An Abstract Categorial Grammar Approach to the Discourse Modeling

Aleksandre Maskharashvili

25 October 2017 Göteborg, Sweden

What is 'discourse'

Various kinds of natural language acts

- spoken
- written
 - monologues texts
 - dialogs
- multi-modal
- • •

What is 'discourse'

Various kinds of natural language acts

- spoken
- written
 - monologues texts
 - dialogs
- multi-modal
- • •

What is 'discourse'

Various kinds of natural language acts

- spoken
- written
 - monologues texts
 - dialogs
- multi-modal
- o . . .

Discourse VS Sentence

- Anaphoric expressions
- Interpretations of sentences are not to be considered in isolation
- • •

What is 'discourse'

Various kinds of natural language acts

- spoken
- written
 - monologues texts
 - dialogs
- multi-modal
- • •

Discourse VS Sentence

- Anaphoric expressions
- Interpretations of sentences are not to be considered in isolation
- • •

Example

- π_0 Fred is grumpy,
- π_1 because his wife is absent for a week.
- π_2 This shows how much he loves her.

What is 'discourse'

Various kinds of natural language acts

- spoken
- written
 - monologues texts
 - dialogs
- multi-modal
- • •

Discourse VS Sentence

- Anaphoric expressions
- Interpretations of sentences are not to be considered in isolation
- • •

Example

- π_0 Fred is grumpy,
- π_1 because his wife is absent for a week.
- π_2 This shows how much he loves her.

What is 'discourse'

Various kinds of natural language acts

- spoken
- written
 - monologues texts
 - dialogs
- multi-modal
- o . . .

Discourse VS Sentence

- Anaphoric expressions
- Interpretations of sentences are not to be considered in isolation
- ··· discourse structure

Example

- π_0 Fred is grumpy,
- π_1 because his wife is absent for a week.
- π_2 This shows how much he loves her.

- Rhetorical Structure Theory (RST) (Mann&Thompson, 1987)
- Segmented Discourse Representation Theory (SDRT) (Asher&Lascarides, 2003)

- Rhetorical Structure Theory (RST) (Mann&Thompson, 1987)
- Segmented Discourse Representation Theory (SDRT) (Asher&Lascarides, 2003)

```
A discourse consists of utterances - minimal discourse units
```

 $[Fred \ is \ grumpy]_0 \ \ [his \ wife \ is \ absent \ for \ a \ week]_1. \ \ [This \ shows \ how \ much \ he \ loves \ her]_2.$

- Rhetorical Structure Theory (RST) (Mann&Thompson, 1987)
- Segmented Discourse Representation Theory (SDRT) (Asher&Lascarides, 2003)

- A discourse consists of utterances minimal discourse units
- Utterances are connected to each other
- ٩
- ٩

- Rhetorical Structure Theory (RST) (Mann&Thompson, 1987)
- Segmented Discourse Representation Theory (SDRT) (Asher&Lascarides, 2003)

- A discourse consists of utterances minimal discourse units
- Utterances are connected to each other this creates larger discourse units (DUs)

_

[Fred is grumpy] ₀ because [his wife is absent for a week] ₁ .	ϵ [This shows how much he
loves her] ₂ .	

Discourse Structure

- Rhetorical Structure Theory (RST) (Mann&Thompson, 1987)
- Segmented Discourse Representation Theory (SDRT) (Asher&Lascarides, 2003)

A discourse and its structure

- A discourse consists of utterances minimal discourse units
- Utterances are connected to each other this creates larger discourse units (DUs)
- A connection between two discourse units is provided by a rhetorical (discourse) relation

- Rhetorical Structure Theory (RST) (Mann&Thompson, 1987)
- Segmented Discourse Representation Theory (SDRT) (Asher&Lascarides, 2003)

- A discourse consists of utterances minimal discourse units
- Utterances are connected to each other this creates larger discourse units (DUs)
- A connection between two discourse units is provided by a rhetorical (discourse) relation
- Discourse connections create the discourse structure

Left-branching trees

Left-branching trees

(1) [Fred is grumpy]₀ because [his wife is absent for a week]₁. ϵ [This shows how much he loves her]₂.

Grammar : trees and substitution

Left-branching trees

Left-branching trees

Grammar : trees and substitution

Left-branching trees

Left-branching trees

Grammar : trees and substitution

Right-branching trees

Right-branching trees

Right-branching trees

Right-branching trees

Right-branching trees

Right-branching trees

Directed Acyclic Graphs (DAGs)

(3) [Fred is grumpy]₀ because [he did not sleep well]₁. [He had nightmares]₂.

Directed Acyclic Graphs (DAGs)

(3) [Fred is grumpy]₀ because [he did not sleep well]₁. ϵ [He had nightmares]₂.

Directed Acyclic Graphs (DAGs)

(3) [Fred is grumpy]₀ because [he did not sleep well]₁. ϵ [He had nightmares]₂.

(4) [Fred went to a supermarket] $_0$ because [his fridge was empty] $_1$. Then, [he went to movies] $_2$.

Directed Acyclic Graphs (DAGs)

(3) [Fred is grumpy]₀ because [he did not sleep well]₁. ϵ [He had nightmares]₂.

(4) [Fred went to a supermarket]₀ because [his fridge was empty]₁. Then, [he went to movies]₂.

Directed Acyclic Graphs (DAGs)

(3) [Fred is grumpy]₀ because [he did not sleep well]₁. ϵ [He had nightmares]₂.

(4) [Fred went to a supermarket]₀ because [his fridge was empty]₁. Then, [he went to movies]₂.

Discourse structure \neq parse tree

Directed Acyclic Graphs (DAGs)

(3) [Fred is grumpy]₀ because [he did not sleep well]₁. ϵ [He had nightmares]₂.

(4) [Fred went to a supermarket]₀ because [his fridge was empty]₁. Then, [he went to movies]₂.

Discourse structure \neq parse tree Problem of the discourse-syntax interface

Another problem of the discourse-syntax interface

Another problem of the discourse-syntax interface

Clause-initial connective

(5) [Fred went to the supermarket]₀. Then [he went to the cinema]₁.

Another problem of the discourse-syntax interface

Clause-initial connective

(5) [Fred went to the supermarket]₀. Then [he went to the cinema]₁.

Clause-medial connective

(6) [Fred went to the supermarket]₀. [He then went to the cinema]₁.

VP

Another problem of the discourse-syntax interface

Clause-initial connective

(5) [Fred went to the supermarket]₀. Then [he went to the cinema]₁.

Clause-medial connective

(6) [Fred went to the supermarket]₀. [He then $\underbrace{\text{went to the cinema}}_{VP}$]₁.

• At the clause-level, a clause-medial connective is a VP modifier.
Clause-medial connectives

Another problem of the discourse-syntax interface

Clause-initial connective

(5) [Fred went to the supermarket]₀. Then [he went to the cinema]₁.

Clause-medial connective

(6) [Fred went to the supermarket]₀. [He then $\underbrace{\text{went to the cinema}}_{VP}$]₁.

- At the clause-level, a clause-medial connective is a VP modifier.
- A discourse unit is not only a VP, but the entire clause.

Clause-medial connectives

Another problem of the discourse-syntax interface

Clause-initial connective

(5) [Fred went to the supermarket]₀. Then [he went to the cinema]₁.

