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Situated Interaction
… agents are co-present, can make physical environment the 
topic, can make use of variety of resources (language, body, 
environment)… 

… how its (or their) past predicts its (or their) future… 

immediate past / future: turn-taking, feedback giving 
longer term past / future: language learning, beliefs
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Was there a Rottweiler?A: 
B: Yes.

knowledge from testimony



• U: Find the Rottweiler. 
• S: Picture 4. 
• U: Explain. 
• S: I have never seen a Rottweiler, but  

    I know that it is a type of dog.  
   4 is the only dog.
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• U: Find the Rottweiler. 
• S: Picture 4. 
• U: Explain. 
• S: I have never seen a Rottweiler, but  

    I know that it is a type of dog.  
   4 is the only dog.

language / 
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language 
/ world relation

Diego Marconi 1997, 
Lexical Competence



Desiderata: 
* A lexicon that provides these referential and inferential 

links. 
* A way to use it to resolve and generate references, and to 

generate “meta-conceptual” interaction. 
* A plausible story on how it can be learned.
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Overview
• Motivation: Knowledge from Testimony 
• The Lexicon: Referential & Inferential Knowledge 
• Referential Knowledge: Likeness

• Acquisition from Referential Interaction 
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Referential Interaction 
primarily: ReferIt corpus (Berg et al.)

• Referring expressions, not labels! 
• No closed-world assumption. 
• No pre-conceived tagset.

A and B play a game. 
A sees image with highlight 
on object, B without. 
A says: “person left”. 
B clicks on object. 

Result: pairs of object in 
scene and ref-exp, filtered 
for success. 
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Referential Interaction 
primarily: ReferIt corpus (Berg et al.)

• ReferIt corpus (Kazemzadeh et al. 2014): 20k images (SAIAPR, [Escalante et al. 2010]), 
120k referring expressions 

• MSCOCO (Lin et al. 2014): 27k images, 100k region descriptions (Mao et al. 2015) + 
140k referring expressions (Berg et al. 2015) + 140k (non-positional) ref exp (Yu et al. 
2016)

A and B play a game. 
A sees image with highlight 
on object, B without. 
A says: “person left”. 
B clicks on object. 

Result: pairs of object in 
scene and ref-exp, filtered 
for success. 
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The “words as classifiers” 
approach 

(Harnad 1990), The Symbol Grounding 
Problem:  
“[H]ow can the semantic interpretation 
of a formal symbol system be made 
intrinsic to the system, rather than just 
parasitic on the meanings in our 
heads? 
“[…] invariant features […] that will 
reliably distinguish a member of a 
category from any nonmembers […] 
Let us call the output of this category-
specific feature detector the 
categorical reprs.”

Deb Roy (Roy et al. 2002, 2005), 
Siebert & Schlangen (2008),  

Larsson (2013 / ’15),  

Kennington & Schlangen (2015), 
Schlangen et al. (2016)like-

ness
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!(Θ· T)
[0,1]

GoogLeNet; deep 
convolutional neural network 
(Szegedy et al. 2015) 

1024 + 7 positional features 

in humans, learned over 
phylogenetic time?

L1-regulated logistic 
regression, cross entropy 

loss function, SGD
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Training
All words separately.  

One classifier per 
word. 

Here, trained in 
batch mode, but 
could be done 
incrementally. 

Tried taking neg inst. 
from same scene, 
and randomly from 
whole set.



Training
• condition: min. 40 positive training instances 

• resulting vocab. size: 

• SAIAPR:              429 

• RefCoco:             503 

• SAIAPR + RefCoco:          783 

• SAIAPR + RefCoco + RefCoco+: 1,174
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[0,1][0,1] [0,1] [0,1]⊙ ⊙ ⊙ ↦ [0,1]
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silver in middle

[0,1][0,1] [0,1] [0,1]⊙ ⊙ ⊙ ↦ [0,1]

[0,1][0,1] [0,1] [0,1]⊙ ⊙ ⊙ ↦ [0,1]

[0,1][0,1] [0,1] [0,1]⊙ ⊙ ⊙ ↦ [0,1]

the argmax



Results
ing portions of REFERIT, REFCOCO and GREXP to
86%, 95%, and 82% of their original size, respec-
tively (counting referring expressions, not tokens).

