$\left\{ \begin{array}{l} h_{1}, \\ h_{2}:_but_c(_,_,h_{5}), h_{8}:_this_q_dem(x_{10}, h_{11},_), h_{12}:_theory_n_of(x_{10},_), \\ h_{14}:_would_v_modal(e_{4}, h_{15}), h_{16}:neg(_, h_{17}), h_{19}:_work_v_1(e_{20}, x_{10},_) \\ \left\{ \begin{array}{l} h_{17} =_{q} h_{14}, h_{15} =_{q} h_{19}, h_{11} =_{q} h_{12}, h_{5} =_{q} h_{16}, h_{1} =_{q} h_{2} \right\} \right\}$

Holes in Meaning Construction with Minimal Recursion Semantics

Stephan Oepen & Dan Flickinger

Universitetet i Oslo, Stanford University, and Center for Advanced Study at the Norwegian Academy of Science and Letters oe@ifi.uio.no, danf@stanford.edu $\left\{ \begin{array}{l} h_{1}, \\ h_{2}:_but_c(_,_,h_{5}), h_{8}:_this_q_dem(x_{10}, h_{11},_), h_{12}:_theory_n_of(x_{10},_), \\ h_{14}:_would_v_modal(e_{4}, h_{15}), h_{16}:neg(_, h_{17}), h_{19}:_work_v_1(e_{20}, x_{10},_) \\ \left\{ \begin{array}{l} h_{17} =_{q} h_{14}, h_{15} =_{q} h_{19}, h_{11} =_{q} h_{12}, h_{5} =_{q} h_{16}, h_{1} =_{q} h_{2} \right\} \right\}$

Holes in Meaning Construction with Minimal Recursion Semantics 'Empirical ERG Research'

Stephan Oepen & Dan Flickinger

Universitetet i Oslo, Stanford University, and Center for Advanced Study at the Norwegian Academy of Science and Letters oe@ifi.uio.no, danf@stanford.edu $\left\{ \begin{array}{l} h_{1}, \\ h_{2}:_but_c(_,_,h_{5}), h_{8}:_this_q_dem(x_{10}, h_{11},_), h_{12}:_theory_n_of(x_{10},_), \\ h_{14}:_would_v_modal(e_{4}, h_{15}), h_{16}:neg(_, h_{17}), h_{19}:_work_v_1(e_{20}, x_{10},_) \\ \left\{ \begin{array}{l} h_{17} =_{q} h_{14}, h_{15} =_{q} h_{19}, h_{11} =_{q} h_{12}, h_{5} =_{q} h_{16}, h_{1} =_{q} h_{2} \right\} \right\}$

Holes in Meaning Construction with Minimal Recursion Semantics Lollies & Lambdas → Hooks & Holes

Stephan Oepen & Dan Flickinger

Universitetet i Oslo, Stanford University, and Center for Advanced Study at the Norwegian Academy of Science and Letters oe@ifi.uio.no, danf@stanford.edu

Background: Wide-Coverage Grammar Engineering

Deep Linguistic Processing with HPSG (www.delph-in.net)

- Practical and re-usable HPSG implementations; ongoing since 1990s;
- Typed feature structure formalism: [Carpenter, 92], [Copestake, 92];
- phrase structure rules with complex categories (feature structures);
- de-facto standardization enables sustained, incremental development.

Background: Wide-Coverage Grammar Engineering

Deep Linguistic Processing with HPSG (www.delph-in.net)

- Practical and re-usable HPSG implementations; ongoing since 1990s;
- Typed feature structure formalism: [Carpenter, 92], [Copestake, 92];
- phrase structure rules with complex categories (feature structures);
- de-facto standardization enables sustained, incremental development.

LinGO English Resource Grammar (ERG; lingo.stanford.edu)

- Comprehensive: ~9000 types; 84 lexical and 222 grammar rules (1214);
- hand-built lexicon of 39,000 lemmas; 1,100 types; some 10,000 verbs;
- coverage \sim 80–95% across domains: Wikipedia, GENIA, WSJ, et al.

Background: Wide-Coverage Grammar Engineering

Deep Linguistic Processing with HPSG (www.delph-in.net)

- Practical and re-usable HPSG implementations; ongoing since 1990s;
- Typed feature structure formalism: [Carpenter, 92], [Copestake, 92];
- phrase structure rules with complex categories (feature structures);
- de-facto standardization enables sustained, incremental development.

Go Play Yourselves (Tonight): The ERG On-Line

Minimal Recursion Semantics (Copestake, et al. 2005)

- Abstract representation of grammatically determined *sentence meaning*;
- underspecification of quantifier scope (and finer-grained word senses);
- mono-stratal, sign-based design: syntax and semantics via *unification*;
- \rightarrow syntactic derivation and meaning representation correspond *one-to-one*.

Minimal Recursion Semantics (Copestake, et al. 2005)

- Abstract representation of grammatically determined *sentence meaning*;
- underspecification of quantifier scope (and finer-grained word senses);
- mono-stratal, sign-based design: syntax and semantics via *unification*;
- \rightarrow syntactic derivation and meaning representation correspond *one-to-one*.

$$\begin{cases} h_1, \\ h_2:_but_c(\mathsf{ARG0}_, \mathsf{ARG1}_, \mathsf{ARG2} h_5), \\ h_8:_this_q(\mathsf{BV} x_{10}, \mathsf{RSTR} h_{11}, \mathsf{BODY}_), h_{12}:_theory_n_of(\mathsf{ARG0} x_{10}, \mathsf{ARG1}_), \\ h_{14}:_would_v_modal(\mathsf{ARG0} e_4, \mathsf{ARG1} h_{15}), h_{16}:\mathsf{neg}(\mathsf{ARG0}_, \mathsf{ARG1} h_{17}), \\ h_{19}:_work_v_1(\mathsf{ARG0} e_{20}, \mathsf{ARG1} x_{10}, \mathsf{ARG2}_) \\ \{ h_1 =_q h_2, h_5 =_q h_{16}, h_{11} =_q h_{12}, h_{15} =_q h_{19}, h_{17} =_q h_{14} \} \rangle$$

But this theory would not work.