Clause-medial connective

(6) [Fred went to the supermarket]₀. [He then went to the cinema]₁.

- At the clause-level, a clause-medial connective is a VP modifier.
- A discourse unit is not only a VP, but the entire clause.

Mismatch between the clause-level and discourse-level analyses of clause-medial connectives

Discourse formalisms

Discourse formalisms

Discourse formalisms and their properties

	Parsing	Generation	Tree	DAG	
G-TAG	×	1	1	×	
(Danlos, 1998) D-LTAG	,				
(Webber & Joshi, 1998)	1	X	~	×	
D-STAG	1	x	1	1	
(Danlos, 2011)	·		•	•	

Discourse formalisms

Discourse formalisms and their properties

	Parsing	Generation	Tree	DAG	Clause-medial conn.
G-TAG	×	1	1	X	×
(Danlos, 1998) D-LTAG	1	×	1	×	×
(Webber & Joshi, 1998) D-STAG					Y
(Danlos, 2011)	v	^	v	v	^

Discourse formalisms

Discourse formalisms and their properties

	Parsing	Generation	Tree	DAG	Clause-medial conn.
G-TAG	×	1	1	×	×
(Danlos, 1998)					
(Webber & Joshi, 1998)	1	×	1	×	×
D-STAG	1	×	1	1	¥
(Danlos, 2011)					

Ad hoc encoding of clause-medial connectives

- Prohibits having reversible grammars both parsing & generation
- Prohibits generalizations

- Overcome the problems related to clause-medial connectives
 - Analyze the problems
 - Solve them using ACGs

- Overcome the problems related to clause-medial connectives
 - Analyze the problems
 - Solve them using ACGs
- Study existing discourse formalisms with ACGs + incorporate clause-medial connectives

- Overcome the problems related to clause-medial connectives
 - Analyze the problems
 - Solve them using ACGs
- Study existing discourse formalisms with ACGs + incorporate clause-medial connectives
- Develop tractable encodings
 - Discourse parsing
 - Discourse generation

Plan

1 TAG

2 Discourse formalisms

- Properties of grammars of D-LTAG, G-TAG, D-STAG
- Discourse parsing
- Problem of clause-medial connectives & a possible analysis
- D-STAG

3 ACG

- Definition & basic properties
- TAG as ACG
- TAG with semantics as ACG

O-STAG as ACG

- D-STAG as ACGs + clause-medial connectives
- D-STAG as ACGs with labeled semantics

Outline

TAG

Discourse formalisms

- Properties of grammars of D-LTAG, G-TAG, D-STAG
- Discourse parsing
- Problem of clause-medial connectives & a possible analysis
- D-STAG

3 ACG

- Definition & basic properties
- TAG as ACG
- TAG with semantics as ACG

D-STAG as ACG

- D-STAG as ACGs + clause-medial connectives
- D-STAG as ACGs with labeled semantics

Elementary trees -

Operations on trees -

Elementary trees -

Initial trees : domain of locality

Operations on trees -

Elementary trees -

Initial trees : domain of locality

Operations on trees – substitution

Elementary trees -

- Initial trees : domain of locality
- Auxiliary trees : recursion

Operations on trees - substitution

Elementary trees -

- Initial trees : domain of locality
- Auxiliary trees : recursion

Operations on trees – substitution and adjunction

Elementary trees -

- Initial trees : domain of locality
- Auxiliary trees : recursion

Operations on trees - substitution and adjunction

Generated structures – derived trees.

Elementary trees –

- Initial trees : domain of locality
- Auxiliary trees : recursion

Operations on trees - substitution and adjunction

Generated structures - derived trees. Their by-products - derivation trees

Synchronous TAG (STAG)

(Shieber&Schabes, 1990)

- Elementary structures pairs of TAG trees $\langle t_{syn}, t_{sem} \rangle$
- Correspondence between nodes of tsyn and tsem
- Parallel operations on corresponding nodes

Synchronous TAG (STAG)

(Shieber&Schabes, 1990)

- Elementary structures pairs of TAG trees $\langle t_{syn}, t_{sem} \rangle$
- Correspondence between nodes of t_{syn} and t_{sem}
- Parallel operations on corresponding nodes

STAG Example

STAG Example

STAG Example

Outline

2 Discourse formalisms

- Properties of grammars of D-LTAG, G-TAG, D-STAG
- Discourse parsing
- Problem of clause-medial connectives & a possible analysis
- D-STAG

3 ACG

- Definition & basic properties
- TAG as ACG
- TAG with semantics as ACG

D-STAG as ACG

- D-STAG as ACGs + clause-medial connectives
- D-STAG as ACGs with labeled semantics

An approach to clause-medial connectives

An approach to clause-medial connectives

An approach to clause-medial connectives

Discourse Synchronous TAG (D-STAG)

Discourse Synchronous TAG (D-STAG)

Characteristics

- Based on Synchronous TAG (STAG)
- Generates DAGs as discourse structures

Discourse Synchronous TAG (D-STAG)

Characteristics

- Based on Synchronous TAG (STAG)
- Generates DAGs as discourse structures

Elementary trees - Syntax

D-STAG Discourse Parsing

Ambiguity

Input (string of clauses and connectives) :

 $C_0 \operatorname{Conn}_1 C_1 \operatorname{Conn}_2 C_2$

D-STAG Discourse Parsing

Ambiguity

Input (string of clauses and connectives) :

 $C_0 \operatorname{Conn}_1 C_1 \operatorname{Conn}_2 C_2$

D-STAG Discourse Parsing

Ambiguity

Input (string of clauses and connectives) :

 $C_0 \operatorname{Conn}_1 C_1 \operatorname{Conn}_2 C_2$

A number of attachment sites with the same yield causes a high ambiguity in parsing. They are needed for obtaining various semantic interpretations.

D-STAG semantics

D-STAG semantics

 $\Phi'' \mathcal{R} = \lambda X Y P.X(\lambda x. Y(\lambda y. \mathcal{R}(\mathbf{x}, y) \land P(\mathbf{x})))$

Example : [Fred went to a supermarket] $_0$ because [his fridge was empty] $_1$. Then, [he went to movies] $_2$.

Example : [Fred went to a supermarket] $_0$ because [his fridge was empty] $_1$. Then, [he went to movies] $_2$.

Example : [Fred went to a supermarket] $_0$ because [his fridge was empty] $_1$. Then, [he went to movies] $_2$.

