
Two Early Efforts toward
Using Deep Learning in
Syntax and Semantics

Sam Bowman
NYU

CLASP Seminar, University of Gothenburg

Context: Deep learning in NLP

As in vision and elsewhere, deep learning techniques have
yielded very fast progress on a few important data-rich tasks:

● Reading comprehension questions
○ Near human performance (but brittle)

● Translation
○ Large, perceptually obvious improvements

● Syntactic parsing
○ Measurable improvements on longstanding state of the art

The Question

Given that these models incorporate no substantial prior
knowledge about language, what can their (partial) successes tell
us about language?

The Question

Given that these models incorporate no substantial prior
knowledge about language, what can their (partial) successes tell
us about language?

Today: Two attempts at answering this question.

● Part I: Discovering tree structure
● Part II: Learning to match expert acceptability judgments

Part I
Learning to Parse

from a Semantic Objective

Adina Williams

Andrew Drozdov

Samuel R. Bowman

TACL 2018 (@NAACL)

Nikita Nangia

Samuel R. Bowman

Under Submission

Background: TreeRNNs

What?

● Run a (binary constituency) parser
● Use parse tree as computation graph

○ Generally with TreeLSTM function at each node

Why?

● Theoretically appealing
● Some empirical advantage

Socher et al. ‘10, Tai et al. ‘15, Bowman et al. ‘16, Liu et al. ‘17

Goal: Latent Tree Learning

What?
● Build one model that can:

○ Parse sentences
○ Use resulting parses in a TreeRNN text classifier

● Train the full model on a language understanding task

Why?
● Engineering objective:

Better parsing strategies for NLU
● Scientific objective:

What compositional structures are both
valuable and learnable?

Goal: Latent Tree Learning

Today:

● What do existing methods for this task learn?
○ New evaluations, red flags, and negative results.

● Is the problem the task setting, the learning algorithms,
or both?
○ Likely both.

Natural Language
Inference as a
Research Task

Natural language inference (NLI)
also known as recognizing textual entailment (RTE)

 James Byron Dean refused to move without blue jeans

{entails, contradicts, neither}

James Dean didn’t dance without pants

MacCartney thesis ‘09

The Stanford NLI Corpus
& The MultiGenre NLI Corpus

x 1,000,000

More on this in Thursday’s talk!

The Setup

the cat sat down

PARSER

neutral

MLP

PARSER

the old cat ate

Two Design Decisions

● How do we train the parser?
○ Backpropagation training generally won’t work
○ Need some workaround

● How do we build the parser?
○ Must be compatible with training strategy above
○ Where possible, should share parameters with NLU model

Results to Date

Three 2017 papers on SNLI report that TreeLSTMs learned
trees outperform ones based on trees from an external
parser:

● Yogatama et al.:
○ Shift-reduce parser + REINFORCE

● Maillard et al.:
○ Chart parser + soft gating

● Choi et al.:
○ Novel parser + Straight Through + Gumbel softmax

Limited analysis of the resulting parses so far.

Two Models:
RL-SPINN (Yogatama)
ST-Gumbel (Choi)

RL-SPINN (Yogatama)

Background: SPINN
Using transitions to process trees

[SHIFT, SHIFT,
REDUCE, SHIFT,
SHIFT, REDUCE,

REDUCE]

[SHIFT, SHIFT,
SHIFT, SHIFT,
REDUCE, REDUCE,

REDUCE]

[SHIFT, SHIFT,
SHIFT, REDUCE,
SHIFT, REDUCE,

REDUCE]

the cat

sat

down

the

cat

sat

down

the

cat

sat

down

Background: SPINN
Using transitions to process trees

the

cat

sat

down

Stack

Buffer

C

SHIFT SHIFT REDUCE SHIFT

the cat sat down

the cat

sat down

the cat

sat

down

Background: SPINN
Using transitions to process trees

the cat

sat

down

Stack

Buffer

C

SHIFT REDUCE REDUCE

C

Background: SPINN

● Shift-reduce parser and TreeRNN share representations
● Supervised by existing parses at training time

the cat

sat

down

the cat

sat

down

the cat

sat down

REDUCE

C

T T T

PP P

SHIFT REDUCE

Bowman et al. ‘16; cf. Socher et al. ‘11, Cho et al. ‘14

RL-SPINN

● Shift-reduce parser and TreeRNN share representations
● Parser trained using REINFORCE on NLI objective

the cat

sat

down

the cat

sat

down

the cat

sat down

REDUCE

C

T T T

PP P

SHIFT REDUCE

Yogatama et al. ‘17

RL-SPINN

● 100D model only
● Improvements from latent trees!

