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Outline

● What is text normalization?
● What is the “state of the art”?
● A suite of neural solutions - and challenges

○ Finite-state covering grammars
● Implications and future directions



What is text normalization?

Definition: Transforming text so that the 
information in it is presented in some 
canonical form for a downstream application

Corollary: What counts as normalization 
depends upon the application



Some applications

Linguistic standardization: Converting 
non-standard ways of writing things into a standard 
written form:

Input Normalized form

coooolllll cool

cu l8r see you later

udaman you are the man (?)



Some applications

Information extraction/retrieval: Converting 
written representations of entities (e.g. dates) into 
a canonical format:

Input Normalized form

November 11 11/11

the 11th of Nov. 11/11

November the eleventh 11/11



Some applications

Speech applications: Converting “non-standard 
words” (NSWs) into a lexical representation of how 
people would say them:

Input Normalized form

11/11 November the eleventh

2.5 cm two point five centimeters

₹500 note five hundred rupee note



Text normalization and text generation



Text normalization and text generation

Somebody has to produce that red text - whether it’s done as part of 
generation or passed to TTS to expand.

A male giraffe is sixteen to twenty feet tall.

A female giraffe is fifteen feet tall.



But isn’t this trivial?

● The problem is that there are a great many 
classes of cases

● And languages with heavy inflectional 
morphology present a particular challenge 



A bit of terminology

Paul Taylor, in his textbook 
on Text-to-Speech 
Synthesis (2009) refers to 
things like 6 ft, 150 lb, or 
3:30 as instances of
semiotic classes



Taxonomy of semiotic classes

From Sproat, R. et al 
(2001), “Normalization 
of non-standard 
words.” Computer 
Speech and 
Language.



Some other cases:

● Seasons/episodes
S02E02

● Ratings: 4.5/5, **** (four 
stars)

● Chess notation: Nc6, 
Rxc6

● Vision: 20/20
● ...

Sproat & van Esch, 2017, “An 
Expanded Taxonomy of 
Semiotic Classes for Text 
Normalization”, Interspeech

Taxonomy of semiotic classes



3:03
세시 삼분
se si sam bun                    [native vs Sino-Korean]
three hour three minute

Sometimes verbalization rules can be very specific



3:03
세시 삼분
se si sam bun                    [native vs Sino-Korean]
three hour three minute

조폭마누라 3                                 
jopok manura 3                                 
My Wife is a Gangster 3                    

Image from https://en.wikipedia.org/wiki/File:My_Wife_is_a_Gangster_movie_poster.jpg. We believe this constitutes fair use.

Sometimes verbalization rules can be very specific

https://en.wikipedia.org/wiki/File:My_Wife_is_a_Gangster_movie_poster.jpg


3:03
세시 삼분
se si sam bun                    [native vs Sino-Korean]
three hour three minute

조폭마누라 3                               3 → 쓰리     
jopok manura 3                                   seuri     [ English]
My Wife is a Gangster 3                      three

Image from https://en.wikipedia.org/wiki/File:My_Wife_is_a_Gangster_movie_poster.jpg. We believe this constitutes fair use.

Sometimes verbalization rules can be very specific

https://en.wikipedia.org/wiki/File:My_Wife_is_a_Gangster_movie_poster.jpg


“Speak” text like the left column as in the right column:

A a
baby baby
giraffe giraffe
is is
6ft six feet
tall tall
and and
weighs weighs
150lb one hundred fifty pounds
. sil

Statement of problem: text norm for speech applications 



“Speak” text like the left column as in the right column:

A a
baby baby
giraffe giraffe
is is
6ft six feet
tall tall
and and
weighs weighs
150lb one hundred and fifty pounds
. sil

On on
11/11/2016 november eleventh twenty sixteen
£1 one pound
was was
worth worth
$1.26 one dollar and twenty six cents
. sil

Statement of problem: text norm for speech applications 



“Speak” text like the left column as in the right column:

A a
baby baby
giraffe giraffe
is is
6ft six feet
tall tall
and and
weighs weighs
150lb one hundred and fifty pounds
. sil

Between 7% and 9% of tokens in Wikipedia require some normalization.

