat-s <sub>+C,PL</sub>    | vs. | oatmeal_C                      |

### Mass/Count Variation: Main question

There are two distinct questions regarding count/mass variation

- 1. Why is  $N_1$  count in  $L_1$  when its cognate,  $N_2$ , is mass in  $L_2$ ?
  - E.g. Why is *furniture* mass, but *huonekalu* ('(item of) furniture', Finnish) count?
- 2. Why is there much variation across languages for Ns that refer to X, but little variation in Ns that refer to Y?
  - E.g. Why do Ns that refer to furniture vary much in their count/mass lexicalization patterns when Ns that refer to cats do not?
- Although both are interesting questions, we will only really discuss 2.
  - Answering 1. would probably require detailed work in lexical semantics in every language.
  - We propose to try to answer 2. by examining more general properties of the interface between the world, language and cognition.
- However, also some speculations about Yudja (a language in which all notional mass nouns have been argued to be count nouns (Lima, 2014))

/lass/Count literature

Analysis

Results

References

#### Outline

Introduction

Background: Pressures/constraints from learning and communication

Background: Mass/Count Literature

Analysis: Formally modeling the constraints of individuation and reliability

Lexical entries and deriving mass/count variation from the constraints

# Piantadosi, Tily, and Gibson (2011): Ambiguity

#### Zipfian Background

- Competing principles of least effort for hearer and speaker.
- Piantadosi et al. (2011)
  - Clarity versus Ease
  - CLARITY: "A clear communication system is one in which the intended meaning can be recovered from the signal with high probability."
    - Pushes towards unequivocal signal system
  - EASE: "An easy communication system is one in which signals are efficiently produced, communicated, and processed"
    - Pushes towards simpler (smaller, more often used) system of equivocal signals.
- Ambiguity in language is a result of balancing these pressures/constraints

# Sutton (2013, 2016): Vagueness

- Vagueness arises naturally as a result of pressure from communication and learning
- Similarly to Zipf:
  - Maximizing informational content would mean simple encoding and decoding of information in communication
    - E.g. tall<sub>487</sub> means greater that 176.3 cm in height
  - But this would lead to instability (not enough speakers would be exposed to enough meanings). (Kirby and Hurford, 2002; Kirby, 2007)
  - ► For a stable, effective means of communication that is learnable, predicates in languages must be balanced between being informative (specific), and learnable in a relatively small learning phase (general).
- But learning predicates requires abstracting over information from a limited number of uses
  - Can give rise to graded representations
  - Graded probabilistic representations explain facts associated with the use of vague predicates.

#### References

#### Summary: Piantadosi et al and Sutton

General pressures on languages regarding learning and communication:

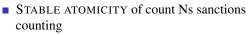
- 1. Semantic learning: the meaning of an expression should be learnable from a limited number of instances.
- 2. Communication: expressions should convey information sufficient amounts of information to be effective tools for communication.
- The way these pressures compete can explain the abundance of specific linguistic phenomena.
  - E.g. vagueness, ambiguity

#### References

### **Proposal Outline**

- We will apply a similar strategy to explain the distribution patterns of count/mass variation cross- and intralinguistically.
- Call a way of splitting up a number neutral predicate's denotation into individual entities an *individuation schema*
- For concrete nouns we will argue these two pressures translate into:
  - 1. **Reliability:** There should be an individuation schema that reliably predicts when to apply the predicate (a quantitative criterion of application).
  - 2. **Individuation:** Individuation schemas should convey sufficient amounts of information to be effective tools for identifying individuals.
- We will derive mass/count variation patterns in terms of when these two pressures can or cannot be jointly satisfied.

