Learning and Maintaining a Lexicon for Situated Interaction

David Schlangen Bielefeld University

http://www.dsg-bielefeld.de/talks/gothenburg-2017

dialogue systems group[unibi]

Universität Bielefeld

Situated Interaction

... agents are co-present,

dialogue systems group[unibi]

Situated Interaction

... agents are co-present, can make their physical environment the topic,

dialogue systems group[unibi]

Situated Interaction

... agents are co-present, can make their physical environment the topic, can make use of variety of resources (language, body, environment).

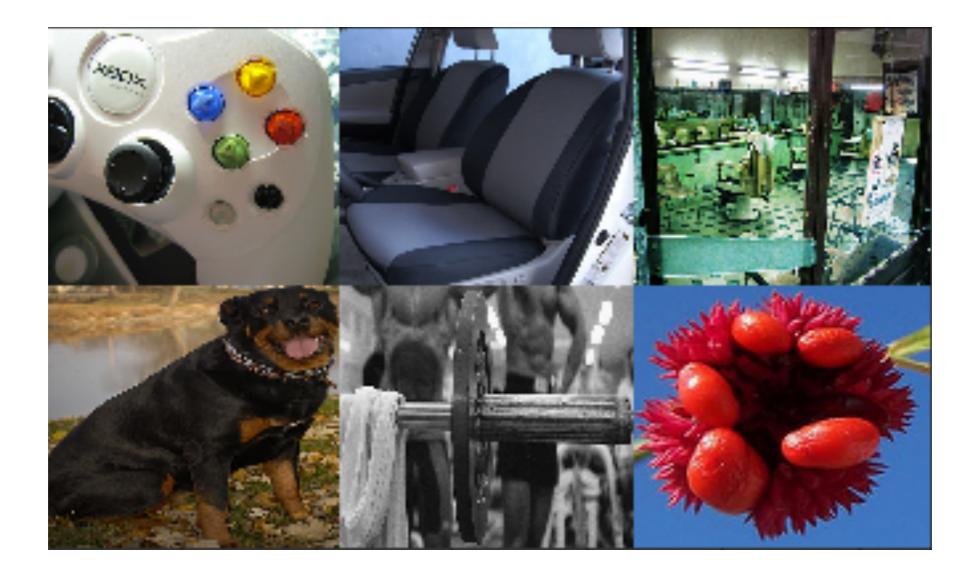
> dialogue systems group[unibi]

A: Was there a Rottweiler?B: Yes.

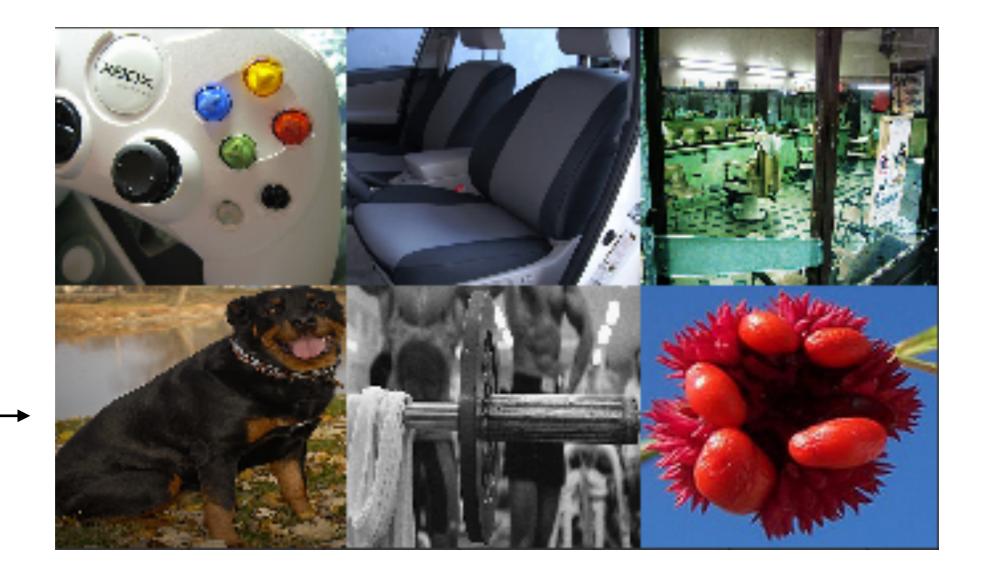
knowledge from testimony



- U: Find the Rottweiler.
- S: Picture 4.
- U: Explain.
- S: I have never seen a Rottweiler, but I know that it is a type of dog.
 - 4 is the only dog.



- U: Find the Rottweiler.
- S: Picture 4.
- U: Explain.
- S: I have never seen a Rottweiler, but
 I know that it is a type of bicycle.
 - 4 is the only bicycle.

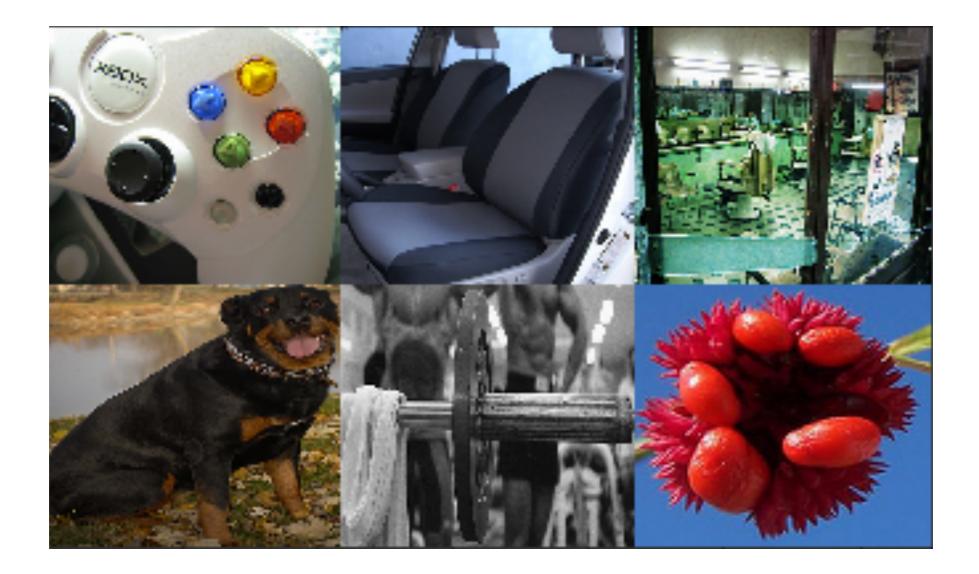


- U: Find the Rottweiler.
- S: Picture 4.
- U: Explain.
- S: I have never seen a Rottweiler, but I know that it is a type of dog.

↓ 4 is the only dog. language / world relation

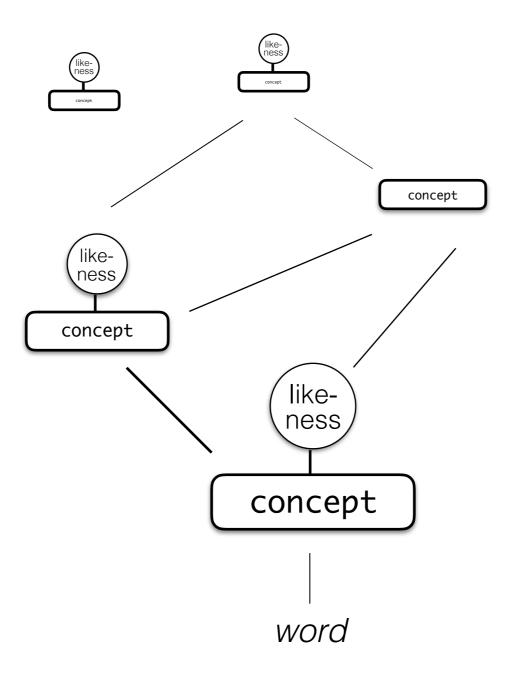
Diego Marconi 1997, Lexical Competence

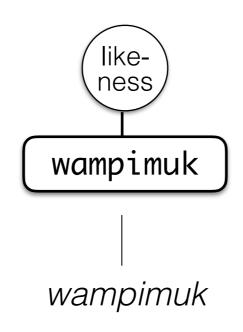
language / language relation

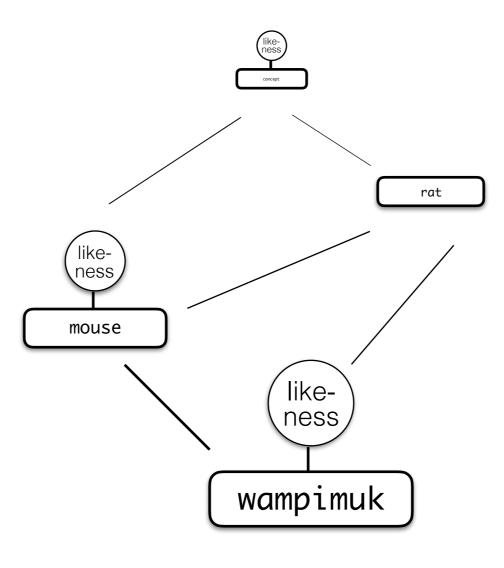


Desiderata:

- * A lexicon that provides these *referential* and *inferential* links.
- * A way to use it to resolve and generate references, and to generate "meta-conceptual" interaction.
- * A plausible story on how it can be learned.



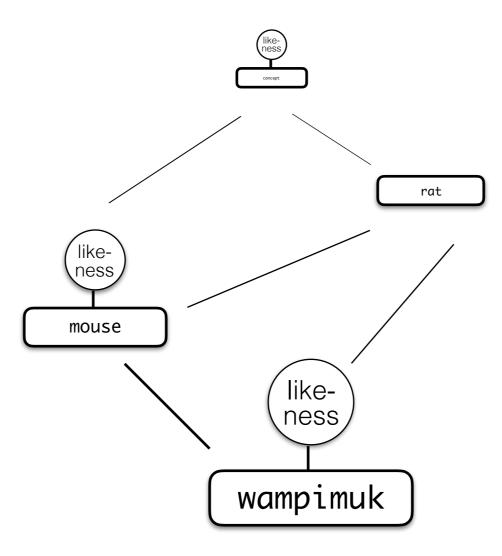




expl. definition: "The wampimuk is a small, mouse-like mammal native to the Trentino area."

is_a(w, m) lives_in(w, T)

•••

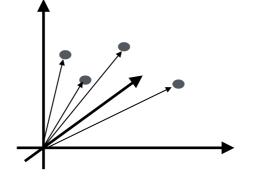


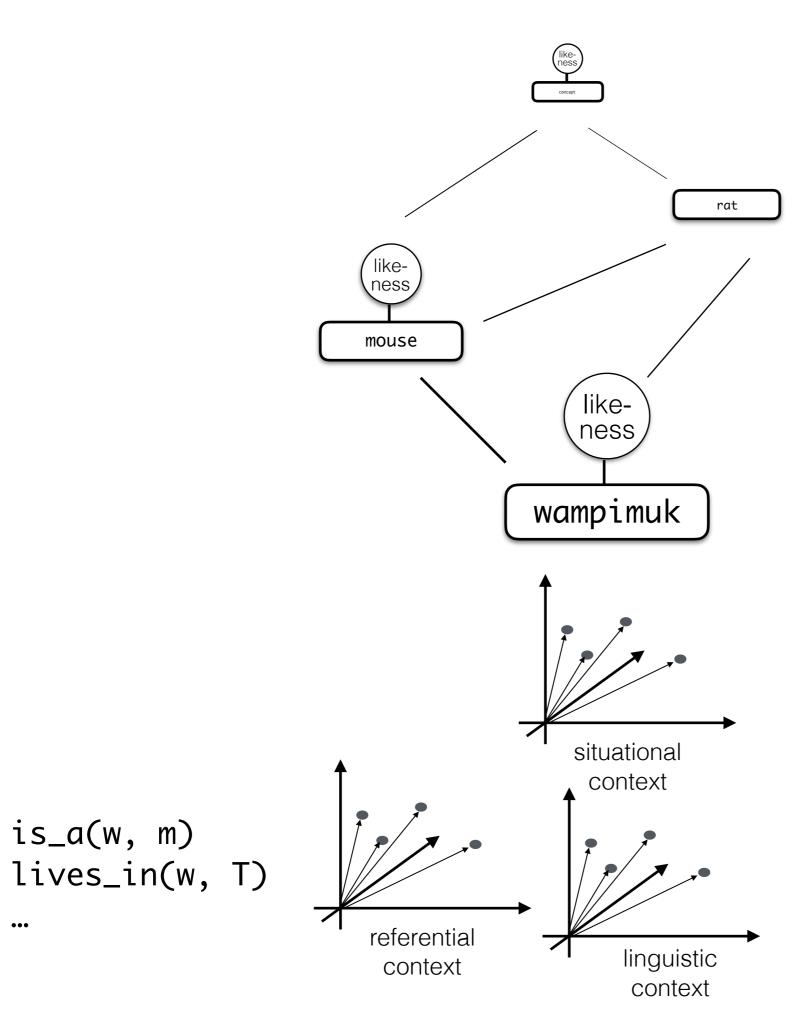
expl. definition: "The wampimuk is a small, mouse-like mammal native to the Trentino area."

impl. definition: "... the cute wampimuk squeaked...""... a mouse, a wampimuk and a ...""... she saw a wampimuk sitting on..."...

is_a(w, m) lives_in(w, T)

...



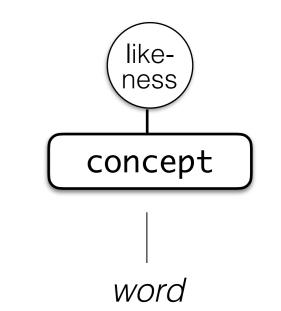


expl. definition: "The wampimuk is a small, mouse-like mammal native to the Trentino area."

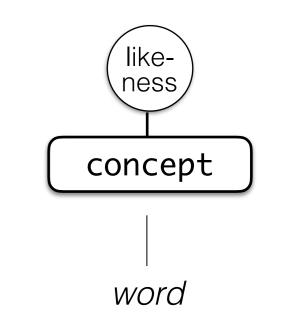
impl. definition: "... the cute wampimuk squeaked...""... a mouse, a wampimuk and a ...""... she saw a wampimuk sitting on..."...

- Motivation: Knowledge from Testimony
- The Lexicon: Referential & Inferential Knowledge
- Referential Knowledge: Likeness
 - Acquisition from Referential Interaction
 - Application in Reference Resolution
 - Application in Reference Generation
- Inferential Knowledge
 - ... from Referential Knowledge / Referential Interaction
 - ... from Definitions
- Towards Justifying Concepts

- Motivation: Knowledge from Testimony
- The Lexicon: Referential & Inferential Knowledge
- Referential Knowledge: Likeness
 - Acquisition from Referential Interaction
 - Application in Reference Resolution
 - Application in Reference Generation
- Inferential Knowledge
 - ... from Referential Knowledge / Referential Interaction
 - ... from Definitions
- Towards Justifying Concepts



- Motivation: Knowledge from Testimony
- The Lexicon: Referential & Inferential Knowledge
- Referential Knowledge: Likeness
 - Acquisition from Referential Interaction
 - Application in Reference Resolution
 - Application in Reference Generation
- Inferential Knowledge
 - ... from Referential Knowledge / Referential Interaction
 - ... from Definitions
- Towards Justifying Concepts



primarily: ReferIt corpus (Berg et al.)

A and B play a game. A sees image with highlight on object, B without. A says: "person left". B clicks on object.

Result: pairs of object in scene and ref-exp, filtered for success.

- Referring expressions, not labels!
 - No closed-world assumption.
 - No pre-conceived tagset.

primarily: ReferIt corpus (Berg et al.)

A and B play a game. A sees image with highlight on object, B without. A says: "person left". B clicks on object.

Result: pairs of object in scene and ref-exp, filtered for success.

- Referring expressions, not captions!
 - Discriminative, not exhaustive.
 - Minimal, not exhaustive.

primarily: ReferIt corpus (Berg et al.)