Holes in Meaning Construction with MRS (4)

Some Basic MRS Terminology

• Elementary predications (EPs);

mantics (Copestake, et al. 2005)

mmatically determined *sentence meaning*; r scope (and finer-grained word senses); gn: syntax and semantics via *unification*;

ing representation correspond one-to-one.

```
 \left\{ \begin{array}{l} h_{1}, \\ h_{2}:\_but\_c(\mathsf{ARG0}\_,\mathsf{ARG1}\_,\mathsf{ARG2}\ h_{5}), \\ h_{8}:\_this\_q(\mathsf{BV}\ x_{10},\mathsf{RSTR}\ h_{11},\mathsf{BODY}\_), \\ h_{12}:\_theory\_n\_of(\mathsf{ARG0}\ x_{10},\mathsf{ARG1}\_), \\ h_{14}:\_would\_v\_modal(\mathsf{ARG0}\ e_{4},\mathsf{ARG1}\ h_{15}), \\ h_{16}:\mathsf{neg}(\mathsf{ARG0}\_,\mathsf{ARG1}\ h_{17}), \\ h_{19}:\_work\_v\_1(\mathsf{ARG0}\ e_{20},\mathsf{ARG1}\ x_{10},\mathsf{ARG2}\_) \\ \left\{ \begin{array}{l} h_{1} =_{q}\ h_{2}, \\ h_{5} =_{q}\ h_{16}, \\ h_{11} =_{q}\ h_{12}, \\ h_{15} =_{q}\ h_{19}, \\ h_{17} =_{q}\ h_{14} \end{array} \right\} \right\}
```

But this theory would not work.

Holes in Meaning Construction with MRS (4)

Some Basic MRS Terminology

- Elementary predications (EPs);
- variables: events

mantics (Copestake, et al. 2005)

mmatically determined *sentence meaning*;

r scope (and finer-grained word senses);

gn: syntax and semantics via *unification*;

ing representation correspond one-to-one.

```
 \left\{ \begin{array}{l} h_{1}, \\ h_{2}:\_but\_c(\mathsf{ARG0}\_,\mathsf{ARG1}\_,\mathsf{ARG2}\ h_{5}), \\ h_{8}:\_this\_q(\mathsf{BV}\ x_{10},\mathsf{RSTR}\ h_{11},\mathsf{BODY}\_), h_{12}:\_theory\_n\_of(\mathsf{ARG0}\ x_{10},\mathsf{ARG1}\_), \\ h_{14}:\_would\_v\_modal(\mathsf{ARG0}\ e_{4},\mathsf{ARG1}\ h_{15}), h_{16}:\mathsf{neg}(\mathsf{ARG0}\_,\mathsf{ARG1}\ h_{17}), \\ h_{19}:\_work\_v\_1(\mathsf{ARG0}\ e_{20},\mathsf{ARG1}\ x_{10},\mathsf{ARG2}\_) \\ \left\{ \begin{array}{l} h_{1} =_{q}\ h_{2}, h_{5} =_{q}\ h_{16}, h_{11} =_{q}\ h_{12}, h_{15} =_{q}\ h_{19}, h_{17} =_{q}\ h_{14} \right\} \right\}
```

But this theory would not work.

Some Basic MRS Terminology

- Elementary predications (EPs);
- variables: events and instances;

mantics (Copestake, et al. 2005)

mmatically determined *sentence meaning*;

r scope (and finer-grained word senses);

gn: syntax and semantics via *unification*;

ing representation correspond one-to-one.

CLASP — 8-MAR-18 (oe@ifi.uio.no)

```
 \left\{ \begin{array}{l} h_{1}, \\ h_{2}:\_but\_c(\mathsf{ARG0}\_,\mathsf{ARG1}\_,\mathsf{ARG2}\ h_{5}), \\ h_{8}:\_this\_q(\mathsf{BV}\ \textbf{\textit{x}}_{10},\mathsf{RSTR}\ h_{11},\mathsf{BODY}\_), h_{12}:\_theory\_n\_of(\mathsf{ARG0}\ \textbf{\textit{x}}_{10},\mathsf{ARG1}\_), \\ h_{14}:\_would\_v\_modal(\mathsf{ARG0}\ e_{4},\mathsf{ARG1}\ h_{15}), h_{16}:\mathsf{neg}(\mathsf{ARG0}\_,\mathsf{ARG1}\ h_{17}), \\ h_{19}:\_work\_v\_1(\mathsf{ARG0}\ e_{20},\mathsf{ARG1}\ \textbf{\textit{x}}_{10},\mathsf{ARG2}\_) \\ \left\{ \begin{array}{l} h_{1} =_{q}\ h_{2}, h_{5} =_{q}\ h_{16}, h_{11} =_{q}\ h_{12}, h_{15} =_{q}\ h_{19}, h_{17} =_{q}\ h_{14} \end{array} \right\} \right\}
```

But this theory would not work.