On on
11/11/2016 november eleventh twenty sixteen
£1 one pound
was was
worth worth
$1.26 one dollar and twenty six cents
. sil

Statement of problem: text norm for speech applications 



The state of the art for TTS text norm … since the mid 1990’s

● Carefully crafted hand-built rules compiled 
into (weighted) finite-state transducers**

**Peter Ebden and Richard Sproat. 2015. 
“The Kestrel TTS text normalization system”, 
Natural Language Engineering, 21(3).

Also open-sourced as Sparrowhawk: 
https://github.com/google/sparrowhawk 

○ The approach we used 20 years ago at 
Bell Labs is still used today!

https://www.cambridge.org/core/journals/natural-language-engineering/article/the-kestrel-tts-text-normalization-system/F0C18A3F596B75D83B75C479E23795DA
https://github.com/google/sparrowhawk


Example of rules, written in Thrax*: Hindi phone numbers

parsed_number = (d.DIGIT util.ins_space)* d.DIGIT;

extension = m.extension ("" : " sil ͪवèतार sil ") parsed_number m.rec_sep;

country_code = m.country_code parsed_number m.rec_sep;

number_part = m.number_part parsed_number m.rec_sep;

number_parts = (number_part (("" : " sil ") number_part)*);

phone_number = Optimize[
  (country_code ("" : " sil "))?
  number_parts
  extension?
];

*http://openfst.org/twiki/bin/view/GRM/Thrax

http://openfst.org/twiki/bin/view/GRM/Thrax


How many rules are there?   

Language # lines of Thrax code

English 9,840

Russian 13,278

Icelandic 2,281

Hindi 4,527

Bangla 4,097

Finnish 9,145

Hungarian 3,220

Filipino (Tagalog) 4,546

Thai 7,085

Khmer 2,582



What about machine learning in text normalization?

● Some previous ML work at Google:
○ Abbreviation expansion (Roark & Sproat, 2014, ACL)
○ Letter sequence classification (Sproat & Hall, 2014, 

Interspeech)
○ Sentence-boundary detection
○ Homograph disambiguation (Gorman et al, forthcoming)

● But none of these treat the whole problem



Could we learn everything from data?

A a
baby baby
giraffe giraffe
is is
6ft six feet
tall tall
and and
weighs weighs
150lb one hundred fifty pounds
. sil

● Great simplicity: 
just need input text, 
and how it is 
spoken

● Similar to what 
(neural) Machine 
Translation does



Side note

● ASR/MT/TTS voices have had trainable 
systems for years
○ The point of moving to neural models is not so much 

simplicity as possible performance gains
● Text normalization has never been fully 

trainable. A neural approach allows for:
○ fully trainable system
○ ease of adaptation to new domains
○ possible performance gains once we get better data



Caveats

● NMT can rely on lots of found data: people 
translate text for a reason
○ No motivation to produce lots of verbalized text
○ (If you are thinking: what about aligned text and 

speech? I have a lot to say about that point…)
● ∴ we must create our own data, and we 

need approaches that work with the amount 
of data that can be reasonably hand-curated.



How much data is “reasonable”?

● 5-10 million tokens is not unreasonable to 
hand-curate.

● Seems like a lot … but actually we are well 
on the way to getting it.

● But what I report on here depends on 
normalizations produced by our current TTS 
text normalization system, Kestrel.



More caveats

● Neural methods work quite well overall
○ But they are prone “silly errors”, like reading

2mA   as   two million liters
● One approach is to constrain decoding with 

(finite-state) constraints



Outline of remainder of talk

● Datasets
● Baseline attention RNN model + results
● Improvements on the baseline

○ Multitask models w/ tokenization and 
classification

● Constraints and weak covering grammars:
● Future directions



Data

Data from English and Russian Wikipedia run 
through Kestrel

The data are open source: 
https://github.com/rwsproat/text-normalization-data.