A and B play a game.
A sees image with highlight on object, B without.
A says: "person left".
B clicks on object.

Result: pairs of object in scene and ref-exp, filtered for success.

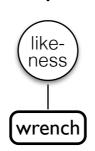
• Demonstration: "*this* is a [person left]"

primarily: ReferIt corpus (Berg et al.)

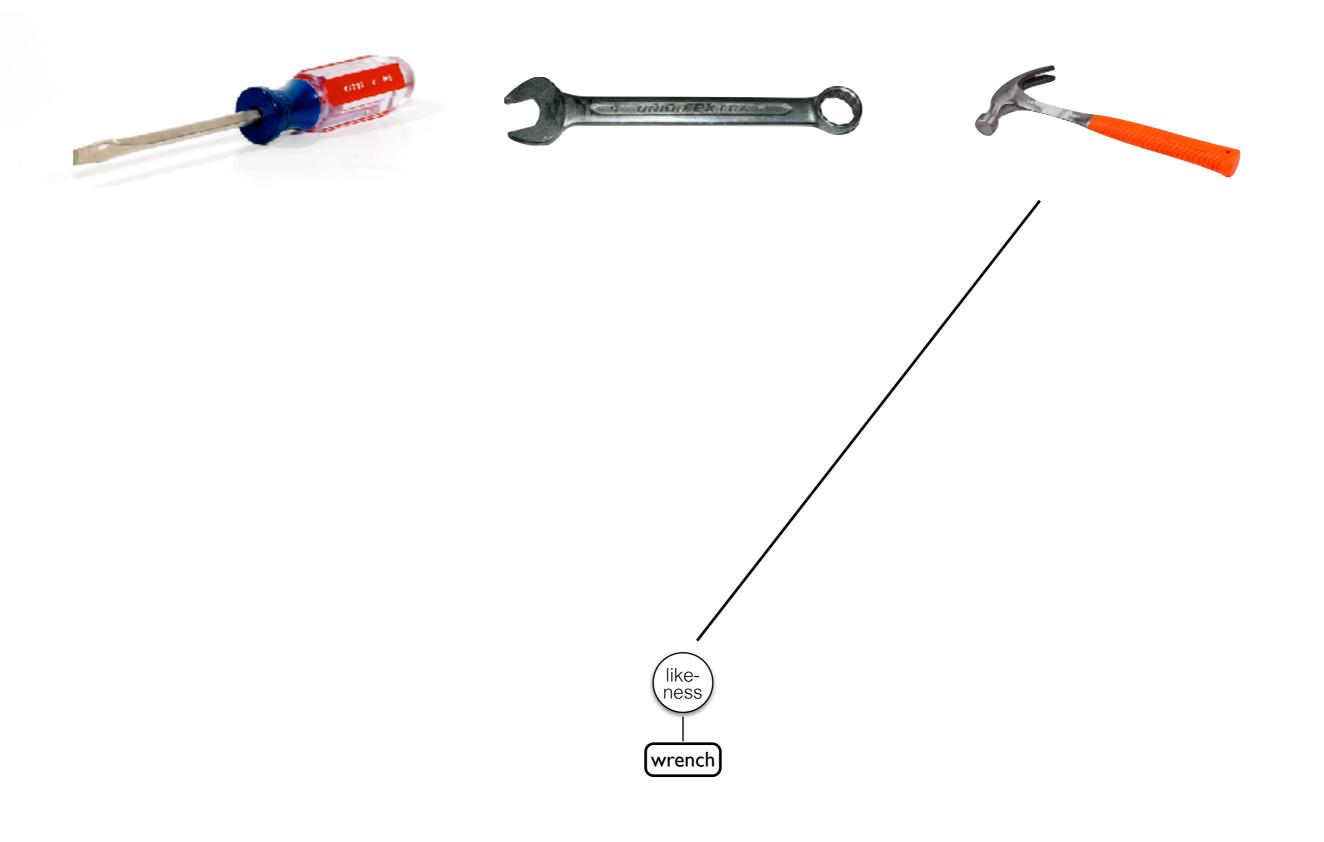
A and B play a game. A sees image with highlight on object, B without. A says: "person left". B clicks on object.

Result: pairs of object in scene and ref-exp, filtered for success.

- Referit corpus (Kazemzadeh *et al.* 2014): 20k images (SAIAPR, [Escalante *et al.* 2010]), 120k referring expressions
- MSCOCO (Lin *et al.* 2014): 27k images, 100k region descriptions (Mao *et al.* 2015) + 140k referring expressions (Berg *et al.* 2015) + 140k (non-positional) ref exp (Yu *et al.* 2016)



ps://it.wikipedia.org/wiki/File:Alan_Key_2.jpg ps://commons.wikimedia.org/wiki/File:Claw-hammer.jpg



ttps://it.wkipedia.org/wiki/File:Alan.Key_2.jpg htps://commons.wikimedia.org/wiki/File:Claw-hammer.jpg htms://commons.wikimedia.org/wiki/File:Screw_Driver_disclaw.ir

The "words as classifiers" approach

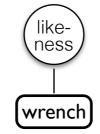
(Harnad 1990), The Symbol Grounding Problem:

"[H]ow can the semantic interpretation of a formal symbol system be made intrinsic to the system, rather than just parasitic on the meanings in our heads?

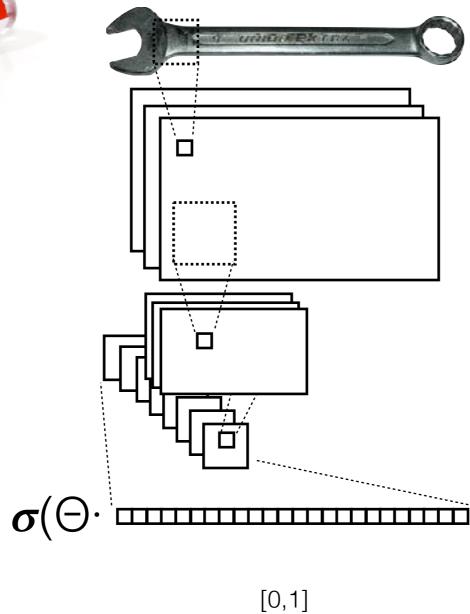
"[...] invariant features [...] that will reliably distinguish a member of a category from any nonmembers [...] Let us call the output of this **categoryspecific feature detector** the categorical reprs." Deb Roy (Roy et al. 2002, 2005), Siebert & Schlangen (2008),

Larsson (2013 / '15),

Kennington & Schlangen (2015), Schlangen et al. (2016)



https://it.wikipedia.org/wiki/File-Alan_Key_2.jpg https://commons.wikimedia.org/wiki/File-Claw-hammer.jpg https://commons.wikimedia.org/wiki/File-Screw_Driver_displa