Now that we have decided on the set of words
for which to train classifiers, how do we assemble
the training data?

Positive Instances Getting positive instances
from the corpus is straightforward: We pair each
word in a referring expression with the represen-
tation of the region it refers to. That is, if the word
“left” occurs 20,000 times in expressions in the
training corpus, we have 20,000 positive instances
for training its classifier.

Negative Instances Acquiring negative in-
stances is less straightforward. The corpus does
not record inappropriate uses of a word, or
‘negative referring expressions’ (as in “this is not
a red chair”). To create negative instances, we
make a second assumption which again is not
generally correct, namely that when a word was
never in the corpus used to refer to an object,
this object can serve as a negative example for
that word/object classifier. In the experiments
reported below, we randomly selected 5 image
regions from the training corpus whose referring
expressions (if there were any) did not contain the
word in question.6

The classifiers Following this regime, we train
binary logistic regression classifiers (with `1 regu-
larisation) on the visual object features representa-
tions, for all words that occurred at least 40 times
in the respective training corpus.7

To summarise, we train separate binary classifiers
for each word (not making any a-priori distinction
between function words and others, or attribute la-
bels and category labels), giving them the task to
predict how likely it would be that the word they
represent would be used to refer to the image re-
gion they are given. All classifiers are presented
during training with data sets with the same bal-
ance of positive and negative examples (here, a
fixed ratio of 1 positive to 5 negative). Hence, the
classifiers themselves do not reflect any word fre-
quency effects; our claim (to be validated in future

6This approach is inspired by the negative sampling tech-
nique of Mikolov et al. (2013) for training textual word em-
beddings.

7We used the implementation in the scikit learn
package (Pedregosa et al., 2011).

%tst acc mrr arc >0 acc
REFERIT 1.00 0.65 0.79 0.89 0.97 0.67
REFERIT; NR 0.86 0.68 0.82 0.91 0.97 0.71
(Hu et al., 2015) – 0.73 – – – –
REFCOCO 1.00 0.61 0.77 0.91 0.98 0.62
REFCOCO; NR 0.94 0.63 0.78 0.92 0.98 0.64
(Mao et al., 2015) – 0.70 – – – –
GREXP 1.00 0.43 0.65 0.86 1.00 0.43
GREXP; NR 0.82 0.45 0.67 0.88 1.00 0.45
(Mao et al., 2015) – 0.61 – – – –

Table 1: Results; separately by corpus. See text
for description of columns and rows.

work) is that any potential effects of this type are
better modelled separately.

6 Experiments

The task in our experiments is the following:
Given an image I together with bounding boxes
of regions (bb1, . . . , bbn) within it, and a referring
expression e, predict which of these regions con-
tains the referent of the expression.

By Corpus We start with training and testing
models for all three corpora (REFERIT, REFCOCO,
GREXP) separately. But first, we establish some
baselines. The first is just randomly picking one of
the candidate regions. The second is a 1-rule clas-
sifier that picks the largest region. The respective
accuracies on the corpora are as follows: REFERIT
0.20/0.19; REFCOCO 0.16/0.23; GREXP 0.19/0.20.

Training on the training sets of REFERIT, REF-
COCO and GREX with the regime described above
(min. 40 occurrences) gives us classifiers for 429,
503, and 682 words, respectively. Table 1 shows
the evaluation on the respective test parts: accu-
racy (acc), mean reciprocal rank (mrr) and for
how much of the expression, on average, a word
classifier is present (arc). ‘>0’ shows how much
of the testcorpus is left if expressions are filtered
out for which not even a single word is the model
(which we evaluate by default as false), and accu-
racy for that reduced set. The ‘NR’ rows give the
same numbers for reduced test sets in which all
relational expressions have been removed; ‘%tst’
shows how much of a reduction that is relative to
the full testset. The rows with the citations give
the best reported results from the literature.8

As this shows, in most cases we come close, but
do not quite reach these results. The distance is
the biggest for GREXP with its much longer ex-
pressions. As discussed above, not only are the
descriptions longer on average in this corpus, the

8Using a different split than (Mao et al., 2015), as their
train/test set overlaps on the level of images.

vocabulary size is also much higher. Many of
the descriptions contain action descriptions (“the
man smiling at the woman”), which do not seem
to be as helpful to our model. Overall, the ex-
pressions in this corpus do appear to be more like
‘mini-captions’ describing the region rather than
referring expressions that efficiently single it out
among the set of distractors; our model tries to
capture the latter.