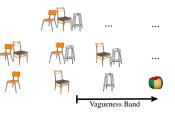
# Chierchia 2010: Mass/Count is a matter of vagueness



 Any count N has at least some elements that are atomic across all admissible precisifications

VAGUENESS in mass Ns blocks counting

- Mass Ns have unstable individuals in their denotation
- Minimal individuals/atoms on some precisifications are not minimal/atomic on others

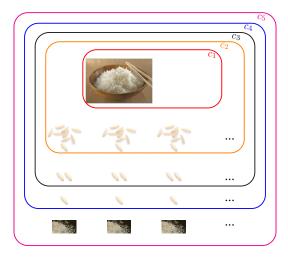




References

#### Chierchia (2010): Supervaluating over contexts

#### Perhaps better thought of as a form of context sensitivity

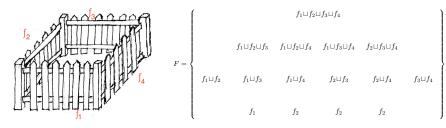


# Chierchia (2010): Summary

- Take home message: Form some predicates P, there are many contexts in which single individuated units of P (grains etc.) are not sufficient in quantity to count as P.
- Our Analysis: The most natural individuation schema (in terms of grains) for some *P*s provides an *unreliable* basis to identify when to apply *P*

# Rothstein (2010) [+COUNT] means semantically atomic

Atomicity relative to a context k, where k is a set of entities that 'count as one' in a given context.



- $N_{\text{count}} = COUNT_k(N_{\text{root}})$ 
  - $COUNT_k(F) = \{ \langle d, k \rangle : d \in F \cap k \}$
  - ►  $k_1 = \{f_1, f_2, f_3, f_4, g_1, g_2, ...\}, k_2 = \{f_1 \sqcup f_2 \sqcup f_3 \sqcup f_4, g_1, g_2, ...\}$
  - $\blacktriangleright COUNT_{k_1}(F) = \{ \langle f_1, k_1 \rangle, \langle f_2, k_1 \rangle, \langle \{f_3, k_1 \rangle, \langle f_4, k_1 \rangle \} \Rightarrow Four fences$
  - $COUNT_{k_2}(F) = \langle f_1 \sqcup f_2 \sqcup f_3 \sqcup f_4, k_2 \rangle \Rightarrow One fence$

# Rothstein (2010): Summary

- Take-home message
  - ► For some nouns (e.g. *fence*, *hedge*, *wall*), what counts as 'one' varies with context.
- Our Analysis: There is no single individuation schema that correctly identifies single fences, hedges, walls etc. in every context.

### Landman (2011): Mass means Overlap

- Notional set of countable entities modeled as generator sets
  - ► Generator sets *generate* full N denotations under mereological sum ⊔
  - A generating set for X is a set  $gen(X) \subseteq X \{0\}$  such that:  $\forall x \in X : \exists Y \subseteq gen(X) : x = \sqcup Y$
- Chierchia's approach: underdetermination wrt what to count
- Landman's approach: overdetermination wrt what to count
  - For mass Ns, there are overlappping entities that count as one "simultaneously in the same context" in the selected generator set
- Count Ns (e.g. *cat*): No overlap in the generator set (the set of single cats) ⇒ only one way to count
- Two kinds of mass Ns
  - Mess mass nouns (mud, blood, air)
  - Neat mass nouns (*furniture*, *kitchenware*)
- We focus on Landman's account of neat mass nouns

#### Set of generators for *kitchenware*: What intuitively counts as one

- This set overlaps
- ▶ E.g. {pestle, mortar, pan, lid, pestle  $\sqcup$  mortar, pan  $\sqcup$  lid}

• Overlap resolved at *variants* (which form maximally disjoint subsets)

- But these variants form different cardinalities of countable entities
  - E.g.  $v_1 = \{\text{pestle}, \text{mortar}, \text{pan}, \text{lid}\} = 4 \text{ items}$
  - E.g.  $v_2 = \{ \text{pestle} \sqcup \text{mortar}, \text{pan} \sqcup \text{lid} \} = 2 \text{ items}$
- Counting goes wrong, therefore *kitchenware* is mass



# Landman (2011) Summary

#### Take-home message

- Denotations of certain mass nouns include multiple different ways of 'splitting them up' into countable units.
- Our Analysis: There is no single individuation schema that correctly identifies single items of furniture, kitchenware, jewellery etc. in every context.