Outline

1 TAG

Discourse formalisms

- Properties of grammars of D-LTAG, G-TAG, D-STAG
- Discourse parsing
- Problem of clause-medial connectives & a possible analysis
- D-STAG

3 ACG

- Definition & basic properties
- TAG as ACG
- TAG with semantics as ACG

D-STAG as ACG

- D-STAG as ACGs + clause-medial connectives
- D-STAG as ACGs with labeled semantics

(de Groote, 2001)

Main Features

• ACGs are a grammatical framework

(de Groote, 2001)

Main Features

- ACGs are a grammatical framework
- An ACG ${\mathscr G}$ generates two languages :
 - ► The abstract language A(𝔅)
 - The object language O(G)

(de Groote, 2001)

Main Features

- ACGs are a grammatical framework
- An ACG ${\mathscr G}$ generates two languages :
 - ► The abstract languageA(𝔅)
 - The object language O(G)

Abstract language : Admissible structures (parse structures, derivations) Object language : An interpretation of the abstract language

(de Groote, 2001)

Main Features

- ACGs are a grammatical framework
- An ACG *G* generates two languages :
 - ► The abstract language A(𝔅)
 - The object language O(G)

Abstract language : Admissible structures (parse structures, derivations) Object language : An interpretation of the abstract language

Basic properties

Modularity Both languages are of the same nature – sets of linear λ -terms

(de Groote, 2001)

Main Features

- ACGs are a grammatical framework
- An ACG *G* generates two languages :
 - ► The abstract language A(𝔅)
 - The object language O(G)

Abstract language : Admissible structures (parse structures, derivations) Object language : An interpretation of the abstract language

Basic properties

Modularity Both languages are of the same nature – sets of linear λ -terms : ACGs can be composed

(de Groote, 2001)

Main Features

- ACGs are a grammatical framework
- An ACG *G* generates two languages :
 - ► The abstract language A(𝔅)
 - The object language O(G)

Abstract language : Admissible structures (parse structures, derivations) Object language : An interpretation of the abstract language

Basic properties

Modularity Both languages are of the same nature – sets of linear λ -terms : ACGs can be composed

Parsing 2nd order ACGs are reversible

(Salvati 2005), (Kanazawa 2007)

Derivation trees

Their interpretations as derived trees

Derivation trees

Their interpretations as derived trees

NP | Fred

Derivation trees C_{Fred} : NP Their interpretations as derived trees **NP**₁ *Fred*

NP | Fred

Derivation trees

 $C_{Fred} : \mathbf{NP}$ $C_{left} : \mathbf{S}_{A} \multimap \mathbf{VP}_{A} \multimap \mathbf{NP} \multimap \mathbf{S}$

Their interpretations as derived trees NP_1 Fred $\lambda S A np.S(S_2 np (A (VP_1 (V_1 left))))$

Derivation trees

 $\begin{array}{l} C_{\mathit{Fred}}: \mathsf{NP} \\ C_{\mathit{left}}: \mathsf{S}_{\mathsf{A}} \multimap \mathsf{VP}_{\mathsf{A}} \multimap \mathsf{NP} \multimap \mathsf{S} \\ C^{\mathsf{S}}_{\mathit{then}}: \mathsf{S}_{\mathsf{A}} \multimap \mathsf{S}_{\mathsf{A}} \end{array}$

Their interpretations as derived trees NP_1 Fred $\lambda S \ A \ np.S(S_2 \ np \ (A \ (VP_1 \ (V_1 \ left))))$ $\lambda A \ x.A \ (S_2 \ (Adv_1 \ then) \ x)$

Derivation trees

$$\begin{array}{l} C_{\mathit{Fred}} : \mathbf{NP} \\ C_{\mathit{left}} : \mathbf{S}_{A} \multimap \mathbf{VP}_{A} \multimap \mathbf{NP} \multimap \mathbf{S} \\ C_{\mathit{then}}^{\mathbf{S}} : \mathbf{S}_{A} \multimap \mathbf{S}_{A} \\ C_{\mathit{then}}^{\mathbf{VP}} : \mathbf{VP}_{A} \multimap \mathbf{VP}_{A} \end{array}$$

Their interpretations as derived trees **NP**₁ Fred $\lambda S A np.S(\mathbf{S}_2 np (A (\mathbf{VP}_1 (\mathbf{V}_1 left))))$ $\lambda A x.A (\mathbf{S}_2 (\mathbf{Adv}_1 then) x)$ $\lambda A x.A (\mathbf{V}_2 x (\mathbf{Adv}_1 then))$

Derivation trees

$$C_{Fred} : \mathbf{NP}$$

$$C_{left} : \mathbf{S}_{A} \multimap \mathbf{VP}_{A} \multimap \mathbf{NP} \multimap \mathbf{S}$$

$$C_{then}^{\mathbf{S}} : \mathbf{S}_{A} \multimap \mathbf{S}_{A}$$

$$C_{then}^{\mathbf{VP}} : \mathbf{VP}_{A} \multimap \mathbf{VP}_{A}$$

$$I_{X} : X_{A}$$

Their interpretations as derived trees **NP**₁ Fred $\lambda S A np.S(\mathbf{S}_2 np (A (\mathbf{VP}_1 (\mathbf{V}_1 left))))$ $\lambda A x.A (\mathbf{S}_2 (\mathbf{Adv}_1 then) x)$ $\lambda A x.A (\mathbf{V}_2 x (\mathbf{Adv}_1 then)))$ $\lambda x.x$

Derivation trees

$$\begin{array}{l} C_{\mathit{Fred}}: \mathsf{NP} \\ C_{\mathit{left}}: \mathsf{S}_{\mathsf{A}} \multimap \mathsf{VP}_{\mathsf{A}} \multimap \mathsf{NP} \multimap \mathsf{S} \\ C_{\mathit{then}}^{\mathsf{S}}: \mathsf{S}_{\mathsf{A}} \multimap \mathsf{S}_{\mathsf{A}} \\ C_{\mathit{then}}^{\mathsf{VP}}: \mathsf{VP}_{\mathsf{A}} \multimap \mathsf{VP}_{\mathsf{A}} \\ \mathsf{I}_{\mathsf{X}}: X_{\mathsf{A}} \end{array}$$

Their interpretations as derived trees **NP**₁ Fred $\lambda S A np.S(\mathbf{S}_2 np (A (\mathbf{VP}_1 (\mathbf{V}_1 left))))$ $\lambda A x.A (\mathbf{S}_2 (\mathbf{Adv}_1 then) x)$ $\lambda A x.A (\mathbf{V}_2 x (\mathbf{Adv}_1 then)))$ $\lambda x.x$

Derivation trees

$$\begin{array}{l} C_{\mathit{Fred}}: \mathsf{NP} \\ C_{\mathit{left}}: \mathsf{S}_{\mathsf{A}} \multimap \mathsf{VP}_{\mathsf{A}} \multimap \mathsf{NP} \multimap \mathsf{S} \\ C_{\mathit{then}}^{\mathsf{S}}: \mathsf{S}_{\mathsf{A}} \multimap \mathsf{S}_{\mathsf{A}} \\ C_{\mathit{then}}^{\mathsf{VP}}: \mathsf{VP}_{\mathsf{A}} \multimap \mathsf{VP}_{\mathsf{A}} \\ \mathsf{I}_{\mathsf{X}}: X_{\mathsf{A}} \end{array}$$

Their interpretations as derived trees **NP**₁ Fred $\lambda S A np.S(\mathbf{S}_2 np (A (\mathbf{VP}_1 (\mathbf{V}_1 left))))$ $\lambda A x.A (\mathbf{S}_2 (\mathbf{Adv}_1 then) x)$ $\lambda A x.A (\mathbf{V}_2 x (\mathbf{Adv}_1 then)))$ $\lambda x.x$

TAG derivation trees $\Lambda(\Sigma_{TAG})$

Derived trees $\Lambda(\Sigma_{trees})$

TAG as ACGs + Montague semantics (Pogodalla, 2004)

