Glue semantics for Universal Dependencies

Matthew Gotham and Dag Haug

Centre for Advanced Study at the Norwegian Academy of Science and Letters

Gothenburg, 8 March 2018

• Universal Dependencies (UD) is a *de facto* annotation standard for cross-linguistic annotation of syntactic structure

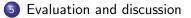
3

・ 同 ト ・ ヨ ト ・ ヨ ト

- Universal Dependencies (UD) is a *de facto* annotation standard for cross-linguistic annotation of syntactic structure
- $\bullet \to$ interest in deriving semantic representations from UD structures, ideally in a language-independent way

- Universal Dependencies (UD) is a *de facto* annotation standard for cross-linguistic annotation of syntactic structure
- $\bullet \to$ interest in deriving semantic representations from UD structures, ideally in a language-independent way
- Our approach: adapt and exploit techniques from LFG + Glue semantics
 - dependency structures \approx f-structures
 - LFG inheritance in UD (via Stanford dependencies)
 - Glue offers a syntax-semantics interace where syntax can underspecify semantics

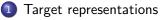
- Universal Dependencies (UD) is a *de facto* annotation standard for cross-linguistic annotation of syntactic structure
- $\bullet \to$ interest in deriving semantic representations from UD structures, ideally in a language-independent way
- Our approach: adapt and exploit techniques from LFG + Glue semantics
 - dependency structures \approx f-structures
 - LFG inheritance in UD (via Stanford dependencies)
 - Glue offers a syntax-semantics interace where syntax can underspecify semantics
- Postpone the need for language-specific, lexical resources


Outline

Target representations

- Introduction to Glue semantics
- Oniversal Dependencies

Our pipeline



3

A B F A B F

< 一型

Plan

- 2) Introduction to Glue semantics
- 3 Universal Dependencies

4 Our pipeline

5 Evaluation and discussion

3

(日) (同) (日) (日) (日)

Target representations

- Our target representations for sentence meanings are DRSs.
- The format of these DRSs is inspired by Boxer (Bos, 2008).

Target representations

- Our target representations for sentence meanings are DRSs.
- The format of these DRSs is inspired by Boxer (Bos, 2008).
- We assume discourse referents (drefs) of three sorts: entities (*x_n*), eventualities (*e_n*) and propositions (*p_n*).

Target representations

- Our target representations for sentence meanings are DRSs.
- The format of these DRSs is inspired by Boxer (Bos, 2008).
- We assume discourse referents (drefs) of three sorts: entities (x_n), eventualities (e_n) and propositions (p_n).
- The predicates *ant* means that its argument has an antecedent (it's a presupposed dref).
 - \rightarrow Also applies to the predicates beginning pron._
- The connective ∂ marks presupposed conditions—it maps TRUE to TRUE and is otherwise undefined.

 \rightarrow Unlike Boxer, which has separate DRSs for presupposed and asserted material.

An example

(1)Abrams persuaded the dog to bark.

Boxer:

 X_2

 $x_1 e_1 p_1$ $named(x_1, abrams)$ $persuade(e_1)$ $agent(e_1, x_1)$ theme(e_1, x_2) + $dog(x_2)$ $content(e_1, p_1)$ e_2 $bark(e_2)$ p_1 : $agent(e_2, x_2)$ Us:

 $x_1 x_2 e_1 p_1$ $named(x_1, abrams)$ $ant(x_2)$ $\partial(dog(x_2))$ $persuade(e_1)$ $agent(e_1, x_1)$ theme(e_1, x_2) $content(e_1, p_1)$ e_2 $bark(e_2)$ p_1 : $agent(e_2, x_2)$

Other running examples (taken from the CCS development suite)

(2) He hemmed and hawed.

$x_1 e_1 e_2$
$pron.he(x_1)$ $hem(e_1)$ $agent(e_1, x_1)$ $haw(e_2)$ $agent(e_2, x_1)$

(3) The dog they thought we admired barks.

 $x_1 x_2 x_3 e_1 e_2 p_1$ $ant(x_1), \partial(dog(x_1))$ $pron.they(x_2), pron.we(x_3)$ $bark(e_1), agent(e_1, x_1)$ ∂ (think(e₂)), ∂ (agent(e₂, x₂)) ∂ (content(e_2, p_1)) $admire(e_3)$

> $agent(e_3, x_3)$ theme(e_3, x_1)

 p_1 :

Underlying logic

• The Glue approach relies on meanings being put together by application and abstraction, so we need some form of compositional or λ -DRT for meaning construction.

someone
$$\rightsquigarrow \lambda P$$
. x_1 $person(x_1)$; $P(x_1)$

ヘロト 人間 とくほ とくほ とう

Underlying logic

 The Glue approach relies on meanings being put together by application and abstraction, so we need some form of compositional or λ-DRT for meaning construction.

someone
$$\rightsquigarrow \lambda P$$
. x_1 person (x_1) ; $P(x_1)$

- Conceptually, we are assuming PCDRT (Haug, 2014), which has a definition of the *ant* predicate and (relatedly) a treatment of so-far-unresolved anaphora that doesn't require indexing.
- This specific assumption is not crucial, though.