# Interim Analysis of Background Literature

Some important observations have been made in the recent literature:

- Nouns such as *fence*, *hedge*, *wall* AND nouns such as *kitchenware*, *furniture*, *jewellery* 
  - There is no single individuation schema that correctly identifies single items of furniture, kitchenware, jewellery etc. in every context.
- Nouns such as *lentils*, *beans*, *rice*:
  - The most natural individuation schema (in terms of grains) for some Ps provides an unreliable basis to identify when to apply P

We will use these data in out anlysis.

### **Qualities and Measures**

- Krifka (1989) distinguished QUALITATIVE and QUANTITATIVE factors in applying predicates
  - ► All nouns encode a qualitative criterion of application (MUD(x) and COW(x)] below)
  - Count nouns also encode extensive 'natural unit' measure functions
  - Measure phrases (e.g. *kilo of*) express extensive measure functions and encode a quantitative criteria of application

$$\begin{bmatrix} \text{mud} \end{bmatrix} = \lambda x. \quad [\text{MUD}(x)] \\ \begin{bmatrix} \text{cow} \end{bmatrix} = \lambda n.\lambda x. \quad [\text{COW}(x) \land \text{NU}(\text{COW})(x) = n] \\ \begin{bmatrix} \text{kilo of}_{\text{simplified}} \end{bmatrix} = \lambda n.\lambda P.\lambda x. \quad [P(x) \land kg(x) = n] \end{bmatrix}$$

- We assume (closer to Landman (2011, 2016)) that all nouns encode quantitative and qualitative criteria of application
- Also like Landman Mass if counting base is not disjoint

#### Lexical entries in mereological TTR

• A simplistic entry for a concrete noun like *cat*:

 $[\![ \operatorname{cat} ]\!] = \lambda r : [x : Ind]. \left[ \begin{array}{cc} s_{cat} & : & \operatorname{cat}(r.x) \end{array} \right]$ 

A slightly less simplistic entry for *cat* 

$$\llbracket \operatorname{cat} \rrbracket = \lambda r : [x : Stuff]. \begin{bmatrix} s_{cat} & : & \operatorname{cat}(r.x) \\ s_{cat-ind} & : & \operatorname{cat}_{Ind}(r.x) \end{bmatrix}$$

- cat(x): Regular p-type (but assumed to be number-neutral)
- Stuff: Basic type. No assumption of individuation.
- ► cat<sub>ind</sub>:
  - Specialized p-type for individuating cats
  - Builds in both quantitative and qualitative criteria for predicate application.

Domain of entities structured as Boolean semilattice closed under sum

More will be said about types such as cat<sub>ind</sub>

# $P_{Ind}$ types

- Types that individuate *P*s are a special case of a quantitative measure function on stuff with *P* qualities
  - Function from stuff which has some (to be specified) P properties, to a measure value i

$$\begin{array}{cccc} s_{P_{qual}} & : & \left[ \begin{array}{ccc} x & : & Stuff \\ s_{P_{pptys}} & : & P_{pptys}(x) \end{array} \right] \\ f_{P_{quant}} & : & \left( \left[ \begin{array}{ccc} x & : & Stuff \\ s_{P_{pptys}} & : & P_{pptys}(x) \end{array} \right] \rightarrow \mathbb{N} \right) \\ i & : & \mathbb{N} \\ f_{p_{quant}}(s_{P_{qual}}) & : & \mathbb{N}_i \end{array} \right]$$