Vocabulary Σ_{logic} for Montague semantics

fred	: e	loudly	:t⊸t
laugh	: e• t	grumpy	: e t

Vocabulary Σ_{logic} for Montague semantics

fred	: e	loudly	: <i>t</i> → <i>t</i>
laugh	: e → t	grumpy	:e⊸t
\wedge	: $t \multimap t \multimap t$	\vee	$: t \multimap t \multimap t$
\Rightarrow	: $t \multimap t \multimap t$	-	: t• t
Ξ	: $(e ightarrow t) ightarrow t$	\forall	$:(e ightarrow t)\multimap t$

Interpretation of TAG derivation trees into Montague semantics

 C_{fred} : **NP**

 $\lambda^{\!\circ}\,P.\,P\,{\rm fred}$

Interpretation of TAG derivation trees into Montague semantics

 $C_{\text{fred}} : \mathbf{NP} \qquad \qquad \lambda^{\circ} P. P \text{ fred}$ $C_{\text{laugh}} : \mathbf{S}_{\mathbf{A}} \multimap \mathbf{VP}_{\mathbf{A}} \multimap \mathbf{NP} \multimap \mathbf{S} \qquad \lambda^{\circ} s_{a} v_{a} \text{ subje}. s_{a} (\text{subje} (v_{a} (\lambda^{\circ} x. ((\text{lough } x)))))$

Interpretation of TAG derivation trees into Montague semantics

C_{fred} : NP	X° P. P fred
$C_{laugh}: \mathbf{S}_{\mathbf{A}} \multimap \mathbf{VP}_{\mathbf{A}} \multimap \mathbf{NP} \multimap \mathbf{S}$	$\lambda^{\circ} s_a v_a \text{ subje. } s_a (\text{subje} (v_a (\lambda^{\circ} x. ((\operatorname{lough} x)))))$
C_{loudly} : $VP_A \multimap VP_A$	$\lambda^{\circ} v p_{a} r. v p_{a} (\lambda^{\circ} x. \text{ loudly } (rx))$
I _X _A	$\lambda x.x$

Interpretation of TAG derivation trees into Montague semantics

C_{fred} : NP	$\lambda^{\circ} P. P \text{fred}$
$C_{laugh}: \mathbf{S}_{\mathbf{A}} \multimap \mathbf{VP}_{\mathbf{A}} \multimap \mathbf{NP} \multimap \mathbf{S}$	$\lambda^{\circ} s_{a} v_{a} subje. s_{a} (subje (v_{a} (\lambda^{\circ} x. ((lough x)))))$
$C_{loudly}: \mathbf{VP}_{A} \multimap \mathbf{VP}_{A}$	$\lambda^{\circ} v p_{a} r. v p_{a} (\lambda^{\circ} x. \text{ loudly } (rx))$
I _X _A	$\lambda x.x$

Example

Fred loudly laughs.

$$\mathscr{L}_{\text{TAG}}^{\text{sem}}(C_{\text{laugh}} \mid_{\textbf{S}_{\textbf{A}}} (C_{\text{loudly}} \mid_{\textbf{VP}_{\textbf{A}}}) C_{\text{Fred}}) \twoheadrightarrow_{\beta} \text{loudly} (\text{laugh Fred}) : t$$

Outline

1 TAG

Discourse formalisms

- Properties of grammars of D-LTAG, G-TAG, D-STAG
- Discourse parsing
- Problem of clause-medial connectives & a possible analysis
- D-STAG

3 ACG

- Definition & basic properties
- TAG as ACG
- TAG with semantics as ACG

D-STAG as ACG

- D-STAG as ACGs + clause-medial connectives
- D-STAG as ACGs with labeled semantics

D-STAG as **ACGs**

Adverbial Connectives :

Adverbial Connectives :

 $d_{\textit{then}}$: $\mathbf{Du}_{\mathbf{A}} \multimap \mathbf{Du}_{\mathbf{A}} \multimap \mathbf{Du}_{\mathbf{A}} \multimap \mathbf{Du} \multimap \mathbf{Du}_{\mathbf{A}}$

Adverbial Connectives :

 $d_{\textit{then}}$: $\mathbf{Du}_{\mathbf{A}} \multimap \mathbf{Du}_{\mathbf{A}} \multimap \mathbf{Du}_{\mathbf{A}} \multimap \mathbf{Du} \multimap \mathbf{Du}_{\mathbf{A}}$

Adverbial Connectives :

 $d_{\textit{then}}$: $\mathbf{Du}_{\mathbf{A}} \multimap \mathbf{Du}_{\mathbf{A}} \multimap \mathbf{Du}_{\mathbf{A}} \multimap \mathbf{Du} \multimap \mathbf{Du}_{\mathbf{A}}$

 d_{then} : $\mathbf{Du}_{\mathbf{A}} \multimap \mathbf{Du}_{\mathbf{A}} \multimap \mathbf{Du}_{\mathbf{A}} \multimap \mathbf{Du}_{\mathbf{A}}$

$$\begin{array}{l} d_{then} \colon \mathbf{Du}_{\mathsf{A}} \multimap \mathbf{Du}_{\mathsf{A}} \multimap \mathbf{Du}_{\mathsf{A}} \multimap \mathbf{Du}_{\mathsf{A}} \multimap \mathbf{Du}_{\mathsf{A}} \\ d_{then}^{\mathsf{V}} \colon \mathbf{Du}_{\mathsf{A}} \multimap \mathbf{Du}_{\mathsf{A}} \multimap \mathbf{Du}_{\mathsf{A}} \multimap (\mathsf{VP}_{\mathsf{A}} \multimap \mathbf{Du}) \multimap \mathbf{Du}_{\mathsf{A}} \end{array}$$

$$\begin{array}{l} d_{then} \colon \mathbf{Du}_{\mathsf{A}} \multimap \mathbf{Du}_{\mathsf{A}} \multimap \mathbf{Du}_{\mathsf{A}} \multimap \mathbf{Du}_{\mathsf{A}} \multimap \mathbf{Du}_{\mathsf{A}} \\ d_{then}^{\mathsf{V}} \colon \mathbf{Du}_{\mathsf{A}} \multimap \mathbf{Du}_{\mathsf{A}} \multimap \mathbf{Du}_{\mathsf{A}} \multimap (\mathsf{VP}_{\mathsf{A}} \multimap \mathbf{Du}) \multimap \mathbf{Du}_{\mathsf{A}} \end{array}$$