the cat

sat

down

the cat

sat

down

the cat

sat down

REDUCE

C

T T T

PP P

SHIFT REDUCE

Yogatama et al. ‘17

Work to date: ST-Gumbel

Choi et al. ‘17the cat sat down

● At every layer:
○ Compute every possible merge
○ Score each merge
○ Use Gumbel Softmax to select best

● Straight-Through estimator for gradients

● O(N2), but GPU-friendly
● Improvements from latent trees!

Work to date: ST-Gumbel

Choi et al. ‘17

C

the cat sat down

C C

S S S

0.5 0.1 0.4

● At every layer:
○ Compute every possible merge
○ Score each merge
○ Use Gumbel Softmax to select best

● Straight-Through estimator for gradients

● O(N2), but GPU-friendly
● Improvements from latent trees!

Work to date: ST-Gumbel

Choi et al. ‘17

C

the cat sat down

C C

S S S

0.5 0.1 0.4

● At every layer:
○ Compute every possible merge
○ Score each merge
○ Use Gumbel Softmax to select best

● Straight-Through estimator for gradients

● O(N2), but GPU-friendly
● Improvements from latent trees!

Work to date: ST-Gumbel

Choi et al. ‘17

C

the cat sat down

C C

S S S

0.5 0.1 0.4

the cat sat down

● At every layer:
○ Compute every possible merge
○ Score each merge
○ Use Gumbel Softmax to select best

● Straight-Through estimator for gradients

● O(N2), but GPU-friendly
● Improvements from latent trees!

Work to date: ST-Gumbel

Choi et al. ‘17

C

the cat sat down

C C

S S S

0.5 0.1 0.4

the cat sat down

C C

S S

0.4 0.6

● At every layer:
○ Compute every possible merge
○ Score each merge
○ Use Gumbel Softmax to select best

● Straight-Through estimator for gradients

● O(N2), but GPU-friendly
● Improvements from latent trees!

Work to date: ST-Gumbel

Choi et al. ‘17

C

the cat sat down

C C

S S S

0.5 0.1 0.4

the cat sat down

C C

S S

0.4 0.6

● At every layer:
○ Compute every possible merge
○ Score each merge
○ Use Gumbel Softmax to select best

● Straight-Through estimator for gradients

● O(N2), but GPU-friendly
● Improvements from latent trees!

Work to date: ST-Gumbel

Choi et al. ‘17

C

the cat sat down

C C

S S S

0.5 0.1 0.4

the cat sat down

C C

S S

0.4 0.6

the cat sat down

● At every layer:
○ Compute every possible merge
○ Score each merge
○ Use Gumbel Softmax to select best

● Straight-Through estimator for gradients

● O(N2), but GPU-friendly
● Improvements from latent trees!

Work to date: ST-Gumbel

Choi et al. ‘17

C

the cat sat down

C C

S S S

0.5 0.1 0.4

the cat sat down

C C

S S

0.4 0.6

the cat sat down

C

the cat sat down

● At every layer:
○ Compute every possible merge
○ Score each merge
○ Use Gumbel Softmax to select best

● Straight-Through estimator for gradients

● O(N2), but GPU-friendly
● Improvements from latent trees!

What grammar do
these models learn?