Abbreviation: When measure value is 1, this type is abbreviated to  $P_{ind}(x)$  $\begin{bmatrix} \operatorname{cat} \end{bmatrix} = \lambda r : [x : Stuff]. \begin{bmatrix} s_{\operatorname{cat}} & : \operatorname{cat}(r.x) \\ s_{\operatorname{cat-ind}} : \begin{bmatrix} s_{\operatorname{cat-quant}} & : [s_{\operatorname{cat-pptys}} : \operatorname{cat}_{pptys}(x)] \\ f_{\operatorname{cat-quant}} & : ([s_{\operatorname{cat-pptys}} : \operatorname{cat}_{pptys}(r.x)] \to \mathbb{N}) \end{bmatrix} \end{bmatrix}$   $= \lambda r : [x : Stuff]. \begin{bmatrix} s_{\operatorname{cat}} & : \operatorname{cat}(r.x) \\ s_{\operatorname{cat-ind}} : \operatorname{cat}(r.x) \\ s_{\operatorname{cat-ind}} : \operatorname{cat}(r.x) \end{bmatrix}$ 

#### Characterizing the pressures in prob-TTR

- 1. **Reliability:** There should be an individuation schema that reliably predicts when to apply the predicate (a quantitative criterion of application).
- 2. **Individuation:** Individuation schemas should convey sufficient amounts of information to be effective tools for identifying individuals.
- These pressures can be modeled more effectively in the probabilistic version of TTR
  - Linked to a learning model (Cooper et al., 2014, 2015) to express more/less reliable indictors of making type judgements.
  - Probabilistic formalism easily expressed in information theoretic terms.
- 1. **Reliability:** Maximize a (to be defined) pair of conditional probabilities .
- 2. Individuation: Minimize entropy wrt establishing a counting result.

# Reliability: Maximize the conditional probabilities

- (x: Stuff left out for brevity)
- Maximizing two conditional probabilities yields reliability.
- Find the  $P_{Ind_j}(x)$  type such that
  - 1.  $Max_j(p(r: [s_P : P(x)] | r: [s_{P-ind} : *P_{Ind_j}(x)]))$ 
    - So being a *P*-individual or a sum of *P*-individuals is a very strong indicator of being a *P*
    - Militates against over-inclusivity of  $P_{Ind_j}(x)$
  - 2.  $Max_j(p(r: [s_{P-ind} : *P_{Ind_j}(x)] | r: [s_P : P(x)]))$ 
    - So being a P is a very strong indicator of being a P-individual or a sum of P-individuals.
    - Militates against under-inclusivity of  $P_{Ind_j}(x)$
- Open empirical question: What kind of *Max* function?
  - Absolute Max will return the trivial: p(a:T|a:T)

#### Individuation: Minimize Entropy for Individuation Schemas

- The property of being disjoint can be derived from more general informativeness constraints (cf Pientadosi et al)
  - Key idea: A disjoint individuation schema has minimum entropy with respect to determining a counting result.
  - A type T is disjoint relative to a probability threshold  $\theta$ :  $T: Disj_{\theta} \leftrightarrow \text{ for all } a, b \text{ such that } p(a:T) \geq \theta \text{ and } p(b:T) \geq \theta,$ if  $a \neq b$ , then  $a \sqcap b = 0$
- Equivalent to standard *disjointness* at the upper limit.
  - ► Intuitive idea: If we are certain enough that there are overlapping entities that are of type *T*, then we can judge that *T* is not disjoint.
  - A graded alternative would be possible.

#### Individuation: Minimize Entropy for Individuation Schemas

- For non-disjoint types, one can form maximally disjoint subtypes (variants).
- Disjoint types have only one variant (identity)
- Probability distributions over variants in terms of entropy.

$$Min_j(-\sum_{v_i \in V} p(v_i|P_{Ind_j}) \times \log p(v_i|P_{Ind_j}))$$

- Average amount of information needed to determine a specific counting result.
  - Assuming an equal distribution over variants

| Number of variants | 1 | 2 | 4 | 8 | 16 |
|--------------------|---|---|---|---|----|
| Entropy            | 0 | 1 | 2 | 3 | 4  |

- Effect: Pushes towards a disjoint Individuation schema.
- Can also model a cost to context sensitivity C:

$$Min_j(-(\sum_{v_i \in V} p(v_i|P_{Ind_j}) \times \log p(v_i|P_{Ind_j})) + C)$$

• Suggestion: The greater the number of potential disjoint schemas to resolve in context, the greater the cost.