Combining Corpora A nice effect of our setup
is that we can freely mix the corpora for train-
ing, as image regions are represented in the same
way regardless of source corpus, and we can com-
bine occurrences of a word across corpora. We
tested combining the testsets of REFERIT and RE-
FCOCO (RI+RC in the Table below), REFCOCO and
GREXP (RC+GR), and all three (REFERIT, REF-
COCO, and GREXP; RI+RC+GR), yielding mod-
els for 793, 933, 1215 words, respectively (with
the same “min. 40 occurrences” criterion). For all
testsets, the results were at least stable compared
to Table 1, for some they improved. For reasons
of space, we only show the improvements here.

%tst acc mrr arc >0 acc
RI+RC/RC 1.00 0.63 0.78 0.92 0.98 0.64
RI+RC/RC; NR 0.94 0.65 0.79 0.93 0.98 0.66
RI+RC+GR/RC 1.00 0.63 0.78 0.94 0.99 0.64
RI+RC+GR/RC; NR 0.94 0.65 0.79 0.95 0.99 0.66
RI+RC+GR/GR 1.00 0.47 0.68 0.90 1.00 0.47
RI+RC+GR/GR; NR 0.82 0.49 0.70 0.91 1.00 0.49

Table 2: Results, combined corpora

Computed Region Proposals Here, we cannot
expect the system to retrieve exactly the ground
truth bounding box, since we cannot expect the set
of automatically computed regions to contain it.
We follow Mao et al. (2015) in using intersection
over union (IoU) as metric (the size of the inter-
sective area between candidate and ground truth
bounding box normalised by the size of the union)
and taking an IoU � 0.5 of the top candidate as
a threshold for success (P@1). As a more relaxed
metric, we also count for the SAIAPR proposals (of
which there are 100 per image) as success when at
least one among the top 10 candidates exceeds this
IoU threshold (R@10). (For MSCOCO, there are
only slightly above 5 proposals per image on aver-
age, so computing this more relaxed measure does
not make sense.) The random baseline (RND) is
computed by applying the P@1 criterion to a ran-
domly picked region proposal. (That it is higher

than 1/#regions for SAIAPR shows that the regions
cluster around objects.)

RP@1 RP@10 rnd
REFERIT 0.09 0.24 0.03
REFERIT; NR 0.10 0.26 0.03
(Hu et al., 2015) 0.18 0.45
REFCOCO 0.52 – 0.17
REFCOCO; NR 0.54 – 0.17
(Mao et al., 2015) 0.52
GREXP 0.36 – 0.16
GREXP; NR 0.37 – 0.17
(Mao et al., 2015) 0.45

Table 3: Results on region proposals

With the higher quality proposals provided for
the MSCOCO data, and the shorter, more prototyp-
ical referring expressions from REFCOCO, we nar-
rowly beat the reported results. (Again, note that
we use a different split that ensures separation on
the level of images between training and test.) (Hu
et al., 2015) performs relatively better on the re-
gion proposals (the gap is wider), on GREXP, we
come relatively closer using these proposals. We
can speculate that using automatically computed
boxes of a lower selectivity (REFERIT) shifts the
balance between needing to actually recognise the
image and getting information from the shape and
position of the box (our positional features; see
Section 5).