イロト イポト イヨト イヨト 二日

Plan

- Introduction to Glue semantics
 - 3 Universal Dependencies

4 Our pipeline

5 Evaluation and discussion

3

(日) (同) (日) (日) (日)

• A theory of the syntax/semantics interface, originally developed for LFG, and now the mainstream in LFG (Dalrymple et al., 1993, 1999).

- A theory of the syntax/semantics interface, originally developed for LFG, and now the mainstream in LFG (Dalrymple et al., 1993, 1999).
- Has been applied to other frameworks: HPSG (Asudeh & Crouch, 2002), LTAG (Frank & van Genabith, 2001) and Minimalism (Gotham, 2018).

- A theory of the syntax/semantics interface, originally developed for LFG, and now the mainstream in LFG (Dalrymple et al., 1993, 1999).
- Has been applied to other frameworks: HPSG (Asudeh & Crouch, 2002), LTAG (Frank & van Genabith, 2001) and Minimalism (Gotham, 2018).
- Interpretations of constituents are paired with formulae of a fragment of linear logic (Girard, 1987), and semantic composition is deduction in that logic mediated by the Curry-Howard correspondence (Howard, 1980).

- A theory of the syntax/semantics interface, originally developed for LFG, and now the mainstream in LFG (Dalrymple et al., 1993, 1999).
- Has been applied to other frameworks: HPSG (Asudeh & Crouch, 2002), LTAG (Frank & van Genabith, 2001) and Minimalism (Gotham, 2018).
- Interpretations of constituents are paired with formulae of a fragment of linear logic (Girard, 1987), and semantic composition is deduction in that logic mediated by the Curry-Howard correspondence (Howard, 1980).

A crude characterisation would be that glue semantics is like categorial grammar and its semantics, but without the categorial grammar.

(Crouch & van Genabith, 2000, 91)

Scope ambiguity as an example

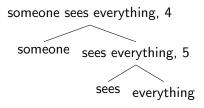
(4) Someone sees everything.

Two interpretations:

- There is someone who sees everything.
- Output Seen Everything is seen.
- Q: Where is the ambiguity?

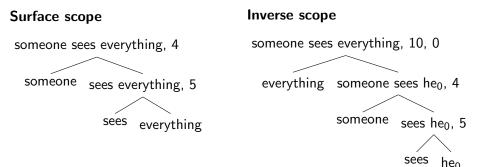
(surface scope, $\exists > \forall$) (inverse scope, $\forall > \exists$) Montague Grammar (Montague, 1973; Dowty et al., 1981)

Ambiguity of syntactic derivation:


3

(人間) トイヨト イヨト

Montague Grammar (Montague, 1973; Dowty et al., 1981)


Ambiguity of syntactic derivation:

Surface scope

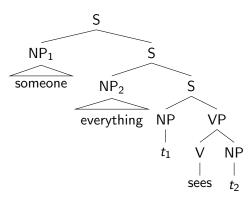
Montague Grammar (Montague, 1973; Dowty et al., 1981)

Ambiguity of syntactic derivation:

13 / 52

Mainstream Minimalism

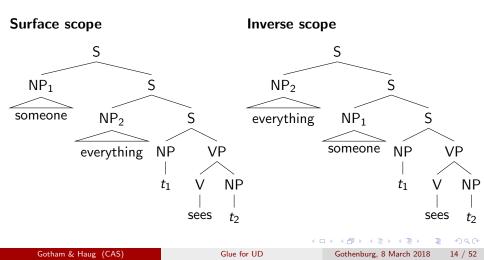
(May, 1977, 1985; Heim & Kratzer, 1998)


Ambiguity of syntactic structure:

3

Mainstream Minimalism (May, 1977, 1985; Heim & Kratzer, 1998)

Ambiguity of syntactic structure:


Surface scope

э

Mainstream Minimalism (May, 1977, 1985; Heim & Kratzer, 1998)

Ambiguity of syntactic structure:

Another way

• The approaches just mentioned have in common is the view that syntactic structure plus lexical semantics *determines* interpretation.

A D A D A D A

Another way

- The approaches just mentioned have in common is the view that syntactic structure plus lexical semantics *determines* interpretation.
- From this it follows that if a sentence is ambiguous, such as (4), then that ambiguity must be either lexical or syntactic.