We ran a Kaggle competition based on the data (more on that below)

Total # tokens Training Test

English 990M 10.5M 100K

Russian 260M 11.1M 100K

https://github.com/rwsproat/text-normalization-data
https://www.kaggle.com/c/text-normalization-challenge-english-language


A <self>
baby <self>
giraffe <self>
is <self>
6ft six feet
tall <self>
and <self>
Weighs <self>
150lb one hundred fifty pounds
. sil
-----------------------------------
NSA      n_letter s_letter a_letter
Williams у_trans и_trans л_trans ь_trans я_trans м_trans с_trans

Data format



В   <self>
1950 году       тысяча девятьсот пятидесятом году
окончил <self>
школу   <self>
профсоюзного    <self>
движения        <self>
в       <self>
Москве  <self>
.       sil

Data format



How data is presented to RNN

● Seq-to-seq model for each token in context
● Output vocabulary fairly limited: 1-2K words

I live at <norm> 123 </norm> King Ave .  <= Input:  chars
            one twenty three             <= Output: words



How data is presented to RNN

● Seq-to-seq model for each token in context
● Output vocabulary fairly limited: 1-2K words

I live at 123 <norm> King </norm> Ave .  <= Input:  chars
                     <self>              <= Output: words



How data is presented to RNN

● Seq-to-seq model for each token in context
● Output vocabulary fairly limited: 1-2K words

I live at 123 King <norm> Ave </norm> .  <= Input:  chars
                          avenue         <= Output: words



Baseline system
● seq2seq with attention (Bahdanau et al., 2014) 
● Embedding size: 256.
● BiRNN: 

○ GRU, 1 layer, 256 units × 2.
● Decoder RNN: 

○ GRU, 1 layer, 256 units.
● Larger models don’t seem to help.



Baseline results (100K test examples)



Silly errors: Complex examples the RNN gets right

221.049 km² → 

two hundred twenty one point o four nine square kilometers

24 March 1951 → 

twenty fourth of march nineteen fifty one

$42,100 → 

forty two thousand one hundred dollars.



Typical “silly” errors



Neural MT has the same issues

Input: I come from Tunisia.
Reference: チュニジアの出身です。

Chunisia no shusshindesu.
(I’m from Tunisia.)

System: ノルウェーの出身です。
Noruue- no shusshindesu.
(I’m from Norway.)

Philip Arthur, Graham Neubig, Satoshi Nakamura. 2016. Incorporating Discrete Translation Lexicons into Neural 
Machine Translation. In EMNLP.

“The use of continuous representations is a major advantage, allowing NMT to 
share statistical power between similar words (e.g. “dog” and “cat”) or contexts 
(e.g. “this is” and “that is”). However, this property also has a drawback in that 
NMT systems often mistranslate into words that seem natural in the context, 
but do not reflect the content of the source sentence.”



Sinhala silly errors

Sem. class Inp. tok. Correct Output from the RNN

MEASURE 54 g �රȅº පනÂ හතර සැතƦº පනÂ හතර
In output 54g 
became 54 miles

g - �රȅº 
miles - සැතƦº

MEASURE 8ms üĀත°පර අට Ýගාබþª අට
In output 8ms 
became 8GB

ms - üĀත°පර 
GB - Ýගාබþª 



The problem with silly errors

● Some mistakes are really bad:
   2mA → two million liters
● Some less so:
   $2.50 → two dollar fifty cent
● Guide the system away from the bad ones 

using grammatical constraints implemented 
as finite-state transducers (FSTs)



Silly errors and covering grammars

● The best way we have to counter silly errors 
is overgenerating covering grammars which 
constrain the decoding for some classes.
○ Crucially this depends on having a symbolic output
○ … which is why “end-to-end” TTS like Tacotron* or 

Char2Wav** will never work
● Two issues:

○ How to learn covering grammars
○ How to use covering grammars

*Wang et al. 2017. “Tacotron: Towards end-to-end speech synthesis.”
**Sotelo et al. 2017. “Char2Wav: End-to-end speech synthesis.”

https://arxiv.org/abs/1703.10135
https://mila.quebec/wp-content/uploads/2017/02/end-end-speech.pdf


Covering grammar constraints

● Guiding principle:
○ We don’t mind grammars … what we mind is 

spending massive resources developing grammars
● Key differences from Kestrel’s grammars:

○ Provides a set of possible verbalizations, rather than 
the verbalization for a given context

○ Are much easier to write
■ indeed many of them can be learned from small 

amounts of data



Starting point: learning numbers

● E.g.: read 123 as one hundred twenty three
● >70 languages with hand-built grammars
● If we know the meaning of number words:

○ twenty → 20  (i.e. 2 * 10^1)
○ hundred → 100 (i.e. 10^2)

● ...plus examples of complex number names:
○ one hundred twenty eight → 128

● ...then we should be able to infer a grammar



Number expression exotica (1/2)

Large powers of ten that are not powers of 1e3 (Khmer):