Ablation Experiments To get an idea about
what the classifiers actually pick up on, we trained
variants given only the positional features (POS
columns below in Table 4) and only object fea-
tures (NOPOS columns). We also applied a vari-
ant of the model with only the top 20 classifiers
(in terms of number of positive training examples;
TOP20). We only show accuracy here, and repeat
the relevant numbers from Table 1 for comparison
(FULL).

nopos pos full top20
RI 0.53 0.60 0.65 0.46
RI; NR 0.56 0.62 0.68 0.48
RC 0.44 0.55 0.61 0.52
RC; NR 0.45 0.57 0.63 0.53

Table 4: Results with reduced models

This table shows an interesting pattern. To a
large extent, the object image features and the po-
sitional features seem to carry redundant informa-
tion, with the latter on their own performing better
than the former on their own. The full model, how-
ever, still gains something from the combination
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RC 0.44 0.55 0.61 0.52
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Results, full model Region Proposals Feature Ablation
(Schlangen, Zarrieß, Kennington; ACL 2016)
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ACL 2017)
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• visual averages:  centroid of set of positive instances 
• weights / intensional:   weight vectors of classifier 
• representative responses / denotational:  vector of 

responses to randomly selected set of objects 
• full response signature: vector of avg. responses of 

this classifier to positive instances of other categories









Evaluating Derived Concept Relations 
Hypernymy

• Linked 589 terms from vocabulary (s+r+rp) to WordNet synset 

• Identified 516 pairs of (term A, term B), where B is in closure of hyponym 
relation of A 

• Rule: if A “likes” real superset of what B “likes”, A is hypern. of B.      
0.18 f-score (on denotational vectors) 

• Entropy (Kiela et al. 2015): if A & B related, and entropy(A) > entropy(B), then 
hyper(A, B) 

• visual averages: 0.21 f-score 

• denotational vectors: 0.15 f-score 

• False positives: “scarf” is a type of “woman”, “shirt” is a type of “man”, etc. 
false false positives: “cowboy” is a type of “dude”…



Model MEN SemSim VisSim Compatibility

w2v ref 0.669 0.687 0.580 0.251
w2v den 0.765 0.651 0.570 0.164

w2v sit 0.586 0.515 0.409 0.166

baronimod 0.785 0.704 0.594 0.241

vis av 0.523 0.526 0.486 0.287

wac int -0.373 -0.339 -0.294 -0.076

wac den -0.593 -0.615 -0.536 -0.288
wac resp 0.634 0.656 0.574 0.276

(Bruni et al. 2012) 
372 out of 3,000

(Silberer & Lapata 2014) 
721 out of 7,577

(Kruszewski & Baroni 2015) 
1,859 out of 17,973

(Baroni  et 
al. 2014) 

CBOW, 
400dim

Evaluating Derived Concept Relations 
Similarity / Relatedness / Compatibility



[('left man', 190),
 ('right man', 159),
 ('man right', 153),
 ('the man', 129),
 ('man left', 111),
 ('man standing', 100),
 ('man sitting', 74),
 ('old man', 64),
 ('bald man', 62),
 ('closest man', 61),
 ('middle man', 52),
 ('black man', 45),
 ('standing man', 39),
 ('older man', 33),
 ('tallest man', 28),
 ('man eating', 26),
 ('taller man', 24),
 ('tall man', 22),
 ('blue man', 21),
 ('man glasses', 18)]

man
left right

young old
shirtlessold

referential 
contextlinguistic 

context

Predicting Incompatible Modifiers

shirt
plaid green

red gray
blue yellow

elephant
closest back

big baby
adult smaller
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concept

concept

like-
ness

concept

concept

like-
ness

Learning from explicit definition 

Recipe: 
• Definition links definiendum to other concepts 
• If those have likeness representation, do direct attribute 

prediction (Lampert et al. 2009)
p(z|x) /

Q
M

m=1

⇣
p(am|x)
p(am)

⌘
a

z
m
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ness



concept

concept

like-
ness

concept

concept

like-
ness

Learning from explicit definition 

Recipe: 
• Definition links definiendum to other concepts 
• If those have likeness representation, do direct attribute 

prediction (Lampert et al. 2009) 
• E.g., replace “wampimuk” with “small mouse mammal”

like-
ness



(Silberer, Ferrari & Lapata, 2013), using feature norms of (McRae et al. 2005)

114 out of 509 concepts in vocab 
instances for 340 of 637 attributes

Acc. on 20 test classes:  
43.2%

Zero-Shot Learning with Feature Norms



A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

64

divorce
divorces divorcing divorced 
verb
to end a marriage legally.
divorce noun

dock
docks noun
1 a place where ships load 
and unload cargo.
dock verb

2 the place in a courtroom 
where the person on trial 
stands or sits.