過す イヨト イヨト

Another way

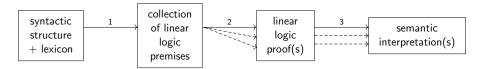
- The approaches just mentioned have in common is the view that syntactic structure plus lexical semantics *determines* interpretation.
- From this it follows that if a sentence is ambiguous, such as (4), then that ambiguity must be either lexical or syntactic.
- The Glue approach is that syntax *constrains* what can combine with what, and how.

(to this extent there is a similarity with Cooper storage (Cooper, 1983))

• Totally informal statement of what the constraints look like in (4):

3

(日) (同) (三) (三)


- Totally informal statement of what the constraints look like in (4):
 - [sees] applies to A, then B, to form C.
 - [[someone]] applies to (something that applies to B to form C) to form C.
 - [[*everything*]] applies to (something that applies to A to form C) to form C.

- Totally informal statement of what the constraints look like in (4):
 - [sees] applies to A, then B, to form C.
 - [[someone]] applies to (something that applies to B to form C) to form C.
 - [[*everything*]] applies to (something that applies to A to form C) to form C.
- There's more than one way to put [[someone]], [[sees]] and [[everything]] together, while obeying these constraints, to form *C*.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Totally informal statement of what the constraints look like in (4):
 - [sees] applies to A, then B, to form C.
 - [[someone]] applies to (something that applies to B to form C) to form C.
 - [[everything]] applies to (something that applies to A to form C) to form C.
- There's more than one way to put [[someone]], [[sees]] and [[everything]] together, while obeying these constraints, to form *C*.
- The different ways:
 - Give the different interpretations of (4).
 - Correspond to different proofs from the same premises in Linear Logic.

The syntax-semantics interface according to Glue

- **1** Function, given by Glue implementation
- 2 Relation, given by linear logic proof theory
- Institution, given by Curry-Howard correspondence

Linear logic

Linear logic is often called a 'logic of resources' (Crouch & van Genabith, 2000, 5).

3

Linear logic

Linear logic is often called a 'logic of resources' (Crouch & van Genabith, 2000, 5). The reason for this is that, in linear logic, for a sequent

 $premise(s) \vdash conclusion$

to be valid, every premise in premise(s) must be 'used' exactly once.

Linear logic

Linear logic is often called a 'logic of resources' (Crouch & van Genabith, 2000, 5). The reason for this is that, in linear logic, for a sequent

 $premise(s) \vdash conclusion$

to be valid, every premise in premise(s) must be 'used' exactly once. So for example,

$A \vdash A$	and	$A, A \multimap B \vdash B$, but
$A, A \nvDash A$	and	$A, A \multimap (A \multimap B) \nvDash B$

 $(-\infty$ is linear implication)

Interpretation as deduction

In Glue,

Gotham & Haug (CAS)

3

Interpretation as deduction

In Glue,

 expressions of a meaning language (in this case, λ-DRT) are paired with formulae in a fragment of linear logic (the glue language)

くほと くほと くほと

Interpretation as deduction

In Glue,

- expressions of a meaning language (in this case, λ-DRT) are paired with formulae in a fragment of linear logic (the glue language), and
- steps of deduction carried out using those formulae correspond to operations performed on the meaning terms, according to the Curry-Howard correspondence.

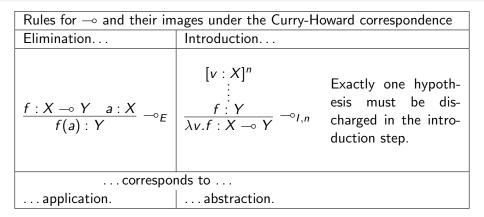
くほと くほと くほと

Linear implication

Rules for					
Elimination	Introduction				
$\frac{X \multimap Y \qquad X}{Y} \multimap_E$	$[X]^n$ \vdots $\frac{\dot{Y}}{X \multimap Y} \xrightarrow{\sim_{I,n}} $ Exactly one hypothe- sis must be discharged in the introduction step.				

(日) (四) (王) (王) (王)

Linear implication and functional types


Rules for $-\infty$ and their images under the Curry-Howard correspondence					
Elimination	Introduction				
$\frac{f: X \multimap Y a: X}{f(a): Y} \multimap_E$	$\begin{bmatrix} v : X \end{bmatrix}^n \\ \vdots \\ f : Y \\ \overline{\lambda v.f} : X \longrightarrow Y \end{bmatrix} \xrightarrow{-\circ_{I,n}} \begin{bmatrix} \text{Exactly one hypoth-} \\ \text{esis must be discrete of a structure} \\ \text{charged in the introduction step.} \end{bmatrix}$				
corresponds to					
application.	abstraction.				