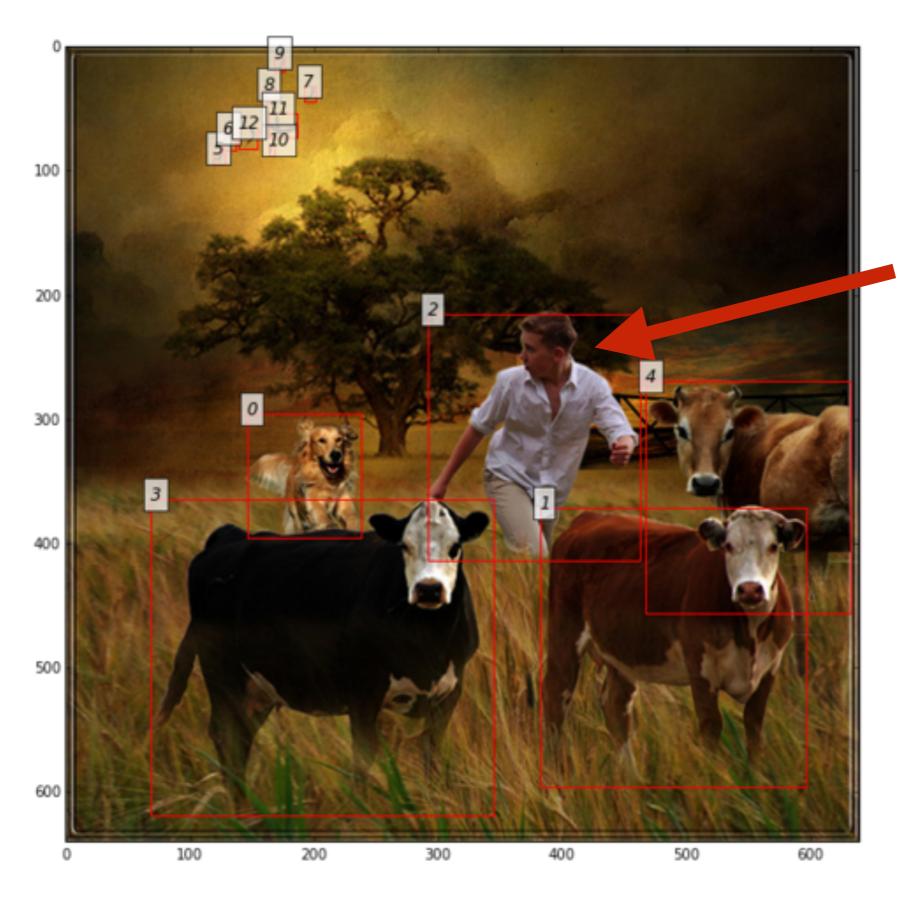
wrench

L1-regulated logistic regression, cross entropy loss function, SGD

GoogLeNet; deep convolutional neural network (Szegedy *et al.* 2015)

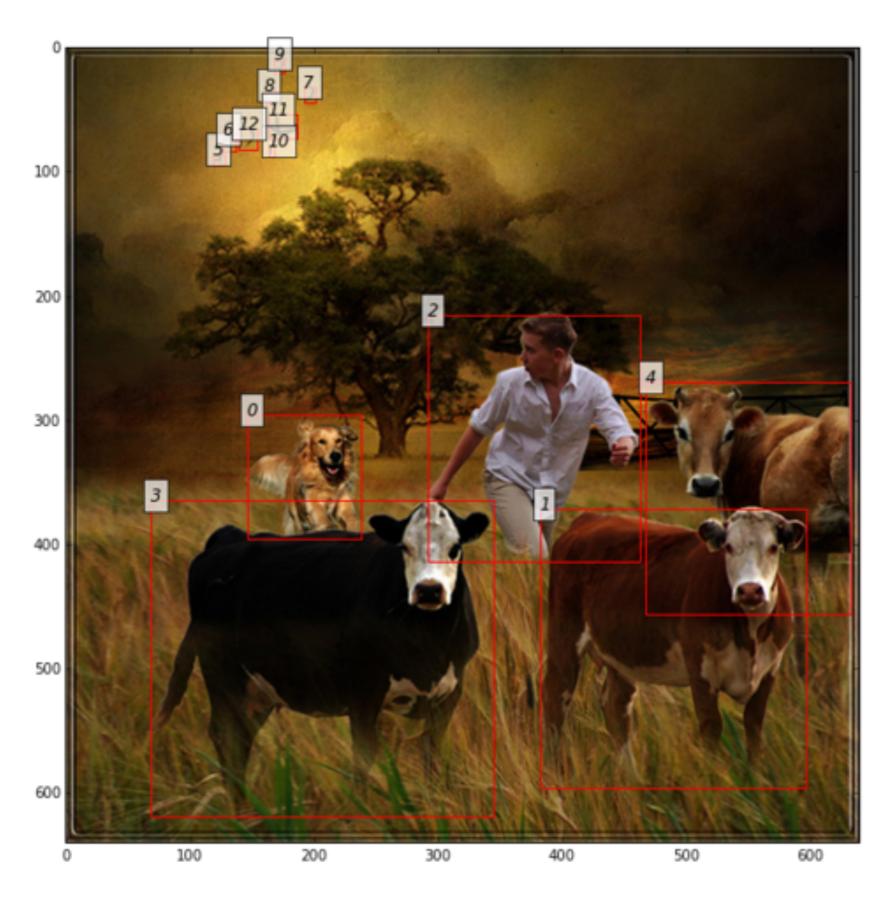
1024 + 7 positional features

in humans, learned over phylogenetic time?



Training

Guy with white shirt



Training

All words separately.

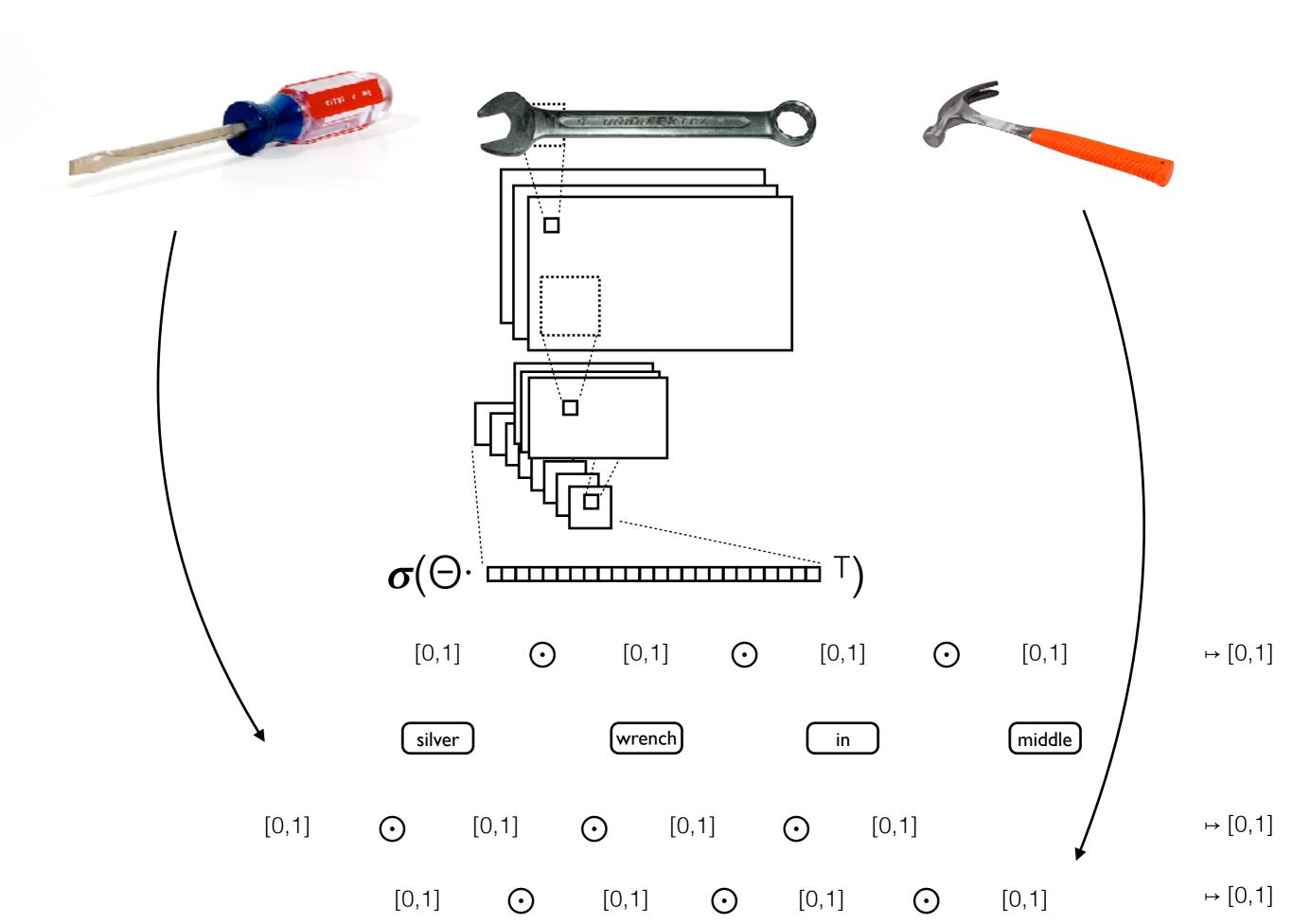
One classifier per word.