doctor
doctors noun
a person who is trained to 
treat sick or injured people.

dodge
dodges dodging dodged verb
to avoid being hit by 
something by moving out 
of the way very quickly.
She dodged the ball coming 
toward her.

doll
dolls noun
a toy that is made to look 
like a human being.

dolphin
dolphins noun
a fish-eating sea mammal. 
Dolphins breathe air, so they 
must swim to the surface 
often. They are friendly 
animals and are known for 
their intelligence. Dolphins 
are a type of small whale.

 say doll-fin

domino
dominoes noun
a small, flat piece of wood 
or plastic with dots marked 
on it. Dominoes are used 
in a table game, which is 
also called dominoes.

donation
donations noun
a gift, usually of money, that 
is made to a charity or 
another organization.
He made a large donation.

donkey
donkeys noun
a member of the horse family 
that has long ears and a soft, 
furry coat. Donkeys eat grass 
and in some countries are 
used for carrying 
people and goods.

door
doors noun
a piece of wood, glass, or 
metal that opens and shuts 
to provide a way into a room, 
cupboard, building, or vehicle.

dot
dots noun
a very small, round spot.
Ladybugs have dots on them.

double
adjective
twice 
as much.

A double six.
 say dub-ul

doubtful
adjective
not sure, or unlikely.
He was doubtful about 
his chances of winning.

 say dout-ful
doubt verb

dough
noun
a mixture of flour and either 
milk or water that is used 
to make bread or cakes.

 say doh

doughnut
doughnuts noun
a sweet, round cake made 
from dough, which is fried 
in fat and 
covered 
in sugar.

 say doh-nut

dove
doves noun
a bird that 
is a member of 
the pigeon family. 
Doves are 
often used 
as a symbol 
of peace.

divorce

dog
dogs noun
a mammal that is often 
kept as a pet. Dogs 
mainly eat meat and can 
be trained to perform 
certain tasks, such as 
herding sheep. Dogs are 
related to wolves and foxes 
(see pet on page 148). collie dog
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Justifying Concepts

• Show that you are a competent language user by 

• Applying terms (mostly) correctly 

• Being able to defend your decisions / being able 
to make your concepts explicit 

• Learning from being corrected



be trained from interaction data. The lexical repre-
sentations are used to compose meanings of larger
phrases. This composition process is transparent
(compared to composition in distributional seman-
tics, as discussed below), and hence is accessible
for inspection and correction.

To make our proposal concrete, and to investi-
gate the utility of interaction that has the system’s
own semantic competence as its topic, we imple-
mented an interactive system that tries to resolve
references to objects in images and can accept cor-
rections and provide explanations. Figure 1 shows
an excerpt of an actual interaction with the system
of a naive first-time user. (Image sources are cred-
ited in Section 7.1 below.)

2 Related Work

The idea of connecting words to what they de-
note in the real world via perceptual features goes
back at least to Harnad (1990), who coined “The
Symbol Grounding Problem”: “[H]ow can the se-
mantic interpretation of a formal symbol system be
made intrinsic to the system, rather than just par-
asitic on the meanings in our heads?” The pro-
posed solution was to link ‘categorial representa-
tions’ with “learned and innate feature detectors
that pick out the invariant features of object and
event categories from their sensory projections”.

This suggestion has variously been taken up in
computational work. An early example is Deb
Roy’s work from the early 2000s (Roy et al., 2002;
Roy, 2002; Roy, 2005). In (Roy et al., 2002),
computer vision techniques are used to detect ob-
ject boundaries in a video feed, and to compute
colour features (mean colour pixel value), posi-
tional features, and features encoding the relative
spatial configuration of objects. These features
are then associated in a learning process with cer-
tain words, resulting in an association of colour
features with colour words, spatial features with
prepositions, etc., and based on this, these words
can be interpreted with reference to the scene cur-
rently presented to the video feed.

Of more recent work, that of Matuszek et al.
(2012) is closely related to the approach we take.
The task in this work is to compute (sets of) refer-
ents, given a (depth) image of a scene containing
simple geometric shapes and a natural language
expression. In keeping with the formal semantics
tradition, a layer of logical form representation is
assumed; it is not constructed via syntactic parsing

User: Draw a new card
System: Ok.