References

#### Context specific and context general schemas

- Need some space of Individuation schemas to enter into probabilistic and information theoretic calculations for individuation and reliability.
- If a learner gets evidence of multiple schemas across contexts:
  - $P_{Ind_{c_i}}$ : Schema for context  $c_i$
  - $P_{Ind_{gen}}$ : Generalized context independent schema.
- In principle, a different schema space could be fed into the system from e.g. a perceptual classifier.

| Intro | Information and Communication | Mass/Count literature | Analysis | Results | References |
|-------|-------------------------------|-----------------------|----------|---------|------------|
|       |                               | Summary               |          |         |            |

- Both pressures on lexical entries for concrete nouns can be given probabilistic/information theoretic characterisations
  - Reliability: Pushes towards a general schema of individuation (\* $P_{Ind}$  as close as possible to the number neutral predicate P).
  - ► Individuation: Pushes towards a specific (and disjoint) schema of individuation *P*<sub>*Ind*</sub>.
- Next: look at some specific cases.
- Conflict: Mass/count variation predicted.
- Unison: Stable mass predicted

#### Cat

#### ■ If cat<sub>*Ind*</sub> is the p-type for single cats then:

$$p(r: [s_{cat-ind} : * \operatorname{cat}_{Ind}(x)])|r: [s_{cat} : \operatorname{cat}(x)]) = v.$$
 high

Individuation: 
$$-\sum_{v_i \in V} p(v_i | \operatorname{cat}_{Ind}) \times \log p(v_i | \operatorname{cat}_{Ind}) = 0$$

Result: cat<sub>Ind</sub> satisfies both pressures well.

$$\llbracket \operatorname{cat} \rrbracket = \lambda r : [x : Stuff]. \begin{bmatrix} s_{cat} & :\operatorname{cat}(r.x) \\ s_{cat-ind} & :\operatorname{cat}_{Ind}(r.x) \end{bmatrix}$$

Disjoint *P*<sub>Ind</sub> type, so count

#### Constraints for lentil-like Nouns

#### 

 $p(r:[\ s_{lentil-ind}:\ *lentil_{lnd}(x)\ ])|r:[\ s_{lentil}:\ lentil(x)\ ])$  = highish (doesn't accommodate sub-grain parts)

Individuation:  $-\sum_{v_i \in V} p(v_i | Ind_{lentil}) \times \log p(v_i | Ind_{lentil}) = 0$ 

#### Generalized individuation schema: lentil<sub>Indgen</sub>

Reliability:

 $\begin{array}{ll} p(r: \left[ \begin{array}{c} s_{lentil-ind} & : \end{array} \ ^* lentil_{Ind_{gen}}(x) \end{array} \right]) |r: \left[ \begin{array}{c} s_{lentil} & : \end{array} \ lentil(x) \end{array} \right]) & = \mbox{high} \\ (\mbox{distribution of } ^* lentil_{Ind_{gen}} \ \mbox{approximates that of } lentil(x)) \end{array}$ 

Individuation:  $-\sum_{v_i \in V} p(v_i | \text{lentil}_{Ind_{gen}}) \times \log p(v_i | \text{lentil}_{Ind_{gen}}) = \mathbf{v}.$  high

#### Neither of the two alternatives for individuation can satisfy both constraints.

# Lentil versus Čočka ('lentil', Czech)

$$\llbracket \text{ lentil } \rrbracket = \lambda r : [x : Stuff]. \begin{bmatrix} s_{lentil} & : \text{ lentil}(r.x) \\ s_{lentil-ind} & : \text{ lentil}_{Ind}(r.x) \end{bmatrix}$$