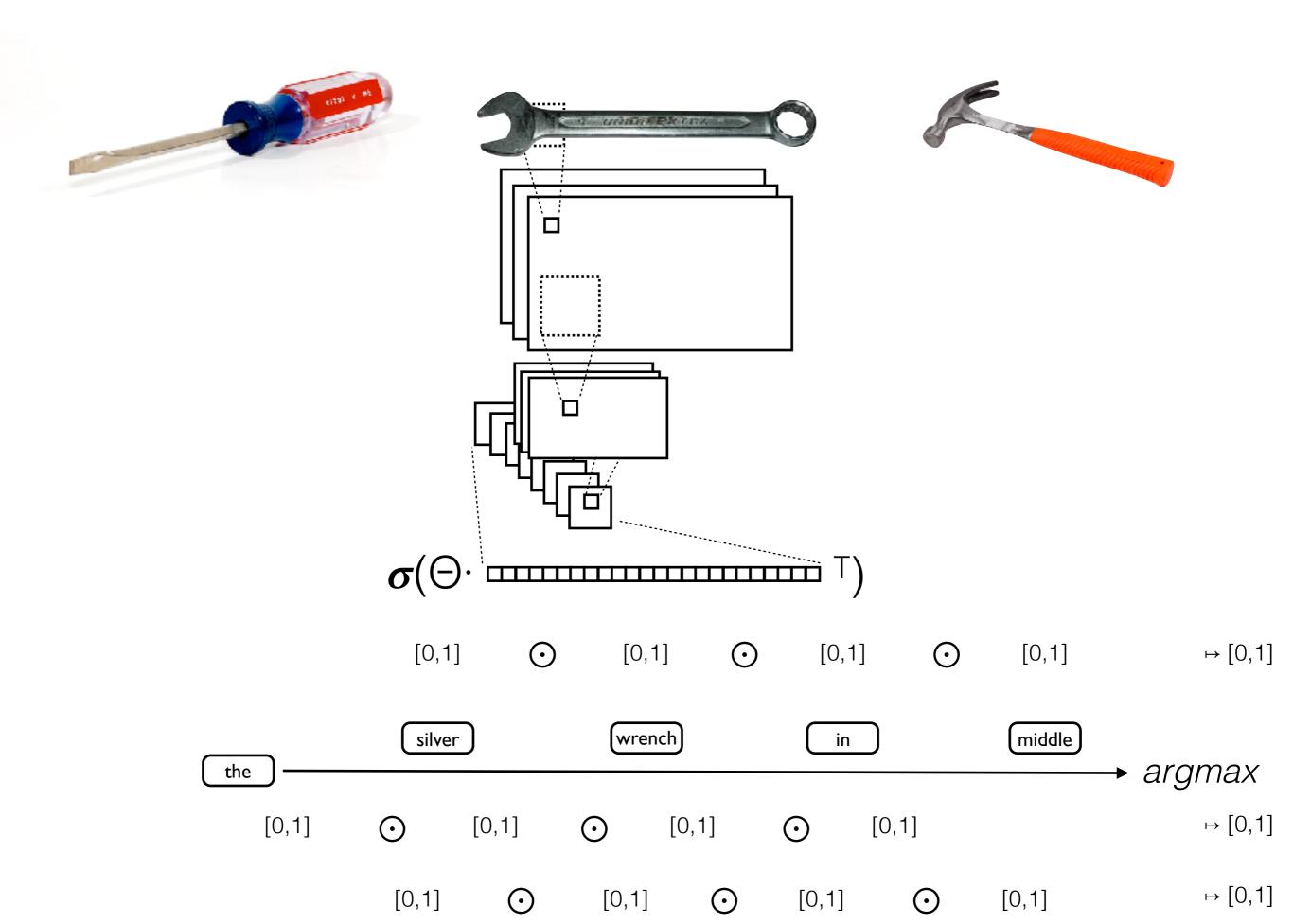
Here, trained in batch mode, but could be done incrementally.

Tried taking neg inst. from same scene, and randomly from whole set.

Training

- condition: min. 40 positive training instances
- resulting vocab. size:
 - SAIAPR: 429
 - RefCoco: 503
 - SAIAPR + RefCoco: 783
 - SAIAPR + RefCoco + RefCoco+: 1,174





Results

	%tst	acc	mrr	arc	>0	acc		RP@1	RP@10	rnd		nopos	pos	full	top20
REFERIT	1.00	0.65	0.79	0.89	0.97	0.67	REFERIT	0.09	0.24	0.03	RI	0.53	0.60	0.65	0.46
REFERIT; NR	0.86	0.68	0.82	0.91	0.97	0.71	REFERIT; NR	0.10	0.26	0.03	ri; NR	0.56	0.62	0.68	0.48
(Hu et al., 2015)	_	0.73	—	_		-	(Hu et al., 2015)	0.18	0.45		RC	0.44	0.55	0.61	0.52
REFCOCO	1.00	0.61	0.77	0.91	0.98	0.62	REFCOCO	0.52	_	0.17	RC; NR	0.45	0.57	0.63	0.53
REFCOCO; NR	0.94	0.63	0.78	0.92	0.98	0.64	REFCOCO; NR	0.54	_	0.17		I	I		I
(Mao et al., 2015)	_	0.70	_	_	_	-	(Mao et al., 2015)	0.52							
GREXP	1.00	0.43	0.65	0.86	1.00	0.43	GREXP	0.36	—	0.16					
GREXP; NR	0.82	0.45	0.67	0.88	1.00	0.45	GREXP; NR	0.37	_	0.17					
(Mao et al., 2015)	-	0.61	_	_	-	-	(Mao et al., 2015)	0.45							
Results, full model							Region Proposals				Feature Ablation				

(Schlangen, Zarrieß, Kennington; ACL 2016)

- Motivation: Knowledge from Testimony
- The Lexicon: Referential & Inferential Knowledge
- Referential Knowledge: Likeness
 - Acquisition from Referential Interaction \checkmark
 - Application in Reference Resolution
 - Application in Reference Generation
- Inferential Knowledge
 - ... from Referential Knowledge / Referential Interaction
 - ... from Definitions
- Towards Justifying Concepts

Generation

• straightforward: Applying all classifiers to object imposes ranking on vocab. Select from that.

Generation

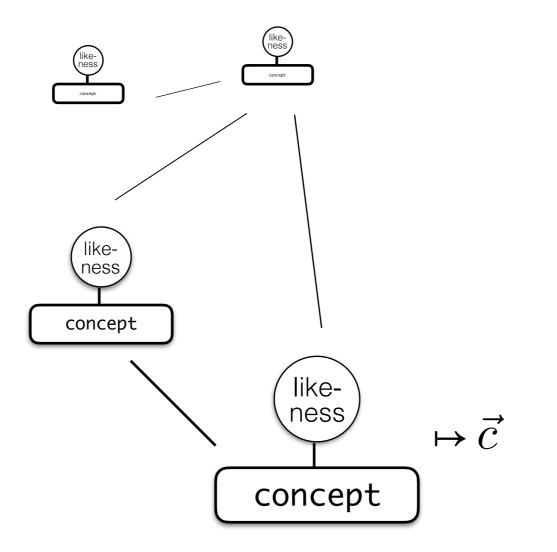
• straightforward: Applying all classifiers to object imposes ranking on vocab. Select from that.