Gotham & Haug (CAS)

3

イロト イポト イヨト イヨト

Linear implication and functional types

Propositions as types:

$$type(X \multimap Y) := type(X) \rightarrow type(Y)$$

Gotham & Haug (CAS)

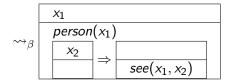
What you need from syntax

label	A	В	С
assigned to	the object argu- ment of <i>sees</i>	the subject argu- ment of <i>sees</i>	the sentence as a whole
	everything	someone	(where <i>someone</i> takes scope)
			(where <i>everything</i> takes scope)

3

What you need from syntax

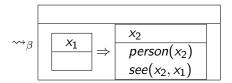
label	A	В	С
assigned to	the object argu- ment of <i>sees</i>	the subject argu- ment of <i>sees</i>	the sentence as a whole
	everything	someone	(where <i>someone</i> takes scope)
			(where <i>everything</i> takes scope)


₩

$$\begin{split} \lambda Q.[x_1 \mid person(x_1)]; Q(x_1) : (B \multimap C) \multimap C & \text{type (} \\ \lambda v.\lambda u.[\mid see(u,v)] : A \multimap (B \multimap C) & \text{type e} \\ \lambda P.[\mid [x_1 \mid] \Rightarrow P(x_1)] : (A \multimap C) \multimap C & \text{type (} \end{split}$$

type $(e \rightarrow t) \rightarrow t$ type $e \rightarrow (e \rightarrow t)$ type $(e \rightarrow t) \rightarrow t$

э


Surface scope interpretation

3

(人間) トイヨト イヨト

Inverse scope interpretation

Gotham & Haug (CAS)

3

・ 同下 ・ ヨト ・ ヨト

Plan

2 Introduction to Glue semantics

Oniversal Dependencies

4 Our pipeline

3

(人間) システン イラン

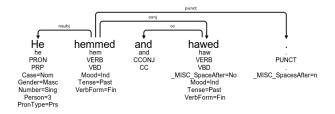
Theoretical considerations

- Dependency grammars have severe expressivity constraints
 - Unique head constraint
 - Overt token constraint

3

通 ト イヨ ト イヨト

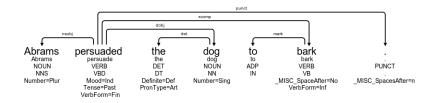
Theoretical considerations


- Dependency grammars have severe expressivity constraints
 - Unique head constraint
 - Overt token constraint
- There are also some UD-specific choices
 - No argument/adjunct distinction

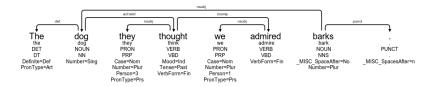
• • = • • = •

Theoretical considerations

- Dependency grammars have severe expressivity constraints
 - Unique head constraint
 - Overt token constraint
- There are also some UD-specific choices
 - No argument/adjunct distinction
- Some of this will be alleviated through enhanced dependencies but those are not yet widely available

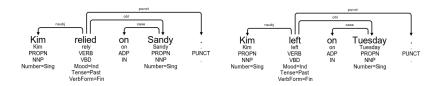

Coordination structure

3


イロト イポト イヨト イヨト

Control structure

э


Relative clause structure

3

イロト イポト イヨト イヨト

No argument/adjunct distinction

3

(日) (同) (日) (日) (日)

Plan

- 2 Introduction to Glue semantics
- 3 Universal Dependencies

Our pipeline

3

Overview

Gotham & Haug (CAS)

Glue for UD

Gothenburg, 8 March 2018 31 / 52

3

Overview

- Traversal of the UD tree, matching each node against a rule file
- For each matched rule, a meaning constructor is produced...
- ... and then instantiated non-deterministically, possibly rewriting the UD tree in the process
- The result is a set of pairs (M, T) where M is a multiset of meaning constructors and T is a rewritten UD tree
- Each multiset is fed into a linear logic prover (by Miltiadis Kokkonidis) and beta reduction software (from Johan Bos' Boxer)

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

Example

ROOT arrived pos=VERB index=2 NSUBJ Peter pos=PROPN index=1

$$pos = PROPN \rightarrow \lambda P.[x|named(x, :lemma:)]; P(x): (e_{\downarrow} \multimap t_{\%R}) \multimap t_{\%R}$$

3

Example

ROOT arrived pos=VERB index=2 NSUBJ Peter pos=PROPN index=1

$$pos = PROPN \rightarrow \lambda P.[x|named(x, Peter)]; P(x):$$

 $(e_1 \multimap t_2) \multimap t_2$

Gotham & Haug (CAS)

3

Example

ROOT arrived pos=VERB index=2 NSUBJ Peter pos=PROPN index=1

 $pos = VERB \rightarrow \lambda F, [e|:lemma:(e)]; :DEP:(e); F(e) : (v_{\downarrow} \multimap t_{\downarrow}) \multimap t_{\downarrow}$