Some Basic MRS Terminology

- Elementary predications (EPs);
- variables: events and instances;
- one 'intrinsic' variable: (ARG0);

mantics (Copestake, et al. 2005)

mmatically determined *sentence meaning*;

r scope (and finer-grained word senses);

gn: syntax and semantics via *unification*;

ing representation correspond one-to-one.

CLASP — 8-MAR-18 (oe@ifi.uio.no)

```
 \left\{ \begin{array}{l} h_{1}, \\ h_{2}:\_but\_c(\mathsf{ARG0}\_,\mathsf{ARG1}\_,\mathsf{ARG2}\ h_{5}), \\ h_{8}:\_this\_q(\mathsf{BV}\ x_{10},\mathsf{RSTR}\ h_{11},\mathsf{BODY}\_), h_{12}:\_theory\_n\_of(\mathsf{ARG0}\ x_{10},\mathsf{ARG1}\_), \\ h_{14}:\_would\_v\_modal(\mathsf{ARG0}\ e_{4},\mathsf{ARG1}\ h_{15}), h_{16}:\mathsf{neg}(\mathsf{ARG0}\_,\mathsf{ARG1}\ h_{17}), \\ h_{19}:\_work\_v\_1(\mathsf{ARG0}\ e_{20},\mathsf{ARG1}\ x_{10},\mathsf{ARG2}\_) \\ \left\{ \begin{array}{l} h_{1} =_{q}\ h_{2}, h_{5} =_{q}\ h_{16}, h_{11} =_{q}\ h_{12}, h_{15} =_{q}\ h_{19}, h_{17} =_{q}\ h_{14} \right\} \right\}
```

But this theory would not work.

Some Basic MRS Terminology

- Elementary predications (EPs);
- variables: events and instances;
- one 'intrinsic' variable: (ARG0);
- handles

mantics (Copestake, et al. 2005)

mmatically determined *sentence meaning*;

r scope (and finer-grained word senses);

gn: syntax and semantics via *unification*;

ing representation correspond one-to-one.

CLASP — 8-MAR-18 (oe@ifi.uio.no)

But this theory would not work.

Some Basic MRS Terminology

- Elementary predications (EPs);
- variables: events and instances;
- one 'intrinsic' variable: (ARG0);
- handles and handle constraints.

mantics (Copestake, et al. 2005)

mmatically determined *sentence meaning*;

r scope (and finer-grained word senses);

gn: syntax and semantics via *unification*;

ing representation correspond one-to-one.

CLASP — 8-MAR-18 (oe@ifi.uio.no)

```
 \left\{ \begin{array}{l} h_{1}, \\ h_{2}:\_but\_c(\mathsf{ARG0}\_,\mathsf{ARG1}\_,\mathsf{ARG2}\ h_{5}), \\ h_{8}:\_this\_q(\mathsf{BV}\ x_{10},\mathsf{RSTR}\ h_{11},\mathsf{BODY}\_), h_{12}:\_theory\_n\_of(\mathsf{ARG0}\ x_{10},\mathsf{ARG1}\_), \\ h_{14}:\_would\_v\_modal(\mathsf{ARG0}\ e_{4},\mathsf{ARG1}\ h_{15}), h_{16}:\mathsf{neg}(\mathsf{ARG0}\_,\mathsf{ARG1}\ h_{17}), \\ h_{19}:\_work\_v\_1(\mathsf{ARG0}\ e_{20},\mathsf{ARG1}\ x_{10},\mathsf{ARG2}\_) \\ \left\{ \begin{array}{l} h_{1} =_{q}\ h_{2}, h_{5} =_{q}\ h_{16}, h_{11} =_{q}\ h_{12}, h_{15} =_{q}\ h_{19}, h_{17} =_{q}\ h_{14} \end{array} \right\} \right\}
```

But this theory would not work.

All angry dogs didn't bark.

 $\langle h_1, \\ h_4:_all_q(ARG0 \ x_5, RSTR \ h_6, BODY _), \\ h_8:_angry_a_at(ARG0 \ e_9, ARG1 \ x_5, ARG2 _), h_8:_dog_n_1(ARG0 \ x_5), \\ h_2:neg(ARG0 \ e_{12}, ARG1 \ h_{11}), h_{13}:_bark_v_1(ARG0 \ e_3, ARG1 \ x_5) \\ \{ h_1 =_q \ h_2, h_6 =_q \ h_8, h_{11} =_q \ h_{13} \} \rangle$

All angry dogs didn't bark.

 $\langle h_1, \\ h_4:_all_q(ARG0 \ x_5, RSTR \ h_6, BODY _), \\ h_8:_angry_a_at(ARG0 \ e_9, ARG1 \ x_5, ARG2 _), \\ h_8:_dog_n_1(ARG0 \ x_5), \\ h_2:neg(ARG0 \ e_{12}, ARG1 \ h_{11}), \\ h_{13}:_bark_v_1(ARG0 \ e_3, ARG1 \ x_5) \\ \{ h_1 =_q \ h_2, h_6 =_q \ h_8, h_{11} =_q \ h_{13} \} \rangle$

$$\forall x_5 : \operatorname{angry}'(x_5) \land \operatorname{dog}'(x_5) \rightarrow \neg \operatorname{bark}'(e_3, x_5)$$

All angry dogs didn't bark.