Prioritizes Individuation (minimizes entropy)

Disjoint P<sub>Ind</sub> type, so count

$$[\check{\text{cočka}}] = \lambda r : [x : Stuff]. \begin{bmatrix} s_{lentil} & : \text{lentil}(r.x) \\ s_{lentil-ind} & : \text{lentil}_{Ind_{gen}}(r.x) \end{bmatrix}$$

Prioritizes Reliability (maximizes conditional probabilities)

• Not-disjoint  $P_{Ind}$  type, so mass.

#### Constraints for furniture-like nouns

#### 

#### Context-general Individuation Schema:

Neither of the two alternatives for individuation can satisfy both constraints (unless Cost is very high).

Furniture versus Huonekalu ('(item of) furniture', Finnish)

$$[\text{huonekalu }]^{c_i} = \lambda r : [x : Stuff]. \begin{bmatrix} s_{furn} & : \text{furn}(r.x) \\ s_{furn-ind} & : \text{furn}_{Ind_{c_i}}(r.x) \end{bmatrix}$$

Prioritizes Individuation (minimizes entropy)

• Disjoint  $P_{Ind}$  types at every context, so count

$$\llbracket \text{ furniture } \rrbracket^{c_i} = \lambda r : [x : Stuff]. \begin{bmatrix} s_{furn} & : \text{ furn}(r.x) \\ s_{furm-ind} & : \text{ furn}_{Ind_{gen}}(r.x) \end{bmatrix}$$

Prioritizes Reliability (maximizes conditional probabilities)

• Not-disjoint  $P_{Ind}$  type, so mass.

#### Constraints for mud-like nouns

#### 

 $p(r: [s_{mud-ind} : *mud_{Ind_{c_i}}(x)])|r: [s_{mud} : mud(x)]) =$ lowish (many context specific functions exclude some entities)

 $\begin{array}{ll} \mbox{Individuation} & -(\sum_{v_j \in V} \sum_{c_i \in C} p(v_j | \mbox{mud}_{Ind_{c_i}}) \times \log p(v_j | \mbox{mud}_{Ind_{c_i}})) + |C| & = |C| \\ & (\mbox{assumes cost equals number of different context-specific individuation schemas,} \\ & \mbox{each schema is disjoint, so has 0 entropy, very high number of possible schemas)} \end{array}$ 

#### Context-general Individuation Schema:

 $\begin{array}{cccc} \mbox{Reliability} & p(r: \left[ \begin{array}{ccc} s_{mud} & : & \mbox{mud}(x) \end{array} \right] | r: \left[ \begin{array}{ccc} s_{mud-ind} & : & \mbox{*mud}_{Ind_{gen}}(x) \end{array} \right] ) ) & \approx 1 \end{array}$ 

$$\label{eq:Individuation} \begin{split} \text{Individuation} \quad -\sum_{v_i \in V} p(v_i | \mathsf{mud}_{\mathit{Ind}_{\mathit{gen}}}) \times \log p(v_i | \mathsf{mud}_{\mathit{Ind}_{\mathit{gen}}}) \\ = high \end{split}$$

Countability of *mud* may depend on the cost of almost totally unconstrained context sensitivity.

- Languages with measure systems: Very high cost
- Languages without measure systems (e.g. Yudja): Lower cost

#### Blood versus Apeta ('blood' Yudja)

$$\llbracket \text{ apeta } \rrbracket^{c_i} = \lambda r : [x : Stuff]. \begin{bmatrix} s_{blood} & : \text{ blood}(r.x) \\ s_{blood\text{-}ind} & : \text{ blood}_{Ind_{c_i}}(r.x) \end{bmatrix}$$

- Prioritizes Individuation by minimizing entropy (ONLY IF COST VALUE IS LOW ENOUGH)
  - Disjoint  $P_{Ind}$  types at every context, so count

$$\llbracket \text{ blood } \rrbracket^{c_i} = \lambda r : [x : Stuff]. \begin{bmatrix} s_{blood} & : \text{ blood}(r.x) \\ s_{blood\text{-}ind} & : \text{ blood}_{Ind_{gen}}(r.x) \end{bmatrix}$$

Prioritizes Reliability (maximizes conditional probabilities)

• Not-disjoint  $P_{Ind}$  type, so mass.