£Ǩំបួន ែសន        £Ǩំពិល មុឺន £Ǩំ Ǫន់
9 1e5 7 1e4 5 1e3
(+ (* 9 1e5) (* 7 1e4) (* 5 1e3)) = 975,000

Weak vigesimalism (French):

quatre- vingt- dix- sept
40        20     10 7
(+ (* 4 20) 10 7) = 97



Number expression exotica (2/2)

Creative use of zero (Mandarin):

萬 零 五 十

1e4 0 5 10
(+ 1e4 0 (* 5 10)) = 10,050

Halving (Welsh):

hanner cant
.5 100
(* .5 100) = 50



Universal grammar of numbers

Fortunately, there are limits to the variation. Following 
Hurford (1975) we view number expressions as simple 
arithmetic expressions with operators (and parentheses) 
elided.
The most common operations are addition and 
multiplication:
● dix-sept ‘17’ (lit. ‘ten seven’): addition
● quatre-vingt ‘80’ (lit. ‘four twenty’): multiplication



Cues to elided structure

Within a language, there may be systematic cues for 
recovering the elided arithmetic structure. E.g.:
● In English and French, an expression X Y is usually a 

product if X < Y and a sum otherwise
● In Malagasy, amby ‘rest’ separates two addends; 

otherwise, it’s a multiplicand



Universal factorization covering grammar

We first build an FST A-1 that evaluates arithmetic expressions; 
e.g., with(+ (* 4 20) 10 7)it produces 97. Then for a digit 
sequence d, define:

Γ(d) = πo(d ∘ A)

So Γ(97) might produce:
(+ 90 7)
(+ 80 10 7)
...



Verbalization grammar

We then make an FST M that deletes arithmetic markup, 
and define (for a lexical map L and a particular 
verbalization l):

Δ(l) = πi(M∘ L∘ l)
So Δ(4 20 10 7) might produce:

(+ 4 20 10 7)
(+ 4 20 (* 10 7))
...



Extracting syntactic rules

Then, given a digit sequence/number expression pair (d, l), 
the intersection of Γ(d) and Δ(l) contains the correct 
factorization of d. In most cases this will contain exactly one 
path. We can use this to extract syntactic rules for number 
expressions:

S → (7 | 90 | * | +)
* → (7 | 90) 1000
+ → 90 7



Putting it all together

We compile the language-specific grammar into a 
pushdown transducer, henceforth G. Then our final model 
is given by:

Ν(d) = πo(d∘ A∘ M∘ G ∘ L)
A : Language-universal factorization
M : Language-universal markup deletion
G   : Language-specific factorization
L : Language-specific verbalization



Two types of ambiguity (1/2)

1. Expressions which contain multiplication by 1 (as in one 
hundred) or addition with 0 (as in Mandarin) are 
inherently ambiguous as the 1 or 0 can attach in nearly 
any location: We simply stipulate that +0 has the highest 
possible attachment and that *1 has the lowest possible 
attachment.



Two types of ambiguity (2/2)

2. Numbers that contain “verbal palindromes” like two 
hundred two may have multiple equivalent parses:

(* (+ 2 100) 2) (* 2 (+ 100 2))
(+ (* 2 100) 2) (+ 2 (* 100 2))

While only one of these is “correct”, we can only know this 
by reference to the overall grammar. So we ignore these 
examples.



Inducing number name grammars

● A:  Language-independent FST that maps 
between digit sequences to possible 
arithmetic factorizations (sums of products of 
bases)
○ Derived from knowledge of how languages may 

factorize numbers
● L:   Language-dependent FST that maps 

from factorizations to words



● Given a set of training pairs ...
     I        O
  22       twenty two

  302      three hundred two

● … grammar can be  extracted from:

           ᶢoutput[I ○ A] ∩ ᶢinput[L ○ O]

Inducing language-particular number name grammars



                      97                  

        

       

                                 

              

            quatre vingt dix sept

                            

Inducing number name grammars

I

O
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        (+ 90 7), (+ 80 10 7), (+ (* 4 20) 10 7) … 

       

                                 

              

            quatre vingt dix sept

                            

Inducing number name grammars
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        (+ 90 7), (+ 80 10 7), (+ (* 4 20) 10 7) … 

       

                                 

              4      20      10   7

            quatre vingt dix sept

                            