 $\langle h_1, \\ h_4:_all_q(ARG0 \ x_5, RSTR \ h_6, BODY _), \\ h_8:_angry_a_at(ARG0 \ e_9, ARG1 \ x_5, ARG2 _), \\ h_8:_dog_n_1(ARG0 \ x_5), \\ h_2:neg(ARG0 \ e_{12}, ARG1 \ h_{11}), \\ h_{13}:_bark_v_1(ARG0 \ e_3, ARG1 \ x_5) \\ \{ h_1 =_q \ h_2, h_6 =_q \ h_8, h_{11} =_q h_{13} \} \rangle$

$$\forall x_5 : \operatorname{angry}'(x_5) \land \operatorname{dog}'(x_5) \to \neg \operatorname{bark}'(e_3, x_5)$$
$$\neg \forall x_5 : \operatorname{angry}'(x_5) \land \operatorname{dog}'(x_5) \to \operatorname{bark}'(e_3, x_5)$$

All angry dogs didn't bark.

 $\langle h_1, \\ | h_4:_all_q(ARG0 \ x_5, RSTR \ h_6, BODY _), \\ h_8:_angry_a_at(ARG0 \ e_9, ARG1 \ x_5, ARG2 _), h_8:_dog_n_1(ARG0 \ x_5), \\ h_2:neg(ARG0 \ e_{12}, ARG1 \ h_{11}), h_{13}:_bark_v_1(ARG0 \ e_3, ARG1 \ x_5) \\ \{ h_1 =_q \ h_2, h_6 =_q \ h_8, h_{11} =_q \ h_{13} \} \rangle$

$$\forall x_5 : \operatorname{angry}'(x_5) \land \operatorname{dog}'(x_5) \rightarrow \neg \operatorname{bark}'(e_3, x_5)$$

$$\neg \forall x_5 : \operatorname{angry}'(x_5) \land \operatorname{dog}'(x_5) \rightarrow \operatorname{bark}'(e_3, x_5)$$

Scope Underspecification 101

- MRS as collection of tree fragments, with partial constraints on dominance;
- scopal $=_q$ handle constraints provide candidate 'room' for quantifier insertion.

Abrams told Browne that it rained.

 $\langle h_1, \\ | h_2:named(x_6, Abrams), h_2:named(x_{10}, Browne), \\ | h_2:_tell_v_1(e_3, x_6, x_{10}, h_9), h_{15}:_rain_v_1(e_{16}) \\ \{ h_1 =_q h_2, h_9 =_q h_{15} \} \rangle$

Abrams told Browne that it rained.

 $\langle h_1, \\ | h_2:named(x_6, Abrams), h_2:named(x_{10}, Browne), \\ | h_2:_tell_v_1(e_3, x_6, x_{10}, h_9), h_{15}:_rain_v_1(e_{16}) \\ \{ h_1 =_q h_2, h_9 =_q h_{15} \} \rangle$

Two Basic Types of Semantic Arguments

- Individuals, e.g. nominal complements: logical conjunction, equate handles;
- propositions, e.g. clausal complements: scopally subordinate, introduce $=_q$.
- when (and if) mapped to logical form, the handle meta-variables disappear.

It rained heavily.

It probably rained.

$$\left egin{array}{l} h_1, \ h_2:_{rain_v_1(e_3)}, \ h_2:_{heavy_a_1(e_4, e_3)} \ \left \{ \ h_1 =_q \ h_2 \
ight \}
ight
ight
angle$$

$$egin{aligned} h_1, \ h_2:_ extsf{probable}_a_1(e_4, h_5), \ h_6:_ extsf{rain}_v_1(e_3) \ \{ \ h_1 =_q \ h_2, h_5 =_q \ h_6 \ \} \ \end{aligned}$$

It rained heavily.

It probably rained.

$$\left \{ egin{array}{l} h_1, \ h_2:_rain_v_1(e_3), \ h_2:_heavy_a_1(e_4, e_3) \end{array}
ight \} \ \left \{ egin{array}{l} h_1 =_q h_2 \end{array}
ight \}
ight
angle$$

$$egin{aligned} h_1, \ h_2:_ extsf{probable}_a_ extsf{1}(e_4, h_5), \ h_6:_ extsf{rain}_ extsf{v}_ extsf{1}(e_3) \ \left\{ \ h_1 =_q h_2, h_5 =_q h_6 \
ight\}
ight
angle \end{aligned}$$

Most angry dogs are fierce.

$$\left< \begin{array}{l} h_1, e_3, \\ h_4:_most_q(x_5, h_6, _), \\ h_8:_angry_a_at(e_9, x_5, _), h_8:_dog_n_1(x_5), \\ h_2:_fierce_a_1(e_3, x_5) \\ \left\{ \begin{array}{l} h_1 =_q h_2, h_6 =_q h_8 \end{array} \right\} \right> \end{array}$$

most'
$$x_5$$
 : angry'(x_5) \land dog'(x_5) ; fierce'(e_3, x_5)

Validate (and Refine) MRS Algebra (Copestake, et al. 2001)

- Earlier proposal for (ERG-style) constrained composition of MRS fragments;
- only spelled out for small selection of simple examples; no implementation.

Validate (and Refine) MRS Algebra (Copestake, et al. 2001)

- Earlier proposal for (ERG-style) constrained composition of MRS fragments;
- only spelled out for small selection of simple examples; no implementation.

Enforce Separation of State and Church (at Scale)

- Syntax-semantics interface is mostly implicit in unification of HPSG signs;
- determine 'linguistic coverage' of MRS algebra relative to ERG constructions.