Adverbial Connectives :

$$\begin{array}{l} d_{\textit{then}} \colon \mathbf{Du}_{\mathsf{A}} \multimap \mathbf{Du}_{\mathsf{A}} \multimap \mathbf{Du}_{\mathsf{A}} \multimap \mathbf{Du}_{\mathsf{A}} \\ d_{\textit{then}}^{\mathsf{V}} \colon \mathbf{Du}_{\mathsf{A}} \multimap \mathbf{Du}_{\mathsf{A}} \multimap \mathbf{Du}_{\mathsf{A}} \multimap (\mathsf{VP}_{\mathsf{A}} \multimap \mathsf{Du}) \multimap \mathsf{Du}_{\mathsf{A}} \\ d_{\textit{then}}^{\mathsf{S}} \end{array}$$

$$d_{then}^{\mathsf{V}}$$
: $\mathsf{Du}_{\mathsf{A}} \multimap \mathsf{Du}_{\mathsf{A}} \multimap \mathsf{Du}_{\mathsf{A}} \multimap (\mathsf{VP}_{\mathsf{A}} \multimap \mathsf{Du}) \multimap \mathsf{Du}_{\mathsf{A}}$
 d_{then}^{S}

$$\begin{array}{l} d_{then} \colon \mathbf{Du}_{\mathsf{A}} \multimap \mathbf{Du}_{\mathsf{A}} \multimap \mathbf{Du}_{\mathsf{A}} \multimap \mathbf{Du}_{\mathsf{A}} \multimap \mathbf{Du}_{\mathsf{A}} \\ d_{then}^{\mathsf{V}} \colon \mathbf{Du}_{\mathsf{A}} \multimap \mathbf{Du}_{\mathsf{A}} \multimap \mathbf{Du}_{\mathsf{A}} \multimap (\mathsf{VP}_{\mathsf{A}} \multimap \mathsf{Du}) \multimap \mathsf{Du}_{\mathsf{A}} \\ d_{then}^{\mathsf{S}} \colon \mathbf{Du}_{\mathsf{A}} \multimap \mathsf{Du}_{\mathsf{A}} \multimap \mathsf{Du}_{\mathsf{A}} \multimap (\mathsf{S}_{\mathsf{A}} \multimap \mathsf{Du}) \multimap \mathsf{Du}_{\mathsf{A}} \end{array}$$

$$\begin{array}{l} d_{then} \colon \mathbf{Du}_{\mathsf{A}} \multimap \mathbf{Du}_{\mathsf{A}} \multimap \mathbf{Du}_{\mathsf{A}} \multimap \mathbf{Du}_{\mathsf{A}} \multimap \mathbf{Du}_{\mathsf{A}} \\ d_{then}^{\mathsf{V}} \colon \mathbf{Du}_{\mathsf{A}} \multimap \mathbf{Du}_{\mathsf{A}} \multimap \mathbf{Du}_{\mathsf{A}} \multimap (\mathsf{VP}_{\mathsf{A}} \multimap \mathsf{Du}) \multimap \mathsf{Du}_{\mathsf{A}} \\ d_{then}^{\mathsf{S}} \colon \mathbf{Du}_{\mathsf{A}} \multimap \mathsf{Du}_{\mathsf{A}} \multimap \mathsf{Du}_{\mathsf{A}} \multimap (\mathsf{S}_{\mathsf{A}} \multimap \mathsf{Du}) \multimap \mathsf{Du}_{\mathsf{A}} \end{array}$$

$$\begin{array}{l} d_{then}^{S}: \mathbf{Du}_{A} \multimap \mathbf{Du}_{A} \multimap \mathbf{Du}_{A} \multimap \mathbf{Du}_{A} \multimap (\mathbf{S}_{A} \multimap \mathbf{Du}) \multimap \mathbf{Du}_{A} \\ d_{then}^{S}: \mathbf{Du}_{A} \multimap \mathbf{Du}_{A} \multimap \mathbf{Du}_{A} \multimap (\mathbf{S}_{A} \multimap \mathbf{Du}) \multimap \mathbf{Du}_{A} \\ \text{3rd order ACG - no polynomial parsing property } \end{array}$$

From D-STAG derivation trees to TAG derivation trees

 $Du \ := S_A \multimap VP_A \multimap S$

From D-STAG derivation trees to TAG derivation trees

 $\begin{array}{l} \mathsf{D} u \ := \mathsf{S}_{\mathsf{A}} \multimap \mathsf{V} \mathsf{P}_{\mathsf{A}} \multimap \mathsf{S} \\ (\mathsf{D} \mathsf{C} \stackrel{\scriptscriptstyle \bigtriangleup}{=} \overset{\scriptscriptstyle \frown}{\mathsf{D}} u_{\mathsf{A}} \multimap \overset{\scriptscriptstyle \frown}{\mathsf{D}} u_{\mathsf{A}} \multimap \overset{\scriptscriptstyle \frown}{\mathsf{D}} u_{\mathsf{A}} \multimap \overset{\scriptscriptstyle \frown}{\mathsf{D}} u_{\mathsf{A}}) \end{array}$

From D-STAG derivation trees to TAG derivation trees

 $\begin{array}{l} \mathsf{D} u \ := \mathsf{S}_{\mathsf{A}} \multimap \mathsf{V} \mathsf{P}_{\mathsf{A}} \multimap \mathsf{S} \\ (\mathsf{D} \mathsf{C} \triangleq \mathsf{D} \mathsf{u}_{\mathsf{A}} \multimap \mathsf{D} \mathsf{u}_{\mathsf{A}} \multimap \mathsf{D} \mathsf{u}_{\mathsf{A}} \multimap \mathsf{D} \mathsf{u} \multimap \mathsf{D} \mathsf{u}_{\mathsf{A}}) \end{array}$

$$d_{then}^{\mathbf{S}}: \mathbf{DC} \qquad \qquad := \lambda^{\circ} d_1 \ d_2 \ d_3 \ d_u . \ \text{cons} \ d_1 \ d_2 \ d_3 \ \left(d_u \ C_{then}^{\mathbf{S}} \ |_{\mathbf{VP}} \right)$$

From D-STAG derivation trees to TAG derivation trees

 $\begin{array}{l} \mathsf{D} u \ := \mathsf{S}_{\mathsf{A}} \multimap \mathsf{V} \mathsf{P}_{\mathsf{A}} \multimap \mathsf{S} \\ (\mathsf{D} \mathsf{C} \triangleq \mathsf{D} u_{\mathsf{A}} \multimap \mathsf{D} u_{\mathsf{A}} \multimap \mathsf{D} u_{\mathsf{A}} \multimap \mathsf{D} u \multimap \mathsf{D} u_{\mathsf{A}}) \end{array}$

 $d_{then}^{\mathbf{S}}: \mathbf{DC} \qquad := \lambda^{\circ} d_1 \ d_2 \ d_3 \ d_u. \ \text{cons} \ d_1 \ d_2 \ d_3 \ \left(d_u \ C_{then}^{\mathbf{S}} \ \mathsf{I_{VP}} \right)$

 $d_{then}^{\mathsf{V}}: \mathsf{DC} \qquad := \lambda^{\circ} d_1 \ d_2 \ d_3 \ d_u. \ \mathsf{cons} \ d_1 \ d_2 \ d_3 \ (d_u \ \mathsf{Is} \ C_{then}^{\mathsf{VP}})$

From D-STAG derivation trees to TAG derivation trees

 $\begin{array}{l} \mathsf{D} u \ := \mathsf{S}_{\mathsf{A}} \multimap \mathsf{V} \mathsf{P}_{\mathsf{A}} \multimap \mathsf{S} \\ (\mathsf{D} \mathsf{C} \triangleq \mathsf{D} u_{\mathsf{A}} \multimap \mathsf{D} u_{\mathsf{A}} \multimap \mathsf{D} u_{\mathsf{A}} \multimap \mathsf{D} u \multimap \mathsf{D} u_{\mathsf{A}}) \end{array}$

 $d_{then}^{\mathbf{S}}: \mathbf{DC} \qquad := \lambda^{\circ} d_1 \ d_2 \ d_3 \ d_u. \ \text{cons} \ d_1 \ d_2 \ d_3 \ \left(d_u \ C_{then}^{\mathbf{S}} \ \mathsf{I_{VP}} \right)$

 $d_{then}^{\mathsf{V}}: \mathsf{DC} \qquad := \lambda^{\circ} d_1 \ d_2 \ d_3 \ d_u. \ \mathsf{cons} \ d_1 \ d_2 \ d_3 \ (d_u \ \mathsf{Is} \ C_{then}^{\mathsf{VP}})$

(4) [Fred went to a supermarket]₀ because [his fridge was empty]₁. Then, [he went to movies]₂.