(Zarrieß & Schlangen; ACL 2016; INLG 2016 [best paper]; ACL 2017)

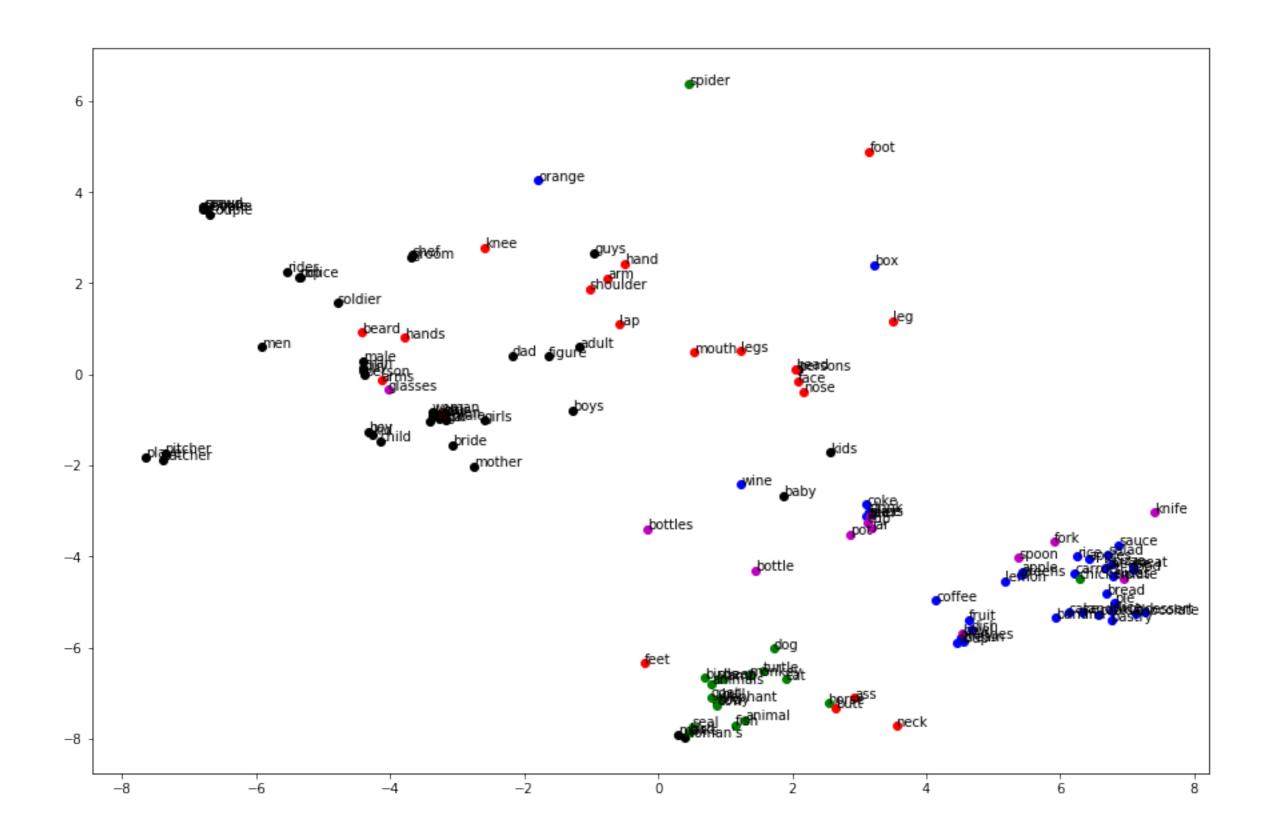
- Motivation: Knowledge from Testimony
- The Lexicon: Referential & Inferential Knowledge
- Referential Knowledge: Likeness
 - Acquisition from Referential Interaction \checkmark
 - Application in Reference Resolution
 - Application in Reference Generation ✓
- Inferential Knowledge
 - ... from Referential Knowledge / Referential Interaction
 - ... from Definitions
- Towards Justifying Concepts

- Motivation: Knowledge from Testimony
- The Lexicon: Referential & Inferential Knowledge
- Referential Knowledge: Likeness
 - Acquisition from Referential Interaction
 - Application in Reference Resolution
 - Application in Reference Generation
- Inferential Knowledge
 - ... from Referential Knowledge / Referential Interaction
 - ... from Definitions
- Towards Justifying Concepts

- Motivation: Knowledge from Testimony
- The Lexicon: Referential & Inferential Knowledge
- Referential Knowledge: Likeness
 - Acquisition from Referential Interaction
 - Application in Reference Resolution
 - Application in Reference Generation
- Inferential Knowledge
 - ... from Referential Knowledge / Referential Interaction
 - ... from Definitions
- Towards Justifying Concepts



- *visual averages*: centroid of set of positive instances
- <u>weights / intensional</u>: weight vectors of classifier
- <u>representative responses / denotational</u>: vector of responses to randomly selected set of objects
- *full response signature:* vector of avg. responses of this classifier to positive instances of other categories



mom	ext vis sit w2v	adult female girl woman looking child girl female blond eating child little kid leg striped kids kid baby girl boy		
wall	ext vis	corner edge brick side stone brick wood picture open part curtain lamp bed desk ceiling		
	sit w2v	curtain lamp bed desk ceiling fence brick ceiling roof stone		
road	ext vis sit w2v	street pavement sidewalk ground where		
statue	vis	tower thing far short pillar tall tallest tower fountain background palm stairs tree bush bushes fountain pillar tower waterfall kneeling		
bottom	vis	lower ground corner front closest lower corner pic click are area donut shelf doughnut cupcake top top leftmost side rightmost end		
chef		groom shirt hoodie man kid cutting old bald groom man female vest cutting bald object dish pizza hotdog food skier		
chair	ext vis sit w2v	seat table sitting couch wooden seat bench wooden empty desk table sofa empty pool wooden head sofa seat board couch		

Evaluating Derived Concept Relations

- Linked 589 terms from vocabulary (s+r+rp) to WordNet synset
- Identified 516 pairs of (term A, term B), where B is in closure of hyponym relation of A
- Rule: if A "likes" real superset of what B "likes", A is hypern. of B.
 0.18 f-score (on denotational vectors)
- Entropy (Kiela *et al.* 2015): if A & B related, and entropy(A) > entropy(B), then hyper(A, B)
 - visual averages: 0.21 f-score
 - denotational vectors: 0.15 f-score
- False positives: "scarf" is a type of "woman", "shirt" is a type of "man", etc. false false positives: "cowboy" is a type of "dude"...

Evaluating Derived Concept Relations

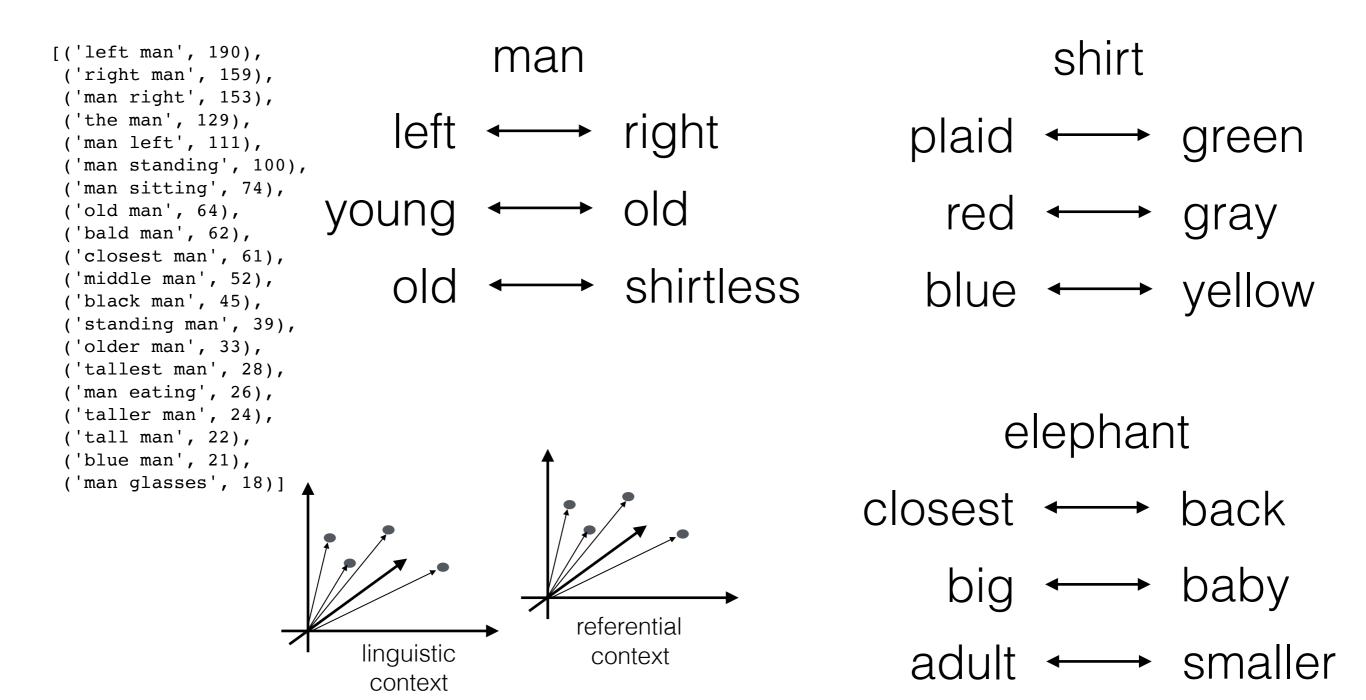
Similarity / Relatedness / Compatibility