Validate (and Refine) MRS Algebra (Copestake, et al. 2001)

- Earlier proposal for (ERG-style) constrained composition of MRS fragments;
- only spelled out for small selection of simple examples; no implementation.

Enforce Separation of State and Church (at Scale)

- Syntax-semantics interface is mostly implicit in unification of HPSG signs;
- determine 'linguistic coverage' of MRS algebra relative to ERG constructions.

Validate (and Refine) MRS Algebra (Copestake, et al. 2001)

- Earlier proposal for (ERG-style) constrained composition of MRS fragments;
- only spelled out for small selection of simple examples; no implementation.

Enforce Separation of State and Church (at Scale)

- Syntax-semantics interface is mostly implicit in unification of HPSG signs;
- determine 'linguistic coverage' of MRS algebra relative to ERG constructions.

Transfer Semantic Lexicon to Dependency-Based Syntax

- Explicit, formal, and 'lean' syntax-semantics interface should be portable;
- ? leverage wealth of fine-grained lexical information in ERG with UD syntax.

Operationalizing MRS Composition

- Formally, an MRS is a triple $\langle T, P, C \rangle$: top handle, predications, constraints;
- composition through *MRS algebra terms* (MATs): five-tuple $\langle H, L, P, C, E \rangle$;

```
HOOK
{HOLES}
ELEMENTARY PREDICATIONS
{HANDLE CONSTRAINTS }
{EQUALITIES }
```


Operationalizing MRS Composition

- Formally, an MRS is a triple $\langle T, P, C \rangle$: top handle, predications, constraints;
- composition through *MRS algebra terms* (MATs): five-tuple $\langle H, L, P, C, E \rangle$;

```
HOOK
{HOLES}
ELEMENTARY PREDICATIONS
{HANDLE CONSTRAINTS }
{EQUALITIES }
```

• *hook* is a triple $\langle h, i, x \rangle$, comprising a *handle*, *index*, and *external argument*;

Operationalizing MRS Composition

- Formally, an MRS is a triple $\langle T, P, C \rangle$: top handle, predications, constraints;
- composition through *MRS algebra terms* (MATs): five-tuple $\langle H, L, P, C, E \rangle$;

```
HOOK
{HOLES}
ELEMENTARY PREDICATIONS
{HANDLE CONSTRAINTS }
{EQUALITIES }
```

- *hook* is a triple $\langle h, i, x \rangle$, comprising a *handle*, *index*, and *external argument*;
- set of *holes* provides parallel triples with label, e.g. $_{SUBJ}\langle h, i, x \rangle$ on 'barked';

Operationalizing MRS Composition

- Formally, an MRS is a triple $\langle T, P, C \rangle$: top handle, predications, constraints;
- composition through *MRS algebra terms* (MATs): five-tuple $\langle H, L, P, C, E \rangle$;

```
HOOK
{HOLES}
ELEMENTARY PREDICATIONS
{HANDLE CONSTRAINTS }
{EQUALITIES }
```

- *hook* is a triple $\langle h, i, x \rangle$, comprising a *handle*, *index*, and *external argument*;
- set of *holes* provides parallel triples with label, e.g. $_{SUBJ}\langle h, i, x \rangle$ on 'barked';
- correspondence to lambda calculus: an argument hook 'plugs' a functor hole;

Operationalizing MRS Composition

- Formally, an MRS is a triple $\langle T, P, C \rangle$: top handle, predications, constraints;
- composition through *MRS algebra terms* (MATs): five-tuple $\langle H, L, P, C, E \rangle$;

```
HOOK
{HOLES}
ELEMENTARY PREDICATIONS
{HANDLE CONSTRAINTS }
{ EQUALITIES }
```

- *hook* is a triple $\langle h, i, x \rangle$, comprising a *handle*, *index*, and *external argument*;
- set of *holes* provides parallel triples with label, e.g. $_{SUBJ}\langle h, i, x \rangle$ on 'barked';
- correspondence to lambda calculus: an argument hook 'plugs' a functor hole;
- set of equalities records variable 'unifications' from composition: β reduction.

A First Example of MATs Composition

Most dogs barked.

Holes in Meaning Construction with MRS (10)

A First Example of MATs Composition

Composition Operations of Copestake, et al. (2001):

 $\langle H_f, L_f, P_f, C_f, E_f \rangle \bullet_{\mathsf{SPEC}} \langle H_a, L_a, P_a, C_a, E_a \rangle \to \langle H, L, P, C, E \rangle$ $\mathsf{Let} \ H_a = \langle h_a, i_a, \mathbf{x}_a \rangle \mathsf{ and } L' = {}_{\mathsf{SPEC}} \langle h_f, i_f, \mathbf{x}_f \rangle \in L_F:$ $H = H_f; L = L_f \setminus \{L'\} \cup L_a;$ $P = P_f \cup P_a; C = C_f \cup C_a;$ $E = E_f \cup E_a \cup \{h_f = h_a, i_f = i_a, \mathbf{x}_f = \mathbf{x}_a\}$

Holes in Meaning Construction with MRS (10)

Preliminary Reflections on MRS Algebra

A 'Straitjacket' for Sign-Based Composition

- Relatively simplistic basic framework with tightly constraining assumptions:
- accessibility: at most three 'pointers' into meaning fragments are available;
- finiteness: fixed inventory of hole types, e.g. SPEC, SUBJ, COMPS, MOD, ...;
- uniformity: templatic form of all composition operations, functor-argument;
- monotonicity: set union of holes, predications, constraints, and equalities.