(4) [Fred went to a supermarket]₀ because [his fridge was empty]₁. Then, [he went to movies]₂.

D-STAG as ACGs

```
\begin{array}{l} (\texttt{EXPLANATION} \\ (\exists !x. (\texttt{supermarket } x) \land (\texttt{go-to fred } x)) \\ (\exists !x. (\texttt{fridge } x) \land (\texttt{empty } x))) \\ \land \\ (\texttt{NARRATION} \\ (\exists !x. (\texttt{supermarket } x) \land (\texttt{go-to fred } x))) \\ (\exists !x. (\texttt{movies } x) \land (\texttt{go-to fred } x))) \end{array}
```

(4) [Fred went to a supermarket]₀ because [his fridge was empty]₁. Then, [he went to movies]₂.

D-STAG as ACGs

```
\begin{array}{l} (\texttt{EXPLANATION} \\ (\exists !x. (\texttt{supermarket } x) \land (\texttt{go-to fred } x)) \\ (\exists !x. (\texttt{fridge } x) \land (\texttt{empty } x))) \\ \land \\ (\texttt{NARRATION} \\ (\exists !x. (\texttt{supermarket } x) \land (\texttt{go-to fred } x)) \\ (\exists !x. (\texttt{movies } x) \land (\texttt{go-to fred } x))) \end{array}
```

(4) [Fred went to a supermarket]₀ because [his fridge was empty]₁. Then, [he went to movies]₂.

D-STAG as ACGs - How to express that the two are the same?

```
\begin{array}{l} (\texttt{EXPLANATION} \\ (\exists !x. (\texttt{supermarket } x) \land (\texttt{go-to fred } x)) \\ (\exists !x. (\texttt{fridge } x) \land (\texttt{empty } x))) \\ \land \\ (\texttt{NARRATION} \\ (\exists !x. (\texttt{supermarket } x) \land (\texttt{go-to fred } x)) \\ (\exists !x. (\texttt{movies } x) \land (\texttt{go-to fred } x))) \end{array}
```

Labeled semantic interpretations

 $\Sigma^\ell_{\text{logic}}$ - a signature for labeled semantics

Atomic types : $\{e, t, \ell\}$

Labeled semantic interpretations $\Sigma^\ell_{\text{logic}}$ - a signature for labeled semantics

Atomic types : $\{e, t, \ell\}$

Predicates have one additional argument of type ℓ for labels

Labeled semantic interpretations $\Sigma^{\ell}_{\text{logic}}$ - a signature for labeled semantics

Atomic types : $\{e, t, \ell\}$

Predicates have one additional argument of type ℓ for labels

Argument of discourse relations are of type ℓ (labels)

Labeled semantic interpretations $\Sigma^{\ell}_{\text{logic}}$ - a signature for labeled semantics

Atomic types : $\{e, t, \ell\}$

Predicates have one additional argument of type ℓ for labels

Argument of discourse relations are of type ℓ (labels)

fred, he : esleep, bad-mood, exam : $e \to \ell \to t$ love, miss, fail : $e \to e \to \ell \to t$ $\forall, \exists, \exists! : (e \to t) \to t$
$$\begin{split} & \texttt{EXPLANATION}: \ell \to \ell \to \ell \to t \\ & \texttt{CONTINUATION}: \ell \to \ell \to \ell \to t \\ & \texttt{NARRATION}: \ell \to \ell \to \ell \to t \\ & \exists_l: (\ell \to t) \to t \end{split}$$

. . .

Labeled semantic trees

Unlabeled $(t \rightarrow t) \rightarrow t \triangleq ttt$

 $\Phi^{''} \mathcal{R} = \lambda X. \lambda Y. \lambda P. X (\lambda x. (Y (\lambda y. (\mathcal{R} x y) \land P(x))))$

Labeled semantic trees

Unlabeled $(t \rightarrow t) \rightarrow t \triangleq ttt$

 $\Phi^{''} \mathcal{R} = \lambda X. \lambda Y. \lambda P. X (\lambda x. (Y (\lambda y. (\mathcal{R} x y) \land P(x))))$

Labeled $(\ell \rightarrow t) \rightarrow t \triangleq \ell t t$

 $\Phi_{l}^{\prime\prime\prime} \mathcal{R}_{\ell} = X Y P. \exists_{l} l. X(\lambda x. Y(\lambda y. (P x) \land (\mathcal{R}_{\ell} x y l)))$

 $d_1 = d_{\textit{init.anchor}} \ C_0 \ (d_{\textit{because}} \ I_{\mathsf{Du}} \ I_{\mathsf{Du}} \ I_{\mathsf{Du}} \ (d_{\textit{anchor}} \ C_1 \ (d_{\textit{moreover}} \ I_{\mathsf{Du}} \ I_{\mathsf{Du}} \ I_{\mathsf{Du}} \ (d_{\textit{anchor}} \ C_2 I_{\mathsf{Du}}))))$

 $\begin{aligned} d_1 &= d_{\text{init.anchor}} \ C_0 \ \left(d_{\text{because}} \ \mathbf{I_{Du}} \ \mathbf{I_{Du}} \ \mathbf{I_{Du}} \ \mathbf{I_{Du}} \ (d_{\text{anchor}} \ C_1 \ (d_{\text{moreover}} \ \mathbf{I_{Du}} \ \mathbf{I_{Du}} \ \mathbf{I_{Du}} \ (d_{\text{anchor}} \ C_2 \mathbf{I_{Du}}))) \right) \\ &:= \exists_{\ell} l_0 \ l_{\mathcal{R}_1} . \ l_0 : \texttt{grumpy}(\texttt{fred}) \land (\exists_{\ell} l_1 l_{\mathcal{R}_2} . (\exists ! x. h_1 : \texttt{keys}(x) \land h_1 : \texttt{lose}(\texttt{fred}, x)) \land \\ & (\exists_{\ell} l_2 . (\exists ! x. h_2 : \texttt{exam}(x) \land h_2 : \texttt{fail}(\texttt{fred}, x) \land (l_{\mathcal{R}_2} : \phi_{\text{Cont.}} (l_1, l_2) \land l_{\mathcal{R}_1} : \phi_{\text{Expl.}} (l_0, l_{\mathcal{R}_2})))))) \end{aligned}$

 $\begin{aligned} d_1 &= d_{init.anchor} \ C_0 \ \left(d_{because} \ \mathbf{I_{Du}} \ \mathbf$

 $\begin{aligned} d_1 &= d_{init.anchor} \ C_0 \ \left(d_{because} \ \mathbf{I_{Du}} \ \mathbf$

 $\begin{aligned} d_{1} &= d_{\text{init.anchor}} \ C_{0} \ \left(d_{\text{because}} \ \mathbf{I_{Du}} \ \mathbf{I_$

(2) [Fred is grumpy]₀ because [he lost his keys]₁. Moreover, [he failed an exam]₂.