Our findings: Task performance

● 300D runs on MultiNLI and SNLI, extensively tuned:
○ Absolute performance on SNLI:

■ Outperform published RL-SPINN (1.8%)

■ Slightly underperform published ST-Gumbel (-0.9%)

○ Against our own baselines:
■ RL-SPINN worse with latent trees than with parser trees

■ ST-Gumbel better with latent trees than parser trees

Our findings: Major red flags

● Our TreeLSTM model (SPINN) does roughly equally well
with:
○ Parser trees
○ Balanced trees
○ Random binary trees

● A plain LSTM (i.e., left-branching trees) does slightly better.
cf. Scheible & Schütze ‘13

Examples

Parser

Balanced

Random

Left-branching (i.e., recurrent NN)

Our findings: Consistency

● Across five random restarts, measuring F1 between runs
on the MultiNLI Dev Set:
○ RL-SPINN produces highly consistent trees
○ ST-Gumbel produces inconsistent trees, but better than

chance

Our findings: PTB

Evaluating on ground-truth Wall Street Journal data:

● Baseline performance on PTB only so-so (~60% F1)
● ST-Gumbel barely above chance (~25% F1)
● RL-SPINN significantly worse than chance (~13% F1)

Our findings: Qualitative

● The RL-SPINN runs that perform best use strictly
left-branching parses!

● Some runs are less strict, but variation from this trend
appears random.

● Explains worse-than-chance parsing performance:
English prefers right-branching trees.

● Model is equivalent to RNN, task performance shows that.

Our findings: Qualitative

● ST-Gumbel parses tend to be balanced and shallow.
● The first two and last two words nearly always form

constituents.

● Disappointing, but others have found these trees to be
useful: Munkhdalai & Yu ‘16

● Something about the training procedure seems to help
learning/overall performance.

Some Examples

Parser

ST-Gumbel

Some Examples

Parser ST-Gumbel

Interim Discussion

● Key motivating hypothesis:
○ With current TreeRNN architectures and tasks, there

exists some non-trivial, linguistically interesting parsing
strategy that will provide a task advantage.

● Current latent tree learning models don’t appear to
identify any kind of nontrivial sentence structure.
○ Not surprising: Motivating hypothesis likely false.
○ Additional quantitative analysis (in paper) confirms.

● If motivating hypothesis were true, would these latent
tree learning models succeed?

A Diagnostic Task: ListOps

9

ListOps

● 100k examples (90k train/10k test)
● Manually tuned...

○ Operation set
○ Maximum list length
○ Maximum recursion depth

● ...such that:
○ A tuned 128D TreeLSTM will succeed reliably (acc > 95%)
○ A tuned 128D LSTM RNN will fail reliably (acc < 75%)

● So:
○ Succeeding at the task requires discovering (roughly) the

correct tree structure.