Our pipeline

3

- 4 目 ト - 4 日 ト - 4 日 ト

Example

ROOT arrived pos=VERB index=2 NSUBJ Peter pos=PROPN index=1

$$pos = VERB \rightarrow \lambda x.\lambda F, [e|arrive(e), nsubj(e, x)]; F(e) : e_{\downarrow nsubj} \multimap (v_{\downarrow} \multimap t_{\downarrow}) \multimap t_{\downarrow}$$

3

Example

ROOT arrived pos=VERB index=2 NSUBJ Peter pos=PROPN index=1

$$pos = VERB \rightarrow \lambda x.\lambda F, [e|arrive(e), nsubj(e, x)]; F(e) : e_1 \multimap (v_2 \multimap t_2) \multimap t_2$$

Gotham & Haug (CAS)

Glue for UD

Gothenburg, 8 March 2018

3

33 / 52

Example

ROOT arrived $\mathsf{relation} = \mathsf{ROOT} \rightarrow$ pos=VERB $\lambda_{-} [\mid] : v(\downarrow) \multimap t(\downarrow)$ index=2 NSUBJ Peter pos=PROPN index=1

Gotham & Haug (CAS)

3

Example

ROOT arrived $\mathsf{relation} = \mathsf{ROOT} \rightarrow$ pos=VERB λ_{-} .[] : $v_2 \multimap t_2$ index=2 NSUBJ Peter pos=PROPN index=1

Gotham & Haug (CAS)

Glue for UD

Gothenburg, 8 March 2018 33 / 52

3

(日) (同) (日) (日) (日)

Example

ROOT arrived pos=VERB index=2 NSUBJ Peter pos=PROPN index=1

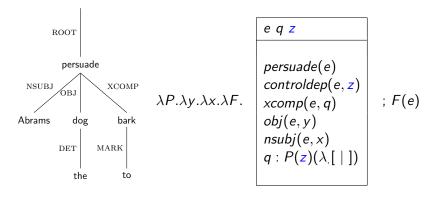
$$\begin{split} \lambda P.[x|named(x, Peter)]; & P(x): \\ & (e_1 \multimap t_2) \multimap t_2 \end{split}$$
$$\lambda x.\lambda F, [e|arrive(e), nsubj(e, x)]; F(e): \\ & e_1 \multimap (v_2 \multimap t_2) \multimap t_2 \end{aligned}$$
$$\lambda_{-}.[\mid]: v_2 \multimap t_2 \end{split}$$

3

33 / 52

Interpretation in Glue

$$\begin{bmatrix} arrived \end{bmatrix} : \\ \frac{e_1 \multimap (v_2 \multimap t_2) \multimap t_2 \quad [y : e_1]^1}{[\![arrived]\!](y) : (v_2 \multimap t_2) \multimap t_2} \multimap_E \quad [\![root]\!] : \\ v_2 \multimap t_2} \\ \vdots \\ \frac{[\![Peter]\!] : \quad [\![arrived]\!](y)([\![root]\!]) : t_2}{\lambda y . [\![arrived]\!](y)([\![root]\!]) : e_1 \multimap t_2} \multimap_E} \\ \neg E \\ \frac{[\![Peter]\!](\lambda y . [\![arrived]\!](y)([\![root]\!]) : t_2} \\ \neg E \\ \vdots \\ \frac{(\lambda P \cdot \underbrace{x_1}{named(x_1, Peter)}; P(x_1)) \left(\lambda y \cdot \left(\lambda x \cdot \lambda F \cdot \underbrace{\frac{e_1}{arrive(e_1)}}_{nsubj(e_1, x)}; F(e_1)\right)(y) \left(\lambda V \cdot \underbrace{[} \right) \right) } \right)$$

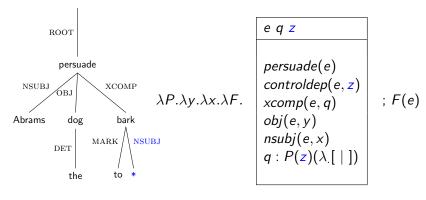

$$\stackrel{x_1 \ e_1}{\underset{arrive(e_1)}{\sim}}$$

Gotham & Haug (CAS)