U: Find the rightmost pillar
S: Let me see. Did you mean this?

U: yes
S: Ok.
U: Find the pavement
S: I’m going for this one. Correct?

U: This is not a pavement
S: Alright.
U: 1 is a fence
S: Ok.
U: find the fence
S: Let me see. Did you mean this?

U: yes
S: Thanks!

Figure 1: Example Interaction Reference candi-
dates outlined in red and without label; selected
candidates with numeric label. (Best viewed in
colour.)
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work, “GoogLeNet” (Szegedy et al., 2015), that
was trained on data from the Large Scale Visual
Recognition Challenge 2014 (ILSVRC2014) from
the ImageNet corpus (Deng et al., 2009) to extract
features, to give us a 1024 dimensional representa-
tion of the region. We augment this with 7 features
that encode information about the region relative
to the image: the (relative) coordinates of two cor-
ners, its (relative) area, distance to the center, and
orientation of the image. The full representation
hence is a vector of 1031 features.

In the training process then, each word occur-
ring in the training part of the referring expres-
sion collection is paired with the region it de-
scribes (and with 5 randomly selected regions for
which this word never ocurrs in the description) to
train a logistic regression classifier. Here, we use
the classifiers trained on the combination of the
two datasets, which yields models for 933 words.
As shown in (Schlangen et al., 2016), this model
reaches accuracy on a static visual reference reso-
lution task that is at the state of the art of end-to-
end deep learning models. Our focus here, how-
ever, is on the use of these models in interaction,
which we turn to next.

7.2 Interacting with Semantics
To get an impression of whether interaction
(“meaning negotiation”) can improve not only per-
formance of the system but also the impression of
considered language use, we implemented a sim-
ple dialogue system that uses these models. We
interfaced it with a popular chat tool,3 so that in-
teractions can be done remotely.4

Together with a simple dialogue logic that han-
dles misunderstandings and state updates (Larsson
and Traum, 2000), we implemented the following
commands (each accessible through a variety of
formulations, only one of which we give here):

• draw a new card, which presents a new im-
age with a natural scene to the user, with the
candidate objects (for which manual segmen-
tations are available) outlined.

• draw a new collage, which presents a collage
consisting of 6 sub-images that each contain
a single object; the understanding here is that

3Slack, http://www.slack.com
4By the time of the conference, we will release all code

as open-source. We will also provide a publicly accessible
installation of the system and will use it to collect more labels
from users, and to learn online from them.

User: get a new collage men
System: Ok.

U: Find the man with the book
S: Let me see. Did you mean this?

U: yes
S: Thanks!
U: explain
S: Okidoki.

S: 0 is best for “man”
S: 5 is best for “book”
S: Overal best: 5
S: Rank of region 5 for “man”: 4
S: Rank of region 5 for “book”: 1

Figure 2: Example Interaction II Reference can-
didates outlined in red and without label; selected
candidates with numeric label.
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Justifying Concepts

• U: Find the Rottweiler. 
• S: Picture 4. 
• U: Explain. 
• S: I have never seen a Rottweiler, but  

    I know that it is a type of dog.  
   4 is the only dog.



Justifying Concepts
• Show that you are a competent language user by 

• Applying terms (mostly) correctly 

• Being able to defend your decisions / being able 
to make your concepts explicit

• Learning from being corrected 

• Do people actually appreciate this? Does it work?
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ness

expl. definition: 
“An X is …”

impl. definition: 
“bla bla bla X bla bla”

demonstration: 
“This is an X.”

Learning Application

selection: 
“This is an X.”

justification: 
“I think it’s this, 
because an X is 
a type of Y, and 
this is a Y” 
“Xs are …”

correction:  
“No, this is an X”

“No, this is similar, but Xs don’t 
have A”
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Loose Ends
• Integrate this into probabilistic logic. 

• Use inferential knowledge to drive actual 
inferences… 

• Discourse representations. 

• Learn syntax / composition from referential 
interaction.



Current / Future Work

• Assembling a better tutor by structuring the training 
data (Z&S, EACL 2017, ACL 2017, forth) 

• Improving generation with situational constraints
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Thank you!