Model	MEN	SemSim	VisSim	Compatibility		
w2v_ref	0.669	0.687	0.580	0.251		
					(Baroni <i>et</i>	
baronimod	0.785	0.704	0.594	0.241	<i>al.</i> 2014) CBOW,	
vis_av	0.523	0.526	0.486	0.287	400dim	
wac_int	-0.373	-0.339	-0.294	-0.076		
wac_den	-0.593	-0.615	-0.536	-0.288		
wac_resp	0.634	0.656	0.574	0.276		

(Bruni *et al.* 2012) (Silberer & Lapata 2014) 372 out of 3,000 721 out of 7,577

> (Kruszewski & Baroni 2015) 1,859 out of 17,973

Predicting Incompatible Modifiers



Evaluating Derived Concept Relations

Similarity / Relatedness / Compatibility

Model	MEN	SemSim	VisSim	Compatibility		
w2v_ref	0.669	0.687	0.580	0.251		
					(Baroni <i>et</i>	
baronimod	0.785	0.704	0.594	0.241	<i>al.</i> 2014) CBOW,	
vis_av	0.523	0.526	0.486	0.287	400dim	
wac_int	-0.373	-0.339	-0.294	-0.076		
wac_den	-0.593	-0.615	-0.536	-0.288		
wac_resp	0.634	0.656	0.574	0.276		

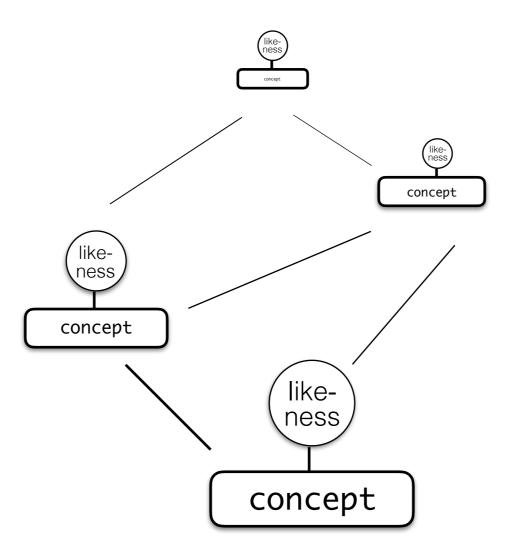
(Bruni *et al.* 2012) (Silberer & Lapata 2014) 372 out of 3,000 721 out of 7,577

> (Kruszewski & Baroni 2015) 1,859 out of 17,973

- Motivation: Knowledge from Testimony
- The Lexicon: Referential & Inferential Knowledge
- Referential Knowledge: Likeness
 - Acquisition from Referential Interaction
 - Application in Reference Resolution
 - Application in Reference Generation
- Inferential Knowledge
 - ... from Referential Knowledge / Referential Interaction \checkmark
 - ... from Definitions
- Towards Justifying Concepts

- Motivation: Knowledge from Testimony
- The Lexicon: Referential & Inferential Knowledge
- Referential Knowledge: Likeness
 - Acquisition from Referential Interaction
 - Application in Reference Resolution
 - Application in Reference Generation
- Inferential Knowledge
 - ... from Referential Knowledge / Referential Interaction \checkmark
 - ... from Definitions
- Towards Justifying Concepts

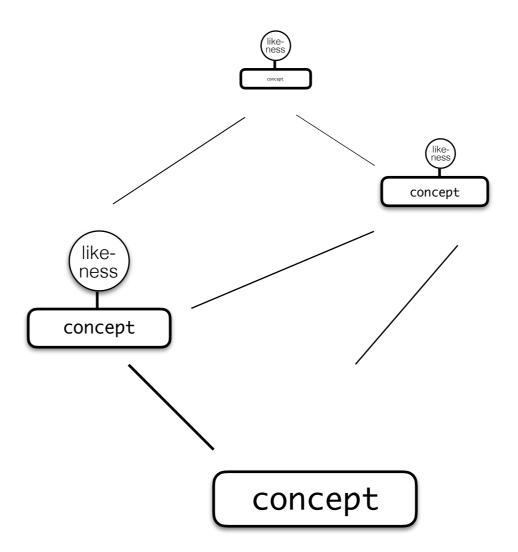
- Motivation: Knowledge from Testimony
- The Lexicon: Referential & Inferential Knowledge
- Referential Knowledge: Likeness
 - Acquisition from Referential Interaction
 - Application in Reference Resolution
 - Application in Reference Generation
- Inferential Knowledge
 - ... from Referential Knowledge / Referential Interaction
 - ... from Definitions
- Towards Justifying Concepts



Learning from explicit definition

Recipe:

- Definition links definiendum to other concepts
- If those have likeness representation, do direct attribute prediction (Lampert *et al.* 2009) $p(z|x) \propto \prod_{m=1}^{M} \left(\frac{p(a_m|x)}{p(a_m)}\right)^{a_m^z}$



Learning from explicit definition

Recipe:

- Definition links definiendum to other concepts
- If those have likeness representation, do direct attribute prediction (Lampert *et al.* 2009)
- E.g., replace "wampimuk" with "small mouse mammal"

Zero-Shot Learning with Feature Norms

behavior diet shape_size anatomy

color_patterns

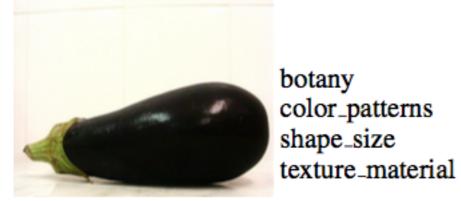
behavior

texture_material

color_patterns

parts

eats, walks, climbs, swims, runs drinks_water, eats_anything is_tall, is_large has_mouth, has_head, has_nose, has_tail, has_claws, has_jaws, has_neck, has_snout, has_feet, has_tongue is_black, is_brown, is_white



has_skin, has_seeds, has_stem, has_leaves, has_pulp purple, white, green, has_green_top is_oval, is_long is_shiny

rolls

has_step_through_frame, has_fork, has_2_wheels, has_chain, has_pedals has_gears, has_handlebar, has_bell, has_breaks has_seat, has_spokes made_of_metal different_colors, is_black, is_red, is_grey, is_silver

(Silberer, Ferrari & Lapata, 2013), using feature norms of (McRae et al. 2005)

114 out of 509 concepts in vocab instances for 340 of 637 attributes

Acc. on 20 test classes: 43.2%

E dock verb F G

Η

Κ

L

M

N

0

Р

Q

R

S

U

W

X

Y

Ζ

docks noun 1 a place where ships load and unload cargo.

2 the place in a courtroom where the person on trial stands or sits.

doctor

doctors noun a person who is trained to treat sick or injured people.

dodge

dodges dodging dodged verb to avoid being hit by something by moving out of the way very quickly. She **dodged** the ball coming toward her.

dog

dogs noun a mammal that is often kept as a pet. Dogs mainly eat meat and can be trained to perform certain tasks, such as herding sheep. Dogs are related to wolves and foxes (see **pet** on page 148).

dolphin dolphins noun

a fish-eating sea mammal. Dolphins breathe air, so they must swim to the surface often. They are friendly animals and are known for their intelligence. Dolphins are a type of small whale.