Gothenburg, 8 March 2018 34 / 52

3

Control

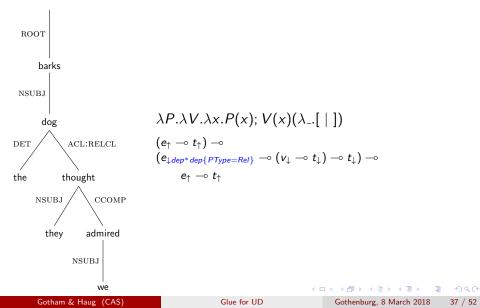


 $\begin{array}{c} (e_{\downarrow \text{XCOMP NSUBJ}} \multimap (v_{\downarrow \text{XCOMP}} \multimap t_{\downarrow \text{XCOMP}}) \multimap t_{\downarrow \text{XCOMP}}) \\ \multimap (e_{\downarrow \text{NSUBJ}}) \multimap (e_{\downarrow \text{OBJ}}) \multimap (v_{\downarrow} \multimap t_{\downarrow}) \multimap t_{\downarrow} \end{array}$

Gotham & Haug (CAS)

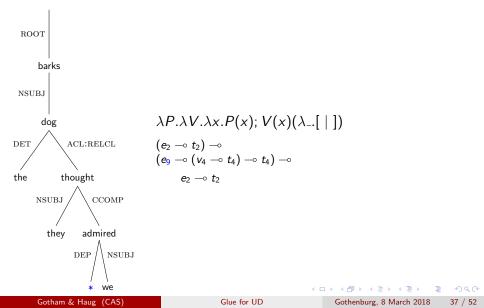
I → < □ → < ⊇ → < ⊇ → < ⊇ → ⊇ </p>
Sothenburg, 8 March 2018 35 / 52

Control

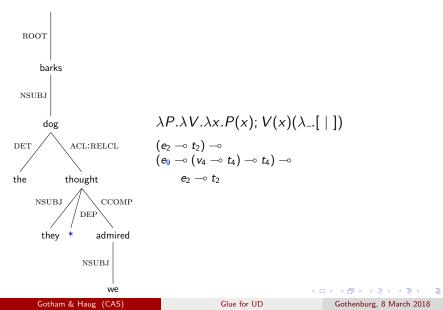


3

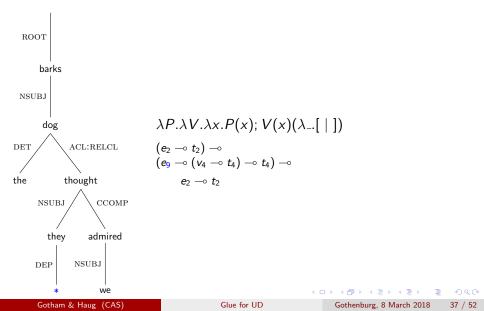
$$\begin{array}{c|c} x_{1} x_{2} x_{3} e_{1} p_{1} \\ \hline named(x_{1}, abrams), ant(x_{2}) \\ \partial(dog(x_{2})), persuade(e_{1}) \\ nsubj(e_{1}, x_{1}), obj(e_{1}, x_{2}) \\ controldep(e_{1}, x_{3}), xcomp(e_{1}, p_{1}) \\ \hline p_{1} : \hline e_{2} \\ bark(e_{2}) \\ nsubj(e_{2}, x_{3}) \\ \end{array}$$


Gotham & Haug (CAS)

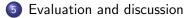
Relative clauses



37 / 52


Relative clauses

Relative clauses



Relative clauses

Plan

- Target representations
- 2 Introduction to Glue semantics
- 3 Universal Dependencies
- 4 Our pipeline

3

- 4 週 1 - 4 三 1 - 4 三 1

Discussion of output

$$x_1 e_1$$

 $named(x_1, Peter)$
 $arrive(e_1)$
 $nsubj(e_1, x_1)$

- What kind of θ -role is 'nsubj'?
 - A syntactic name, lifted from the arc label.
 - In and of itself, uninformative.

∃ ▶ ∢

Discussion of output

$$x_1 e_1$$

 $named(x_1, Peter)$
 $arrive(e_1)$
 $nsubj(e_1, x_1)$

- What kind of θ -role is 'nsubj'?
 - A syntactic name, lifted from the arc label.
 - In and of itself, uninformative.
- What we have in the DRS above is as much information as can be extracted from the UD tree alone, without lexical knowledge.
- Lexical knowledge in the form of meaning postulates such as (5) can be harnessed to further specify the meaning representation.
- (5) $\forall e \forall x ((arrive(e) \land nsubj(e, x)) \rightarrow theme(e, x))$

Discussion of output

$$x_1 e_1$$

 $named(x_1, Peter)$
 $arrive(e_1)$
 $theme(e_1, x_1)$

- What kind of θ-role is 'nsubj'?
 - A syntactic name, lifted from the arc label.
 - In and of itself, uninformative.
- What we have in the DRS above is as much information as can be extracted from the UD tree alone, without lexical knowledge.
- Lexical knowledge in the form of meaning postulates such as (5) can be harnessed to further specify the meaning representation.
- (5) $\forall e \forall x ((arrive(e) \land nsubj(e, x)) \rightarrow theme(e, x))$

 $x_1 x_2 x_3 e_1 p_1$

persuade(e_1), $obj(e_1, x_2)$, $controldep(e_1, x_3)$, $xcomp(e_1, p_1)$

- $p_1: \frac{e_2}{\ldots, nsubj(e_2, x_3)}$
- The *persuade* + xcomp meaning constructor has
 - introduced an *xcomp* relation between the persuading event e_1 and the proposition p_1 that there is a barking event e_2 , and
 - introduced an individual x_3 as the *nsubj* of e_2 and the *controldep* of e_1 .