Preliminary Reflections on MRS Algebra

A 'Straitjacket' for Sign-Based Composition

- Relatively simplistic basic framework with tightly constraining assumptions:
- accessibility: at most three 'pointers' into meaning fragments are available;
- finiteness: fixed inventory of hole types, e.g. SPEC, SUBJ, COMPS, MOD, ...;
- uniformity: templatic form of all composition operations, functor-argument;
- monotonicity: set union of holes, predications, constraints, and equalities.

Assumptions about Syntax–Semantics Interface

- Lexical entries contribute initial MATs; will need to deal with lexical ambiguity;
- each syntactic construction (or dependency type) determines its operation;
- n-ary constructions (for n > 2) conceptualized as sequence of operations;
- unary constructions conceptualized through empty functor or argument MAT.

Rounding up Our First Example

Most dogs barked.

Holes in Meaning Construction with MRS (12)

Holes in Meaning Construction with MRS (13)

Non-Scopal vs. Scopal Complements

sb-hd_mc_c

Restrictive vs. Scopal Modification

CLASP — 8-MAR-18 (oe@ifi.uio.no)

Holes in Meaning Construction with MRS (14)

Restrictive vs. Scopal Modification

Restrictive vs. Scopal Modification

One Uniform •_{MOD} **Operation**

 $\mathsf{Let} \ L' = {}_{\mathsf{MOD}} \langle h_l, i_l, _ \rangle \in L_f:$ $\langle \langle h_f, i_f, _ \rangle, L_f, P_f, C_f, E_f \rangle \quad \bullet_{\mathsf{MOD}} \quad \langle \langle h_a, i_a, _ \rangle, L_a, P_a, C_a, E_a \rangle \rightarrow$ $\langle \langle h_f, i_a, _ \rangle, L_f \setminus \{L'\} \cup L_a, P_f \cup P_a, C_f \cup C_a, E_f \cup E_a \cup \{h_l \equiv h_a, i_l \equiv i_a\} \rangle$

Holes in Meaning Construction with MRS (14)

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} persuaded \\ \langle h_0, e_1, _ \rangle \\ \{ b_0, e_1, _ \rangle, \\ \{ b_0, e_1, _ \rangle, \\ \{ b_0, e_1, _ \rangle, \\ \{ b_0, e_1, _ persuade_v_of(e_1, e_1, e_2, e_1, e_1) \\ \ end{tabular} \\ \begin{array}{c} \left\{ b_1 \\ e_1 \\ e$$

Holes in Meaning Construction with MRS (15)

$$\left\{ \begin{array}{c} \begin{array}{c} persuaded \\ \langle h_0, e_1, _ \rangle \\ \{substruct{bound}{}s$$

Holes in Meaning Construction with MRS (15)

External Arguments

- Third hook component enables control of various 'open' complements;
- subject vs. object control vs. raising is a lexical property of functors;
- extends to different kinds of predicative constructions, e.g.

The books are in the box. She considers him childish. She placed the books in the box.

$$\begin{array}{|c|c|c|c|c|} \hline persuaded & to vote \\ \langle h_0, e_1, _ \rangle & \langle h_6, e_7, \mathbf{X}_8 \rangle \\ \{ _{\mathsf{SUBJ}} \langle h_0, x_2, _ \rangle, _{\mathsf{COMPS}} [\langle h_0, x_3, _ \rangle, \langle h_5, _, \mathbf{X}_3 \rangle] \} & \{ _{\mathsf{SUBJ}} \langle h_6, x_8, _ \rangle \} \\ & \left| h_0 \vdots_{\mathsf{persuade_v_of}} (e_1, x_2, \mathbf{X}_3, h_4) \right| & \left| h_6 \vdots_{\mathsf{vote_v_1}} (e_7, \mathbf{X}_8) \right| \\ & \left\{ h_4 =_q h_5 \right\} & \{ \} \\ & \left\{ \} & \{ \} \end{array} \right\}$$

Holes in Meaning Construction with MRS (15)

External Arguments

- Third hook component enables control of various 'open' complements;
- subject vs. object control vs. raising is a lexical property of functors;
- extends to different kinds of predicative constructions, e.g.

The books are in the box. She considers him childish. She placed the books in the box.

$$\begin{array}{c|c} & persuaded & to \ vote \\ \langle h_0, e_1, _ \rangle & \langle h_6, e_7, x_8 \rangle \\ \{ {}_{\mathsf{SUBJ}} \langle h_0, x_2, _ \rangle, {}_{\mathsf{COMPS}} [\langle h_0, x_3, _ \rangle, \langle h_5, _, x_3 \rangle] \} & \{ {}_{\mathsf{SUBJ}} \langle h_6, x_8, _ \rangle \} \\ | \ h_0:_persuade_v_of(e_1, x_2, x_3, h_4) | & | \ h_6:_vote_v_1(e_7, x_8) | \\ \{ h_4 =_q h_5 \} & \{ \} \\ \{ \} & \{ \} \end{array}$$

Holes in Meaning Construction with MRS (15)

sb-hd_mc_c

Refinement of •_{COMPS} **Operation:**

Let $L' = \langle h_l, i_l, x_l \rangle \in L_f, x_l \equiv i_a \in E$: $L = L_f \setminus \{L'\} \cup L_a \setminus \{l \mid l = \langle _, i_a, _ \rangle\}$

v_np-vp_oeq_len_-_pn_lecm_vp_to_lev_-_le||||persuadedBrownetovote.