■ say **doll**-fin

collie **dog**

donation

donations noun

a gift, usually of money, that is made to a charity or another organization. *He made a large donation.*

donkey donkeys noun

a member of the horse family that has long ears and a soft, furry coat. Donkeys eat grass and in some countries are used for carrying people and goods.

door

doors noun

a piece of wood, glass, or metal that opens and shuts to provide a way into a room, cupboard, building, or vehicle.

dot

dots noun a very small, round spot. Ladybugs have **dots** on them.

double

adjective twice as much. A double six.

■ sav **dub**-ul

doubtful

adjective not sure, or unlikely. He was **doubtful** about his chances of winning. ∎ say **dout**-ful doubt verb

dough noun

a mixture of flour and either milk or water that is used to make bread or cakes. ■ say **doh**

doughnut doughnuts noun

a sweet, round cake made from dough, which is fried

in fat and covered in sugar.

■ say **doh**-nut

dove

doves noun a bird that is a member of the pigeon family. Doves are often used as a symbol of peace.

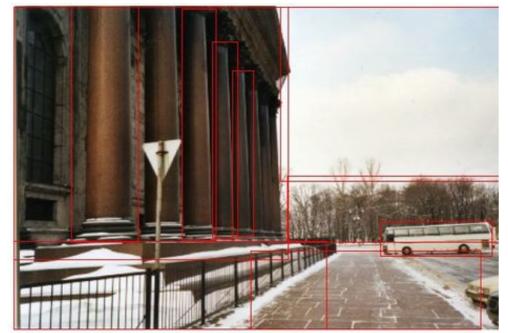
- Motivation: Knowledge from Testimony
- The Lexicon: Referential & Inferential Knowledge
- Referential Knowledge: Likeness
 - Acquisition from Referential Interaction
 - Application in Reference Resolution
 - Application in Reference Generation
- Inferential Knowledge
 - ... from Referential Knowledge / Referential Interaction
 - ... from Definitions \checkmark
- Towards Justifying Concepts

- Motivation: Knowledge from Testimony
- The Lexicon: Referential & Inferential Knowledge
- Referential Knowledge: Likeness
 - Acquisition from Referential Interaction
 - Application in Reference Resolution
 - Application in Reference Generation
- Inferential Knowledge
 - ... from Referential Knowledge / Referential Interaction
 - ... from Definitions
- Towards Justifying Concepts

Justifying Concepts

- Show that you are a competent language user by
 - Applying terms (mostly) correctly
 - Being able to defend your decisions / being able to make your concepts explicit
 - Learning from being corrected

User: Draw a new card System: *Ok*.



User: get a new collage men System: *Ok*.

U: Find the man with the book S: *Let me see*. *Did you mean this?*

S: *Thanks!* U: explain S: *Okidoki*.

S: 0 is best for "man"
S: 5 is best for "book"
S: Overal best: 5
S: Rank of region 5 for "man": 4
S: Rank of region 5 for "book": 1

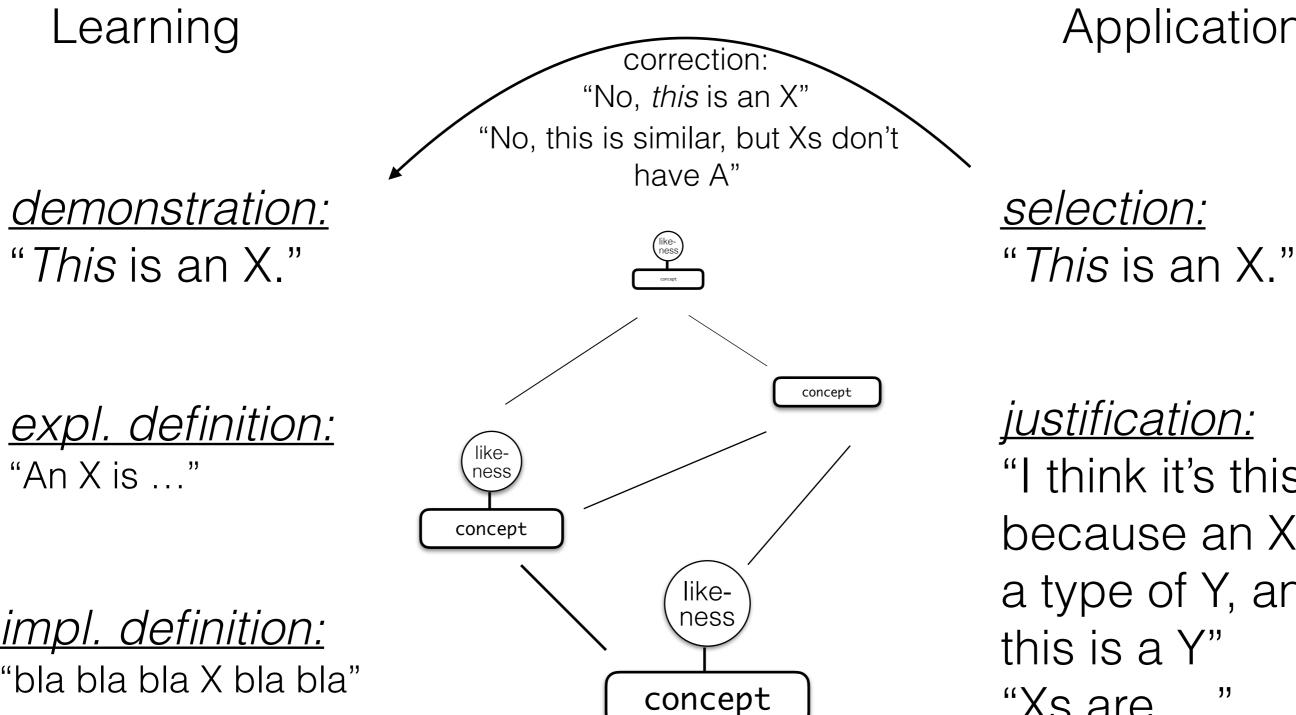
U: yes

Justifying Concepts

- U: Find the Rottweiler.
- S: Picture 4.
- U: Explain.
- S: I have never seen a Rottweiler, but I know that it is a type of dog.
 4 is the only dog.

Justifying Concepts

- Show that you are a competent language user by
 - Applying terms (mostly) correctly
 - Being able to defend your decisions / being able to make your concepts explicit
 - Learning from being corrected
- Do people actually appreciate this? Does it work?



justification: "I think it's this, because an X is a type of Y, and this is a Y" "Xs are ..."

Application

- Motivation: Knowledge from Testimony
- The Lexicon: Referential & Inferential Knowledge
- Referential Knowledge: Likeness
 - Acquisition from Referential Interaction
 - Application in Reference Resolution
 - Application in Reference Generation
- Inferential Knowledge
 - ... from Referential Knowledge / Referential Interaction
 - ... from Definitions
- Towards Justifying Concepts

Loose Ends

- Integrate this into probabilistic logic.
- Use inferential knowledge to drive actual inferences...
- Discourse representations.
- Learn syntax / composition from referential interaction.

Current / Future Work

- Assembling a better tutor by structuring the training data (Z&S, EACL 2017, ACL 2017, forth)
- Improving generation with situational constraints

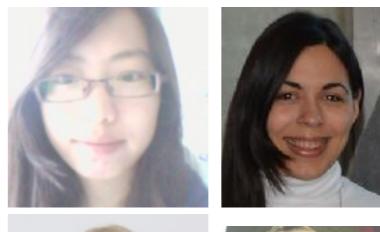
<u>Post-Docs</u>

- Julian Hough (PhD QMU London)
- Sina Zarrieß (Phd Stuttgart) Iwan de Kok (PhD U Twente) <u>PhD Students</u>
- Ting Han
- Soledad López
- Birte Carlmeyer *
- Simon Betz *

(* co-supervised)

<u>Alumni</u>

- Casey Kennington (PhD; now Boise State Univ)
- Spyros Kousidis (Post-Doc; now Carmeq GmbH)
- Timo Baumann (PhD; now Univ. Hamburg)
- Gabriel Skantze (Post-Doc; now KTH, Stockhlm)
- Okko Buß (PhD; now Carmeq GmbH)
- Michaela Atterer (Post-Doc)



Thank you!

Universität Bielefeld

dialogue systems group[unibi]