Inducing number name grammars
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        (+ 90 7), (+ 80 10 7), (+ (* 4 20) 10 7) … 

       

    (+ (* 4 20) 10 7), (+ 4 20 10 7), (+ 4 20 (* 10 7)) …                              

              4      20      10   7

            quatre vingt dix sept

                            

Inducing number name grammars

I
A

L
O



                      97

        (+ 90 7), (+ 80 10 7), (+ (* 4 20) 10 7) … 

       

    (+ (* 4 20) 10 7), (+ 4 20 10 7), (+ 4 20 (* 10 7)) …                              

              4      20      10   7

            quatre vingt dix sept

                            

Inducing number name grammars

I
A

∩

L
O



● We extract syntactic rules from the intersection, 
which usually contains just one analysis:

    S → (7 | 10 | 4 | 20 | * | +)

* → 4 20
+ → * 10 7

● Resulting grammar G is combined as follows:

                      A ○ G ○L

Inducing number name grammars



Two remaining complexities (1/2)

We may have seen thirteen thousand and fourteen million 
but never fourteen thousand or thirteen million; in such a 
case, G will be deficient. To better generalize, we introduce 
“pre-terminals” over numerals:

... 
teen → (11 | 12 | 13 | ... 19)
power_of_ten → (1000 | 10000 | ... )
...

 



Two remaining complexities (2/2)

To resolve ambiguities in L (where needed) we compose Ν 
with a language model trained on verbalizations. This 
knows that in Russian we say две тысячи and not два 
тысяч, etc. 
Training this model does not require any parallel text.

 



Benefits

● Learns with about 300 examples
○ Nothing like that is possible with an RNN ʙ

● Currently using it to develop number name 
grammars for 200 languages (about 40 done 
so far)

Kyle Gorman and Richard Sproat, 2016, “Minimally supervised models 
for number name normalization,” Transactions of the Association for 
Computational Linguistics 4: 507-519.

http://wellformedness.com/papers/gorman-sproat-2016.pdf
http://wellformedness.com/papers/gorman-sproat-2016.pdf


Results



What happens with an RNN?



Covering grammars for general semiotic classes

Jan. 4, 1999

date|month:1|day:4|year:1999|           

january the fourth nineteen ninety nine



Covering grammars for general semiotic classes

Jan. 4, 1999

date|month:1|day:4|year:1999|           ← 

january the fourth nineteen ninety nine Assume we have a tokenizer that maps to this representation



Covering grammars for general semiotic classes

date|month:1|day:4|year:1999|

january the fourth nineteen ninety nine

C: Cardinal numbers 

Y: Year readings

O: Ordinal numbers

M: Markup (“date|”, “day:”, “year:” …)

L: Lexicon of month names (“month:1” = “january” …)

E: costly Levenshtein edit distance



Thrax grammar fragment



Definition of components

● Define T[class] = ε:<class> class ε:</class>
● Define D = tags:ε
● Define Map = (T[C] ∪ T[Y] ∪ T[O] ∪ T[M] ∪ T[L] ∪ T[E])*
● For input i and output o:

○ Define P = ShortestPath[[i ◦ Map] ◦ πinput[D ◦ o]]                                         



ε <markup>
date| ε
ε </markup>
ε <month>
month:1 January
ε </month>
ε <markup>
|day: ε
ε </markup>
ε <edit>
ε  the
ε </edit>
ε <ordinal>
4 fourth
ε </ordinal>
ε <markup> 
|year: ε
ε </markup> 
ε  <year>
1999 nineteen ninety nine
ε </year>
ε <markup> 
| ε
ε </markup>



ε <markup>
date| ε
ε </markup>
ε <month>
month:1 January
ε </month>
ε <markup>
|day: ε
ε </markup>
ε <edit>
ε  the
ε </edit>
ε <ordinal>
4 fourth
ε </ordinal>
ε <markup> 
|year: ε
ε </markup> 
ε  <year>
1999 nineteen ninety nine
ε </year>
ε <markup> 
| ε
ε </markup>

● Replace tagged regions with their class 
in the path.



ε <markup>
date| ε
ε </markup>
ε <month>
       MONTH
ε </month>
ε <markup>
|day: ε
ε </markup>
ε <edit>
ε  the
ε </edit>
ε <ordinal>
       ORDINAL
ε </ordinal>
ε <markup> 
|year: ε
ε </markup> 
ε  <year>
       YEAR
ε </year>
ε <markup> 
| ε
ε </markup>

● Replace tagged regions with their class 
in the path.