A Diagnostic Task: ListOps

[MAX 1 5 [MIN 9 2 5]] = 5

[MAX [SM 8 5 [MIN 6 6 1]] [MED 0 1 4 8 6] 7 7] = 7

[MED 4 1 0] = 1

[SM 7 3 2 [MIN 3 2 4 [SM 3 4 [SM 7 9] 9]] 8] = 2

[MAX 1 [MIN [MIN 1 [MED 7 [MAX 0 [MED [MAX [MAX [MIN 9 [SM 1 4 0 [MED 9 6 6] [MIN 3 7 4 1]] 6 7 [MED 3 0 8 1 [MED [SM 0 3
[MAX 9 0] [SM 3 8 5] 8] 5 8]]] 9 3 [MAX [SM 0 [SM 9 3]] 4 7 6 [MAX 1 [MED 7 3] 8 5 0]] 4] 2 0 [MAX [MAX [MAX 4 2
4] 7 [MAX 1 4 [MAX 4 4 2] [SM 1 9 5 7 8] 3]] 7 9 6]] 8 [MIN 2 7]] [MAX [SM 8 [MIN 7 1 [MAX [MAX 4 [MAX [MIN [SM 4 6
[MAX [SM [MAX [MIN [MIN 4 4] 7 9] [MIN 5 6]] 2 5 5 2] 3 9] 2 8] [SM [MAX 8 9 3 [SM 5 [MIN 4 [MIN 4 2 2 0] 6] 7 2]]
9] [MED 4 [SM 0 [MAX 4 4 [MED [MIN 0 4 [MED [MAX 8 2 4 5] 2 1]] 8 2 1 [MIN 1 7]] 0 0] 4 7]]] 1 [MAX 1 4] 2 [SM 0 1
2 5 9]] [MED 3 [SM 3 [SM [MIN [MIN [SM 6 [MED [SM 0 3 [SM 9 6 1 2] 7 [MIN 9 0 4]] [MIN [MIN 4 9 6] 5 4 [SM 3 7 8 6 5]
] 2 9] 2 8] 9 [MIN 0 3 [SM 1 6]] 1] 9 1] 7 [MAX [MIN [MED 0 [SM [MAX [MAX 9 5 5] 0 0] 4 3 [MED 8 7 5 2 0] 2]] [MAX
5 7 9]] [MED 7 6] 3] 7] 2] [MIN 8 8] 0] [MAX 2 2 7 1 9] 1] 7]]] 7 1 2] 3 [SM [MED [MAX 5 8 5 9 1] 8 [SM 8 7]
] 6 8 [MAX 4 7] [MED 7 0 4 3 [MIN 8 1 3 6]]]] 8 [SM 4 [MAX 9 9 9 7] [MIN 1 6 [MAX [SM [SM [MIN 9 8] [SM 1 0]] 7] 9
6 1] 2]]] 6 4] 4] 3 [MIN [MAX [SM 2 3 [MED [MAX [MED 4 5 [SM [SM 2 5 7] 1 6]] [SM 7 3 2 [SM [MED [MAX 2 [MED 0 8] 6
[MED [MIN 2 2] 0 7 [SM [MIN 3 [MAX 3 9 4 [MIN 7 0 2]] [MED 9 [SM 2 [MAX 9 3 4 2] 9 [MED 7 1]] 3 6] 5] 5 4 7]]]
[MIN [MIN [SM 0 4 8 2 5] [MIN 3 4] 4 [SM 3 [MED [MED 2 3 5 2 1] 0] 5 6 0] 7] 8 7 3]] 7 3 4]] 9 8] [MAX 3 5 [MAX 1
5] 4] [SM 6 [SM [MED [SM 2 8 5] [MED [SM 0 3 9 [MIN 0 6 8] 4] 4 [MAX [MIN 0 1 1] 4 4]]] [MIN 5 [MIN 5 [SM [MAX 9 0 0
] 5 3 1 7] 7 0] 8 3 5]] 4 0 9] [MED 9 7 2] 8]] 9 8 8] 7 8]]

= 7

ListOps

● Possible inputs:
○ 0 … 9
○ [min
○ [max
○ [median
○ [sm (sum list, modulo 10)
○]

● Possible outputs:
○ 0 … 9

Results

● LSTM RNN: 73.3
● TreeLSTM: 98.7
● RL-SPINN: 64.8
● ST-Gumbel: 59.9

Existing latent tree learning models do not appear to be able
to identify useful structure, even when such structure is
known to exist.

Open Questions

How do we get to effective latent tree learning?

● Better composition functions?
● Harder or richer tasks (cf. Shen et al. ‘18)?
● Warm start methods (cf. Yogatama et al. ‘17)?

Part II
Learning to Match Expert
Acceptability Judgments

Alex Warstadt
Samuel R. Bowman

LSA 2018/in prep

(The) Open Question

To what extent is strong prior knowledge (strong universal
grammar) needed to learn linguistic competence?

How do these sentences sound?

● The earth revolves around the sun.
● The earth revolves the sun.

● The earth circles around the sun.
● The earth circles the sun.

How do these sentences sound?

● The earth revolves around the sun.
● *The earth revolves the sun.

● The earth circles around the sun.
● ?The earth circles the sun.

Acceptability Judgments

The task:
Evaluate whether a sentence is acceptable in some natural
language.

● Intended as a direct test of speaker competence.
● Primary form of empirical data in many areas of linguistic

theory (Chomsky ‘65; Schütze ‘96).

Acceptability Judgments

Linguists working on their own native language(s) often
provide their own judgments as data in published work.

Ross ‘67:

This Work:
Matching Expert Judgments

● New corpus of 7k expert judgments from published work
on English.

● Modeling: Semi-supervised learning with NNs
○ Pretrain an RNN sentence classifier with a proxy real-fake

classification task on the 100M-word British National Corpus.
○ Fine-tune the sentence classifier on a small sample of expert

judgments.