# Summary

- There are general cognitive pressures/constraints derived from a need for effective communication and learnability
- These can be characterized in probabilistic, information theoretic terms
- A highly suitable platform for this is a probabilistic mereological variant of TTR
- Variation in count/mass lexicalization patterns:
  - can be derived from an analysis of how these pressures either compete or act in unison.
- Context sensitivity:
  - Can be used to make communication more effective by providing a tailored individuation schema for the situation at hand.
  - Comes at a cost.
  - Almost unconstrained context sensitivity should only be expected if other strategies (e.g. measure phrases) are for some reason not available.

#### Selected References I

- Gennaro Chierchia. Mass nouns, vagueness and semantic variation. <u>Synthese</u>, 174:99–149, 2010.
- Robin Cooper, Simon Dobnik, Shalom Lappin, and Staffan Larsson. A probabilistic rich type theory for semantic interpretation. Proceedings of the EACL 2014 Workshop on Type Theory and Natural Language Semantics, 2014.
- Robin Cooper, Simon Dobnik, Staffan Larsson, and Shalom Lappin. Probabilistic type theory and natural language semantics. <u>LILT</u>, 10(4), 2015.
- Simon Kirby. "The Evolution of Meaning-Space Structure through Iterated Learning". In C. Lyon, C. Nehaniv, and A. Cangelosi, editors,

*Emergence of Communication and Language*, pages 253–268. Springer, Verlag, London, 2007.

- Simon Kirby and James Hurford. "The Emergence of Linguistic Structure: An overview of the Iterated Learning Model". In A. Cangelosi and D. Parisi, editors, *Simulating the Evolution of Language*, pages 121–148. Springer, Verlag, London, 2002.
- Manfred Krifka. Nominal reference, temporal constitution and quantification in event semantics. In Renate Bartsch, Johan van Benthem, and Peter van Emde Boas, editors, <u>Semantics and</u> <u>Contextual Expression</u>, pages 75–115. Foris Publications, 1989. [In-Text: (Krifka 1989)].

Fred Landman. Count nouns – mass nouns – neat nouns – mess nouns. <u>Baltic International</u> Yearbook of Cognition, Logic and Communication, 6:1–67, 2011. doi: 10.4148/bivclc.v6i0.1579.

References

#### Selected References II

- Fred Landman. Iceberg semantics for count nouns and mass nouns: The evidence from portions. The Baltic International Yearbook of Cognition Logic and Communication, 11, 2016.
- Suzi Lima. All notional mass nouns are count nouns in Yudja. <u>Proceedings of SALT</u>, 24: 534–554, 2014.
- S. Piantadosi, H. Tily, and E. Gibson. The communicative function of ambiguity in language. PNAS, 108(9):3526–3529, 2011.
- Susan Rothstein. Counting and the mass/count distinction. Journal of Semantics, 27(3): 343–397, 2010. doi: 10.1093/jos/ffq007.
- Yasutada Sudo. Countable nouns in japanese. Proceedings of WAFL 11, 2016. to appear.
- Peter R. Sutton. <u>Vagueness, Communication, and Semantic Information</u>. PhD thesis, King's College London, 2013.
- Peter R. Sutton. Towards a probabilistic semantics for vague adjectives. In Hans-Christian Schmitz and Henk Zeevat, editors, <u>Bayesian Natural Language Semantics and Priagmatics</u>, pages 221–246. Springer, 2016.