*x*₁ *x*₂ *x*₃ *e*₁ *p*₁

• • •

 $persuade(e_1), obj(e_1, x_2), controldep(e_1, x_3), xcomp(e_1, p_1)$

- $p_1: \begin{array}{c} e_2 \\ \dots, nsubj(e_2, x_3) \end{array}$
- The *persuade* + xcomp meaning constructor has
 - introduced an *xcomp* relation between the persuading event e_1 and the proposition p_1 that there is a barking event e_2 , and
 - introduced an individual x_3 as the *nsubj* of e_2 and the *controldep* of e_1 .
- But the information that *persuade* is an object control verb can again be encoded in a meaning postulate:

 $\forall e \forall x ((persuade(e) \land controldep(e, x)) \rightarrow obj(e, x))$

• • B • • B • B

 $x_1 x_2 x_3 e_1 p_1$

... $persuade(e_1), obj(e_1, x_2), obj(e_1, x_3), xcomp(e_1, p_1)$ $p_1: \boxed{e_2}$..., $nsubj(e_2, x_3)$

- The *persuade* + xcomp meaning constructor has
 - introduced an *xcomp* relation between the persuading event e_1 and the proposition p_1 that there is a barking event e_2 , and
 - introduced an individual x_3 as the *nsubj* of e_2 and the *controldep* of e_1 .
- But the information that *persuade* is an object control verb can again be encoded in a meaning postulate:

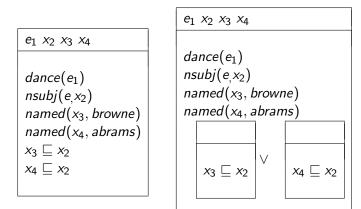
 $\forall e \forall x ((persuade(e) \land controldep(e, x)) \rightarrow obj(e, x))$

*x*₁ *x*₂ *x*₃ *e*₁ *p*₁

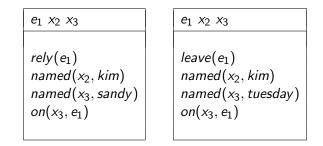
 $persuade(e_1), obj(e_1, x_2), obj(e_1, x_3), xcomp(e_1, p_1)$ $p_1 : \boxed{e_2} \\ \dots, nsubj(e_2, x_3)$

- The *persuade* + xcomp meaning constructor has
 - introduced an *xcomp* relation between the persuading event e_1 and the proposition p_1 that there is a barking event e_2 , and
 - introduced an individual x_3 as the *nsubj* of e_2 and the *controldep* of e_1 .
- But the information that *persuade* is an object control verb can again be encoded in a meaning postulate:

 $\forall e \forall x ((persuade(e) \land controldep(e, x)) \rightarrow obj(e, x))$


- With thematic uniqueness, we get $x_2 = x_3$ in this case.
- Blurs the distinction between lexical syntax and semantics.

VP/Sentence coordination: He hemmed and hawed


$$\begin{array}{c|c} x_1 \ e_2 \ e_3 \\ \hline pron.he(x_1) \\ hem(e_2) \\ nsubj(e_2, x_1) \\ haw(e_3) \end{array}$$

- $\bullet\,$ No way to distinguish V/VP/S coordination in DG because of the overt token constraint
- No argument sharing because of the unique head constraint

NP Coordination: Abrams and/or Browne danced

Argument/adjunct distinction

• Again, we will have to rely on meaning postulates to resolve the *on* relation to a thematic role in one case and a temporal relation in the other

Evaluation

- What we have so far is a proof of concept tested on carefully crafted examples
 - application of LFG techniques (functional uncertainties) to enrich underspecified UD syntax
 - application of glue semantics to dependency structures

< 回 ト < 三 ト < 三 ト

Evaluation

- What we have so far is a proof of concept tested on carefully crafted examples
 - application of LFG techniques (functional uncertainties) to enrich underspecified UD syntax
 - application of glue semantics to dependency structures
- Very far from something practically useful
 - Basic coverage of UD relations except vocative, dislocated, clf, list, parataxis, orphan
 - Little or no work on interactions, special constructions, real data noise

Pros and cons of glue semantics

- No need for binarization
- Flexible approach to scoping yield different readings
- Hard to restrict unwanted/non-existing scopings
- Computing lots of uninteresting scope differences

Unwanted scopings

$$\lambda F. \begin{bmatrix} e \\ arrive(e) \end{bmatrix}; F(e) : (v_1 \multimap t_1) \multimap t_1$$
$$\lambda_{-}. \begin{bmatrix} \vdots \\ v_1 \multimap t_1 \end{bmatrix}$$

It is clear which DRS sentence-level operators (negation, auxiliaries etc.) should target!