$$\begin{array}{c|c} & persuaded & to vote \\ \langle h_0, e_1, _ \rangle & \langle h_6, e_7, x_8 \rangle \\ \{ {}_{\mathsf{SUBJ}} \langle h_0, x_2, _ \rangle, {}_{\mathsf{COMPS}} [\langle h_0, x_3, _ \rangle, \langle h_5, _, x_3 \rangle] \} & \{ {}_{\mathsf{SUBJ}} \langle h_6, x_8, _ \rangle \} \\ | h_0:_persuade_v_of(e_1, x_2, x_3, h_4) | & |h_6:_vote_v_1(e_7, x_8) | \\ \{ h_4 =_q h_5 \} & \{ \} \\ \{ \} & \{ \} \end{array}$$

Holes in Meaning Construction with MRS (15)

 $sb\text{-}hd_mc_c$

Refinement of •_{COMPS} **Operation:**

Let
$$L' = \langle h_l, i_l, x_l \rangle \in L_f, x_l \equiv i_a \in E$$
:
 $L = L_f \setminus \{L'\} \cup L_a \setminus \{l \mid l = \langle _, i_a, _ \rangle\}$

 \rightarrow Controlling external argument (kind of) 'plugs' a hole; need to refine other composition operations accordingly.

$$\begin{array}{c|c} & persuaded & to \ vote \\ \langle h_0, e_1, _ \rangle & \langle h_6, e_7, x_8 \rangle \\ \{_{\mathsf{SUBJ}} \langle h_0, x_2, _ \rangle, _{\mathsf{COMPS}} [\langle h_0, x_3, _ \rangle, \langle h_5, _, x_3 \rangle] \} & \{_{\mathsf{SUBJ}} \langle h_6, x_8, _ \rangle \} \\ | h_0:_persuade_v_of(e_1, x_2, x_3, h_4) | & |h_6:_vote_v_1(e_7, x_8) | \\ \{ h_4 =_q h_5 \} & \{ \} \\ \{ \} & \{ \} \end{array}$$

Holes in Meaning Construction with MRS (15)

Relative Clauses Feed on Extraction

 $\langle h_1, \\ | h_2: pron(x_{11}), \\ h_2: _think_v_1(e_3, x_{11}, h_{16}), \\ h_{17}: named(x_4, Browne), \\ h_{17}: _arrive_v_1(e_{18}, x_4) \\ \{ h_1 =_q h_2, h_{16} =_q h_{17} \} \rangle$

Relative Clauses Feed on Extraction

Modifiers Can be Extracted Too (Of Course)

CLASP — 8-MAR-18 (oe@ifi.uio.no)

Holes in Meaning Construction with MRS (17)

Modifiers Can be Extracted Too (Of Course)

 $\begin{array}{l} \text{XAJ empty functor} \\ \left< h_{0}, e_{1}, x_{2} \right> \\ \left\{ \begin{array}{c} \left\{ g_{\mathsf{APS}} \left[\left< h_{0}, e_{1}, x_{2} \right> \right], \\ \mathsf{MOD}} \left< h_{0}, e_{1}, x_{2} \right> \right\} \\ \left| \begin{array}{c} \left| \\ h_{3} \\$

Putting Things Together: Relative Clauses

Putting Things Together: Relative Clauses

ah ha ma a

$$\begin{array}{ccc} dog & barked XSB & that \\ h_0, x_1, _ \rangle & \langle h_4, e_5, _ \rangle & \langle h_2, x_3, _ \rangle \\ \{ & \{ \mathsf{GAPS}[\langle h_4, x_6, _ \rangle] \} & \{ \mathsf{MOD}\langle h_2, x_3, _ \rangle \} \\ h_0:_dog_n_1(x_1)| & |h_4:_bark_v_1(e_5, x_6)| & || \\ \} & \{ \} & \{ \} \\ \} & \{ \} & \{ \} \\ \end{array}$$

 \rightarrow Generalizes without revisions to empty relativizer and modifier gaps; \rightarrow plays nicely with unbounded depedencies, i.e. intervening clauses: *The dog on which I think you depend barked.*

• well-chartered territory: clear benefits of close alignment with syntax.

 $| h_4:_$ the_q($x_6, h_7, _), h_8:_$ dog_n_1(x_6), $h_8:_$ bark_v_1(e_9, x_6), $h_2:_$ disappear_v_1(e_3, x_6) $| \{ h_1 =_q h_2, h_7 =_q h_8 \} \rangle$

Basics of Constituent Coordination

Basics of Constituent Coordination

Basics of Constituent Coordination

 \rightarrow Set union $P_f \cup P_a$ needs to 'unify' SUBJ holes from both verb phrases.

Basics of Constituent Coordination ch hd ma a Interaction with Different Scopal Contexts The dog arrived and didn't bark. \rightarrow equate index and external argument variables from both holes, attach to 'current' scope context: conjoin with conjunction. anu V_-_IE barked. $\langle h_1,$ h_{11} the $a(x_6, h_{12}, \dots)$ h_{14} dog n $1(x_6)$

$$\begin{array}{l} \begin{array}{l} & | h_{11} = u_{10} = q(x_{6}, h_{13}, \underline{-}), h_{14} = u_{00} = u_{-1}(x_{6}), \\ & h_{2} = u_{-1}(x_{6}), h_{2} = u_{-1}(x_{6}), \\ & h_{2} = u_{-1}(x_{6}), h_{2} = u_{-1}(x_{6}), \\ & h_{2} = u_{-1}(x_{6}), h_{2} = u_{-1}(x_{6}), \\ & h_{2} = u_{-1}(x_{-1}), \\ & h_{2} = u_{-1}(x_{-1}),$$

 \rightarrow Set union $P_f \cup P_a$ needs to 'unify' SUBJ holes from both verb phrases.