● Remove markup



date| ε

       MONTH

|day: ε

ε  the

       ORDINAL

|year: ε

       YEAR

| ε

● Replace tagged regions with their class 
in the path.

● Remove markup



date| ε
      MONTH
|day: ε
ε  the
      ORDINAL
|year: ε
       YEAR
| ε

● Replace tagged regions with their class 
in the path.

● Remove markup
● Compute the union of all such paths 

(possibly dropping paths that do not 
occur a minimum # of times)

● FstReplace the classes like MONTH, 
ORDINAL, with the corresponding FSTs 
that compute the map

● The result will be the covering grammar 
verbalizer



Error reduction: eval on Kaggle* data, baseline system

*See below



Some details on Russian

Most corrected errors (97) were silly errors:

❖ 14-05-2013
➢ четырнадцатым мая две тысячи тринадцатого года
➢ (четырнадцатым марта две тысячи тринадцатого года)
➢ fourteenth of May (March) of the two thousand thirteenth year

❖ 11 апреля 678 года
➢ одиннадцатое апреля шестьсот семьдесят восьмого года
➢ (одиннадцатое апреля тысяча шестьсот семьдесят восьмого года)
➢ eleventh of April of the (one thousand) six hundred seventy eighth year

❖ 100 mm
➢ сто миллиметров
➢ (сто километров)
➢ one hundred millimeters (kilometers)



Hard constraints 

● Basic idea: Constrain decoding to a smaller subset using on-the-fly intersection.

...



● Train without constraint; decode with constraint.
● Mask then softmax (i.e. locally normalize among allowed words) is 

wrong.
○ Distorts ranking of paths.
○ Consider: “a b c” vs “a B c” when,

■ P(a b c </s>) = P(a b c) × P(</s> | a b c) = 0.4 × 0.9
■ P(a B c </s>) = P(a B c) × P(</s> | a B c) = 0.4 × 0.5
■ i.e. P(a b c </s>) > P(a B c </s>)

○ Suppose the constraint only allows “a b c” or “a B c”. Mask then 
softmax gives,
■ Q(a b c) = P(a b c) / (P(a b c) + P(a B c)) = 0.5 = Q(a B c)
■ Q(</s> | a b c) = Q(</s> | a B c) = 1
■ => Q(a b c </s>) = Q(a B c </s>)!

● Softmax then mask is the right thing to do.

Two flavors of constraining



● Train with constraint; decode with constraint.
● We can only mask then softmax.

○ Because global normalization in training is infeasible.
● Saves output layer parameters (16.7% 

reduction in ALL error rate)

Two flavors of constraining



Implementation details

● Hide details of neural modeling under an Acceptor interface.
○ Acceptor: deterministic weighted (non-finite) automaton.
○ start(), next(), logits(), gather()

● Build training/decoding logic on top of generic Acceptor interface.
○ Easily adapted for any sequence problems that can be expressed as an 

Acceptor.
■ Taggers
■ Shift-reduce parsers

● Add constraint as on-the-fly intersection.

acceptor = ...
hyps = beam_search_decode(acceptor)
loss = lm_loss(acceptor, refs)

acceptor = ...
constraint = ...
acceptor = ConstrainedAcceptor(acceptor, constraint)
hyps = beam_search_decode(acceptor)
loss = lm_loss(acceptor, refs)



Implications and future directions

● Neural models work well overall
● … but there are still significant challenges in 

the form of “silly errors”
○ Best solution (thus far) is to provide finite-state 

constraints (which can be learned in many cases)
○ This solution depends on the fact that we are dealing 

with symbolic output:
■ “End-to-end” TTS proposals like Tacotron or 

char2wav have no solution to this problem



Implications and future directions

● Inducing FS constraints remains a challenge
○ Even more important for low-resource languages

● One topic I haven’t specifically addressed:
○ Reordering: $1.50 → one dollar fifty (cents)
○ These can be handled to some extent with 

pushdown transducers but these are limited (e.g. 
ISO dates: 2000-05-06→May sixth two thousand)

○ We are currently investigating a neural version of 
ITG’s for this purpose