 $\begin{aligned} d_{1} &= d_{init.anchor} C_{0} \left(d_{because} \ |_{\mathbf{D}\mathbf{u}} \ |_{\mathbf{D}\mathbf{u}} \ |_{\mathbf{D}\mathbf{u}} \ (d_{anchor} \ C_{1} \ (d_{moreover} \ |_{\mathbf{D}\mathbf{u}} \ |_{\mathbf{D}\mathbf{u}} \ |_{\mathbf{D}\mathbf{u}} \ (d_{anchor} \ C_{2} |_{\mathbf{D}\mathbf{u}})))) \\ &:= \exists_{\ell} l_{0} l_{\mathcal{R}_{1}} . l_{0} : grumpy(\texttt{fred}) \land (\exists_{\ell} l_{1} l_{\mathcal{R}_{2}} . (\exists ! x. l_{1} : \texttt{keys}(x) \land l_{1} : \texttt{lose}(\texttt{fred}, x)) \land \\ & (\exists_{\ell} l_{2} . (\exists ! x. l_{2} : \texttt{exam}(x) \land l_{2} : \texttt{fail}(\texttt{fred}, x) \land (l_{\mathcal{R}_{2}} : \phi_{\texttt{Cont.}} . (l_{1}, l_{2}) \land l_{\mathcal{R}_{1}} : \phi_{\texttt{Expl.}} . (l_{0}, l_{\mathcal{R}_{2}})))))) \end{aligned}$

(4) [Fred went to a supermarket] $_0$ because [his fridge was empty] $_1$. Then, [he went to the cinema] $_2$.

(4) [Fred went to a supermarket] $_0$ because [his fridge was empty] $_1$. Then, [he went to the cinema] $_2$.

(4) [Fred went to a supermarket] $_0$ because [his fridge was empty] $_1$. Then, [he went to the cinema] $_2$.

 $d_{3} = d_{\textit{init.anchor}} \ C_{0} \ \left(d_{\textit{because}} \ \mathsf{I}_{\mathsf{Du}} \ \left(d_{\textit{then}}^{\mathsf{S}} \ \mathsf{I}_{\mathsf{Du}} \ \mathsf{I}_{\mathsf{Du}} \ \mathsf{I}_{\mathsf{Du}} \ \left(d_{\textit{anchor}} \ C_{2} \ \mathsf{I}_{\mathsf{Du}} \right) \right) \ \mathsf{I}_{\mathsf{Du}} \ \left(d_{\textit{anchor}} \ \overline{C_{1}} \ \mathsf{I}_{\mathsf{Du}} \right) \right)$

 $\begin{aligned} d_3 &= d_{init.anchor} \ C_0 \ \left(d_{because} \ \mathbf{I_{Du}} \ \left(d_{then}^{\mathbf{S}} \ \mathbf{I_{Du}} \right) \right) \\ &:= \exists_{\ell} \mathbf{I_0} \ l_{\mathcal{R}_1} \ l_{\mathcal{R}_2} . \exists ! x. \ \mathbf{I_0} : \texttt{supermarket}(x) \land \mathbf{I_0} : \texttt{go_to}(\texttt{fred}, x) \land (\exists_{\ell} l_2 . (\exists ! x. l_2 : \texttt{movies}(x) \land l_2 : \texttt{go_to}(\texttt{fred}, x)) \land ((\exists_{\ell} l_1 . (\exists ! x. l_1 : \texttt{fridge}(x) \land l_1 : \texttt{empty}(x)) \land (l_{\mathcal{R}_1} : \phi_{\mathsf{Expl}} . (\mathbf{I_0}, l_1) \land \top)) \land l_{\mathcal{R}_2} : \phi_{\mathsf{Nar}} . (\mathbf{I_0}, l_2))) \end{aligned}$

 $\begin{aligned} d_3 &= d_{init.anchor} \ C_0 \ \left(d_{because} \ \mathbf{I_{Du}} \ \left(d_{then}^{\mathbf{S}} \ \mathbf{I_{Du}} \right) \right) \\ &:= \exists_{\ell} l_0 \ l_{\mathcal{R}_1} \ l_{\mathcal{R}_2} . \exists ! x. \ l_0 : \texttt{supermarket}(x) \land l_0 : \texttt{go_to}(\texttt{fred}, x) \land (\exists_{\ell} l_2 . (\exists ! x. l_2 : \texttt{movies}(x) \land l_2 : \texttt{go_to}(\texttt{fred}, x)) \land ((\exists_{\ell} l_1 . (\exists ! x. l_1 : \texttt{fridge}(x) \land l_2 : \texttt{go_to}(\texttt{fred}, x)) \land ((\exists_{\ell} l_1 . (\exists ! x. l_1 : \texttt{fridge}(x) \land l_2 : \texttt{go_{Mar.}}(l_0, l_2))) \end{aligned}$

 $\begin{aligned} d_{3} &= d_{init.anchor} \ C_{0} \ \left(d_{because} \ \mathbf{l}_{\mathsf{Du}} \ \left(d_{then}^{\mathsf{S}} \ \mathbf{l}_{\mathsf{Du}} \ \mathbf{l}_{\mathsf{Du}} \ \mathbf{l}_{\mathsf{Du}} \ \left(d_{anchor} \ C_{2} \ \mathbf{l}_{\mathsf{Du}} \right) \right) \ \mathbf{l}_{\mathsf{Du}} \ \left(d_{anchor} \ C_{1} \ \mathbf{l}_{\mathsf{Du}} \right) \\ &:= \exists_{\ell} l_{0} \ l_{\mathcal{R}_{1}} \ l_{\mathcal{R}_{2}} . \exists ! x. \ l_{0} : \texttt{supermarket}(x) \land l_{0} : \texttt{go_to}(\texttt{fred}, x) \land (\exists_{\ell} l_{2} . (\exists ! x. l_{2} : \texttt{movies}(x) \land \land l_{2} : \texttt{go_to}(\texttt{fred}, x)) \land ((\exists_{\ell} l_{1} . (\exists ! x. l_{1} : \texttt{fridge}(x) \land \land l_{1} : \texttt{empty}(x)) \land (l_{\mathcal{R}_{1}} : \phi_{\mathsf{Expl.}} (l_{0}, l_{1}) \land \top)) \land l_{\mathcal{R}_{2}} : \phi_{\mathsf{Nar.}} (l_{0}, l_{2}))) \end{aligned}$

 $\begin{aligned} d_3 &= d_{init.anchor} \ C_0 \ \left(d_{because} \ \mathbf{l_{Du}} \ \left(d_{then}^{\mathbf{S}} \ \mathbf{l_{Du}} \right) \right) \\ &:= \exists_{\ell} \mathbf{l}_0 \ l_{\mathcal{R}_1} \ l_{\mathcal{R}_2} . \exists ! x. \ \mathbf{l}_0 : \texttt{supermarket}(x) \land \mathbf{l}_0 : \texttt{go_to}(\texttt{fred}, x) \land (\exists_{\ell} l_2 . (\exists ! x. l_2 : \texttt{movies}(x) \land k_1 : \texttt{go_to}(\texttt{fred}, x)) \land ((\exists_{\ell} l_1 . (\exists ! x. l_1 : \texttt{fridge}(x) \land k_1 : \texttt{fridge}(x) \land k_1 : \texttt{empty}(x)) \land (l_{\mathcal{R}_1} : \mathbf{\phi}_{\mathsf{Expl}} . (\mathbf{l}_0, l_1) \land \top)) \land l_{\mathcal{R}_2} : \mathbf{\phi}_{\mathsf{Nar}} . (\mathbf{l}_0, l_2))) \end{aligned}$