Why Semi-Supervised Learning?

● Why any acceptability judgment supervision?
○ Ensures that the model learns the correct definition of

acceptability.
○ Possible that this can be done analytically, but not clear

how.

● Why not just use full supervision?
○ We want to give the model a chance to learn some

phenomena without expert judgments.
■ If the system succeeds at these phenomena at test time, it has

succeeded in learning them from the unlabeled data.

Prior work

● Lawrence et al. ‘00 train RNNs to perform a similar task,
but over POS tags rather than words.

● Wagner et al. ‘09 learn to distinguish real English
sentences from manipulated ones.

● Lau, Clark, & Lappin ‘15/‘16 use unsupervised learning to
predict gradient non-expert acceptability judgments.

Acceptability Judgments

In our work:

Morphosyntactic

● *Maryann should leaving.

Syntactic

● *What did Bill buy potatoes and?

Semantic

● *Kim persuaded it to rain.

Acceptability Judgments

Not used in our work:

Pragmatically awkward

● #Bill pushed Harry off the sofa for hours.

Prescriptively forbidden

● It’s easy to find prepositions to end a sentence with.

Semantically unavailable readings

● *He
i
 loves John

i
. (intended: Johni loves himselfi)

The Draft Corpus

● Broad coverage of syntax/semantics/morphology
● Random train/dev/test split
● Original author’s judgments used
● Original distribution of judgments preserved: ~70% acceptable

The Draft Corpus

● Removed unwanted judgment types (pragmatic, reading-based, …)
● Removed questionable examples (?, ??, *?)
● Replaced extremely rare words (especially proper names)

Random Sample

0 At Mrs. Parker's lodged an old woman.

1 Everybody who has ever, worked in any office which
contained any typewriter which had ever been used to type
any letters which had to be signed by any administrator who
ever worked in any department like mine will know what I
mean.

1 Sharon shivered.

1 We believed John to try to leave the country.

0 It tried to bother me that Chris lied.

The Proxy Task

Discriminate real BNC sentences from fake sentences
generated by either:

● training an RNN language model on BNC and sampling
from it…
○ Investors are powerful discounts, mostly they seem particularly.

● ...or randomly permuting a few of the words in a real BNC
sentence.
○ The hard-to-handle stop spread rumour to was me working.

~200M words of training data, no linguistic knowledge
included.

The Model

Proxy Task Results

The Model

Acceptability Results

Random Samples

Minimal Pairs

Results by Source (four largest)

● The model has the easiest time with the mostly-local
phenomena in Levin.

● The model has the hardest time with the mostly
long-distance phenomena in Ross.

● Much better than chance (M=0) on all sources.

Dative Alternation & Ditransitives

Islands

Interim Conclusions

● Under semi-supervised training RNNs can learn to match
expert acceptability judgments correctly much of the
time.

● These models capture at least some structure—they
outperform the simple order-insensitive CBOW.

Work in Progress (short term)

● How do these semi-supervised methods compare with
the unsupervised methods of Lau et al.?

● Do non-expert judgments (from, e.g., Lau et al.) yield
qualitatively different results?

● Can models learn to correctly judge entire families of
phenomena without acceptability supervision?

● Are word vectors necessary or useful?

Open Questions (longer term)

● How much bias will we need to reach human-level
performance?

● To what extent can supervision from semantic tasks like
NLI or translation help?

● To what extent do existing popular models learn this
information already?

Wrapping up

Recap

Two early efforts toward using evidence from NNs to inform
linguistic questions.

Part I:

● Latent tree learning promises to discover compositional
structure in data.

● Early results appear to be misleading: Open problem.

Part II:

● Semi-supervised learning can produce a reasonably good
model of acceptability, but not currently at human level
on any major phenomena.

Thanks!

Code/data:

● Part I: http://nyu.edu/projects/bowman
● Part II: Work in progress. Contact bowman@nyu.edu

Plus:

● Adina Williams is seeking a postdoc position!

These projects were supported in part by a Google Faculty Research Award, gifts from
Tencent Holdings and NVIDIA, and a grant from Samsung Research.

http://nyu.edu/projects/bowman
mailto:bowman@nyu.edu