Basics of Constituent Coordination ch hd ma a Interaction with Different Scopal Contexts The dog arrived and didn't bark. \rightarrow equate index and external argument variables from both holes, attach to 'current' scope context: conjoin with conjunction. anu V_-_IE Appears to generalize well to argument and modifier coordination. n_2 ._ana_o(o_1 , o_3 , o_4 , n_2 ._anno_v_n(o_3 , A_0 , n_2 ._ban_v_n(o_4 , A_0) $\{ h_1 =_q h_2, h_{13} =_a h_{14} \} \rangle$ \rightarrow Set union $P_f \cup P_a$ needs to 'unify' SUBJ holes from both verb phrases.

Ongoing Work & Open Questions

Rationalizing Broad-Coverage Meaning Construction in ERG

- Evaluate proposal by Copestake, et al. (2001) on broad range of analyses;
- determine degree of 'algebra compliance' in ERG: is it 45 %, 85 %, or 98 %?
- ightarrow non-trivial revisions and extensions to algebra required; core ideas intact;
- \rightarrow could offer some guidance on design choices in ERG (syntactic) analyses;
 - ? What principles govern percolation of holes? Compare to lambda calculus?

Ongoing Work & Open Questions

Rationalizing Broad-Coverage Meaning Construction in ERG

- Evaluate proposal by Copestake, et al. (2001) on broad range of analyses;
- determine degree of 'algebra compliance' in ERG: is it 45 %, 85 %, or 98 %?
- ightarrow non-trivial revisions and extensions to algebra required; core ideas intact;
- \rightarrow could offer some guidance on design choices in ERG (syntactic) analyses;
 - ? What principles govern percolation of holes? Compare to lambda calculus?

Adaptation to Other Frameworks, e.g. Universal Dependencies

- ? How much and what kinds of syntactic 'signals' required for composition?
- automatically extract semantic lexicon of initial MATs from ERG (underway);
- dependency types map onto operations; obliqueness hierarchy for \bullet_{COMPS} ;
- (maybe non-deterministic) graph rewriting and/or enhanced dependencies.

Transfer to Universal Dependencies Syntactic Relations

	Nominal	Clause	Modifier Word	Function Word
Core Predicate Dep	nsubj obj iobj	csubj ccomp xcomp		
Non-Core Predicate Dep	obl vocative expl dislocated	advcl	advmod* discourse	aux cop mark
Nominal Dep	nmod appos nummod	acl	amod	det clf case
Coordination	MWE	Loose	Special	Other
conj cc	fixed flat compound	parataxis list	orphan goeswith reparandum	punct root dep

(Courtesy of the Chief Cat Herder)

Candidate Mappings							
$NSUBJ \mid CSUBJ \rightarrow \bullet_{SUBJ}$							
Core Predicate Dep	obj iobj	csubj ccomp xcomp	- MOD				
Non-Core Predicate Dep	obl vocative expl dislocated	advcl	advmod* discourse	aux cop mark			
Nominal Dep	nmod appos nummod	acl	amod	det clf case			
Coordination	MWE	Loose	Special	Other			
conj cc	fixed flat compound	parataxis list	orphan goeswith reparandum	punct root dep			

(Courtesy of the Chief Cat Herder)

Holes in Meaning Construction with MRS (21)

(Courtesy of the Chief Cat Herder)

- CLASP — 8-MAR-18 (oe@ifi.uio.no) -

Holes in Meaning Construction with MRS (21)

Holes in Meaning Construction with MRS (21)

CLASP — 8-MAR-18 (oe@ifi.uio.no)

Holes in Meaning Construction with MRS (22)

Holes in Meaning Construction with MRS (22)

Holes in Meaning Construction with MRS (22)
Missing Syntactic Information in Basic Tree

CLASP — 8-MAR-18 (oe@ifi.uio.no)

Holes in Meaning Construction with MRS (23)

Missing Syntactic Information in Basic Tree

Abrams ate. Abrams ate cake. Abrams asked to resign. Abrams asked Browne to resign.

CLASP — 8-MAR-18 (oe@ifi.uio.no)

Missing Syntactic Information in Basic Tree

Abrams ate. Abrams ate cake. Abrams asked to resign. Abrams asked Browne to resign.

$$eat_{1}:_{\mathsf{SUBJ}}\langle_,_,_,_\rangle;_{\mathsf{COMPS}}[]$$

$$eat_{2}:_{\mathsf{SUBJ}}\langle_,_,_,_\rangle;_{\mathsf{COMPS}}[\langle_,_,_,_\rangle^{\mathsf{NP}}]$$

$$ask_{1}:_{\mathsf{SUBJ}}\langle_,x_{0},_\rangle;_{\mathsf{COMPS}}[\langle_,_,x_{0}\rangle^{\mathsf{VP}_{to}}]$$

$$ask_{2}:_{\mathsf{SUBJ}}\langle_,x_{0},_\rangle;_{\mathsf{COMPS}}[\langle_,x_{1},_\rangle^{\mathsf{NP}},\langle_,_,x_{1}\rangle^{\mathsf{VP}_{to}}]$$

Holes in Meaning Construction with MRS (23)

CLASP — 8-MAR-18 (oe@ifi.uio.no)