 $\begin{aligned} d_3 &= d_{init.anchor} \ C_0 \ \left(d_{because} \ \mathbf{I}_{\mathsf{Du}} \ \left(d_{then}^{\mathsf{S}} \ \mathbf{I}_{\mathsf{Du}} \ \mathbf{I}_{\mathsf{Du}} \ \mathbf{I}_{\mathsf{Du}} \ \mathbf{I}_{\mathsf{Du}} \ \left(d_{anchor} \ C_2 \ \mathbf{I}_{\mathsf{Du}} \right) \right) \ \mathbf{I}_{\mathsf{Du}} \ \left(d_{anchor} \ C_1 \ \mathbf{I}_{\mathsf{Du}} \right) \right) \\ &:= \exists_{\ell} l_0 \ l_{\mathcal{R}_1} \ l_{\mathcal{R}_2} . \exists ! x. \ l_0 : \texttt{supermarket}(x) \land \ l_0 : \texttt{go_to}(\texttt{fred}, x) \land (\exists_{\ell} l_2 . (\exists ! x. l_2 : \texttt{movies}(x) \land \land l_2 : \texttt{go_to}(\texttt{fred}, x)) \land ((\exists_{\ell} l_1 . (\exists ! x. l_1 : \texttt{fridge}(x) \land \land l_1 : \texttt{empty}(x)) \land (l_{\mathcal{R}_1} : \phi_{\mathsf{Expl.}} (l_0, l_1) \land \top)) \land l_{\mathcal{R}_2} : \phi_{\mathsf{Nar.}} (l_0, l_2))) \end{aligned}$

Summary of the current results

• Purely grammatical approach to clause-medial connectives

- Purely grammatical approach to clause-medial connectives
- Uniform encoding of clause-initial and clause-medial connectives

- Purely grammatical approach to clause-medial connectives
- Uniform encoding of clause-initial and clause-medial connectives
- D-STAG as ACGs

- Purely grammatical approach to clause-medial connectives
- Uniform encoding of clause-initial and clause-medial connectives
- $\bullet~$ D-STAG as ACGs + labeled interpretations

- Purely grammatical approach to clause-medial connectives
- Uniform encoding of clause-initial and clause-medial connectives
- $\bullet~$ D-STAG as ACGs + labeled interpretations
- A single grammar incorporating clause-level and discourse-level grammars

- Purely grammatical approach to clause-medial connectives
- Uniform encoding of clause-initial and clause-medial connectives
- $\bullet~$ D-STAG as ACGs + labeled interpretations
- A single grammar incorporating clause-level and discourse-level grammars
- 2nd order ACGs

- Purely grammatical approach to clause-medial connectives
- Uniform encoding of clause-initial and clause-medial connectives
- $\bullet~$ D-STAG as ACGs + labeled interpretations
- A single grammar incorporating clause-level and discourse-level grammars
- 2nd order ACGs polynomial parsing and generation

Summary of the current results

- Purely grammatical approach to clause-medial connectives
- Uniform encoding of clause-initial and clause-medial connectives
- $\bullet~$ D-STAG as ACGs + labeled interpretations
- A single grammar incorporating clause-level and discourse-level grammars
- 2nd order ACGs polynomial parsing and generation

Future work

• Encode D-LTAG as ACGs

Summary of the current results

- Purely grammatical approach to clause-medial connectives
- Uniform encoding of clause-initial and clause-medial connectives
- D-STAG as ACGs + labeled interpretations
- A single grammar incorporating clause-level and discourse-level grammars
- 2nd order ACGs polynomial parsing and generation

Future work

- Encode D-LTAG as ACGs
- Referring expression generation

Summary of the current results

- Purely grammatical approach to clause-medial connectives
- Uniform encoding of clause-initial and clause-medial connectives
- D-STAG as ACGs + labeled interpretations
- A single grammar incorporating clause-level and discourse-level grammars
- 2nd order ACGs polynomial parsing and generation

Future work

- Encode D-LTAG as ACGs
- Referring expression generation
- Discourse connectives and attitude verbs

Summary of the current results

- Purely grammatical approach to clause-medial connectives
- Uniform encoding of clause-initial and clause-medial connectives
- D-STAG as ACGs + labeled interpretations
- A single grammar incorporating clause-level and discourse-level grammars
- 2nd order ACGs polynomial parsing and generation

Future work

- Encode D-LTAG as ACGs
- Referring expression generation
- Discourse connectives and attitude verbs
- Disambiguation in parsing

Thank you!

References I

- ASHER, Nicholas et Alex LASCARIDES (2003). Logics of Conversation. Cambridge University Press.
- DANLOS, Laurence (2011). "D-STAG : a Formalism for Discourse Analysis based on SDRT and using Synchronous TAG". In : 14th conference on Formal Grammar - FG 2009. Sous la dir. de Philippe de GROOTE, Markus EGG et Laura KALLMEYER. T. 5591. LNCS/LNAI. Springer, p. 64-84. DOI : 10.1007/978-3-642-20169-1_5. URL : http://webloria.loria.fr/~degroote/FG09/Danlos.pdf.
- DE GROOTE, Philippe (2001). "Towards Abstract Categorial Grammars". In : Association for Computational Linguistics, 39th Annual Meeting and 10th Conference of the European Chapter, Proceedings of the Conference, p. 148–155. acl : P01–1033. URL : http://aclweb.org/anthology/P/P01/P01–1033.
- JOSHI, Aravind K., Leon S. LEVY et Masako TAKAHASHI (1975). "Tree Adjunct Grammars". In : Journal of Computer and System Sciences 10.1, p. 136–163. DOI : 10.1016/S0022-0000(75)80019-5.
- MANN, William C. et Sandra A. THOMPSON (1987). Rhetorical Structure Theory : A Theory of Text Organization. Rapp. tech. ISI/RS-87-190. Information Sciences Institute.

POGODALLA, Sylvain (2009). "Advances in Abstract Categorial Grammars : Language Theory and Linguistic Modeling. ESSLLI 2009 Lecture Notes, Part II". URL : http://hal.inria.fr/hal-00749297.

References II

SHIEBER, Stuart M. et Yves SCHABES (1990). "Synchronous Tree-adjoining Grammars".
In : Proceedings of the 13th Conference on Computational Linguistics - Volume 3.
COLING '90. Helsinki, Finland : Association for Computational Linguistics, p. 253–258.
ISBN : 952-90-2028-7. DOI : 10.3115/991146.991191.

WEBBER, Bonnie et al. (1999). "Discourse Relations : A Structural and Presuppositional Account Using Lexicalised TAG". In : Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics. College Park, Maryland, USA : Association for Computational Linguistics, p. 41–48. URL : http://www.aclweb.org/anthology/P99-1006.