- Modalities in the linear logic
- Different types for the two DRSs

3

Efficient scoping

- Two parameters:
 - level of scope
 - order of combination of quantifiers at each level
- We currently naively compute everything with a light-weight prover \rightarrow obvious performance problems
- Disallow intermediate scopings?
- Structure sharing across derivations (building on work in an LFG context)

Conclusions

• Theoretical achievement: application of glue to dependency grammar

3

(日) (同) (日) (日) (日)

Conclusions

- Theoretical achievement: application of glue to dependency grammar
- Practical achievement: an interesting proof of concept

3

(日) (周) (三) (三)

Conclusions

- Theoretical achievement: application of glue to dependency grammar
- Practical achievement: an interesting proof of concept
- But lots of work remains
 - Support for partial proofs
 - Axiomatization of lexical knowledge
 - Ambiguity management

- 4 目 ト - 4 日 ト - 4 日 ト

References I

- Asudeh, Ash & Richard Crouch. 2002. Glue Semantics for HPSG. In Frank van Eynde, Lars Hellan & Dorothee Beermann (eds.), *Proceedings of the* 8th international HPSG conference, Stanford, CA: CSLI Publications.
- Bos, Johan. 2008. Wide-coverage semantic analysis with Boxer. In Proceedings of the 2008 conference on semantics in text processing STEP '08, 277–286. Stroudsburg, PA, USA: Association for Computational Linguistics.

http://dl.acm.org/citation.cfm?id=1626481.1626503.

- Cooper, Robin. 1983. *Quantification and syntactic theory* (Studies in Linguistics and Philosophy 21). Dordrecht: D. Reidel.
- Crouch, Richard & Josef van Genabith. 2000. Linear logic for linguists. ESSLLI 2000 course notes.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

References II

- Dalrymple, Mary, Vineet Gupta, John Lamping & Vijay Saraswat. 1999. Relating resource-based semantics to categorial semantics. In Mary Dalrymple (ed.), *Semantics and syntax in Lexical Functional Grammar*, 261–280. Cambridge, MA: MIT Press.
- Dalrymple, Mary, John Lamping & Vijay Saraswat. 1993. LFG semantics via constraints. In Steven Krauwer, Michael Moortgat & Louis des Tombe (eds.), *EACL 1993*, 97–105.
- Dowty, David R., Robert E. Wall & Stanley Peters. 1981. Introduction to Montague semantics. Dordrecht: D. Reidel.
- Frank, Anette & Josef van Genabith. 2001. GlueTag: Linear logic-based semantics for LTAG—and what it teaches us about LFG and LTAG. In Miriam Butt & Tracy Holloway King (eds.), *Proceedings of the LFG01 conference*, Stanford, CA: CSLI Publications.

< 白 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

References III

- Girard, Jean-Yves. 1987. Linear logic. *Theoretical Computer Science* 50(1). 1–101. doi:10.1016/0304-3975(87)90045-4.
- Gotham, Matthew. 2018. Making Logical Form type-logical. *Linguistics* and *Philosophy* doi:10.1007/s10988-018-9229-z. In press.
- Haug, Dag Trygve Truslew. 2014. Partial dynamic semantics for anaphora. *Journal of Semantics* 31. 457–511.
- Heim, Irene & Angelika Kratzer. 1998. *Semantics in generative grammar* (Blackwell Textbooks in Linguistics 13). Oxford: Wiley-Blackwell.
- Howard, W.A. 1980. The formulae-as-types notion of construction. In J.P. Seldin & J.R. Hindley (eds.), *To H.B. Curry*, 479–490. New York: Academic Press.
- May, Robert. 1977. *The grammar of quantification*: Massachusetts Institute of Technology dissertation.

References IV

- May, Robert. 1985. *Logical form* (Linguistic Inquiry Monographs 12). Cambridge, MA: MIT Press.
- Montague, Richard. 1973. The proper treatment of quantification in ordinary English. In Patrick Suppes, Julius Moravcsik & Jaakko Hintikka (eds.), *Approaches to natural language*, 221–242. Dordrecht: D. Reidel.

・ロト ・四ト ・ヨト ・ヨト ・ヨ