Induction of Finite-State Covering Grammars for Text Normalization

Richard Sproat (Google, New York)

joint work with Ke Wu, Hao Zhang, Kyle Gorman, Felix Stahlberg, Xiaochang Peng, Brian Roark

CLASP U Gothenburg May 16, 2018

Induction of Finite-State Covering Grammars for Text Normalization

Richard Sproat (Google, New York)

joint work with Ke Wu, Hao Zhang, Kyle Gorman, Felix Stahlberg, Xiaochang Peng, Brian Roark

CLASP U Gothenburg May 16, 2018

Outline

- What is text normalization?
- What is the "state of the art"?
- A suite of neural solutions and challenges
 - Finite-state covering grammars
- Implications and future directions

Definition: Transforming text so that the information in it is presented in some canonical form for a downstream application

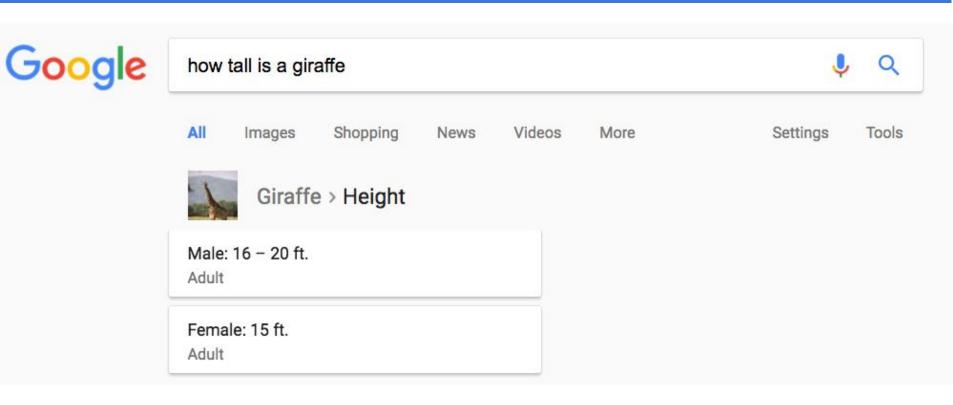
Corollary: What counts as normalization depends upon the application

Linguistic standardization: Converting non-standard ways of writing things into a standard written form:

Input	Normalized form
coooollilli	cool
cu l8r	see you later
udaman	you are the man (?)

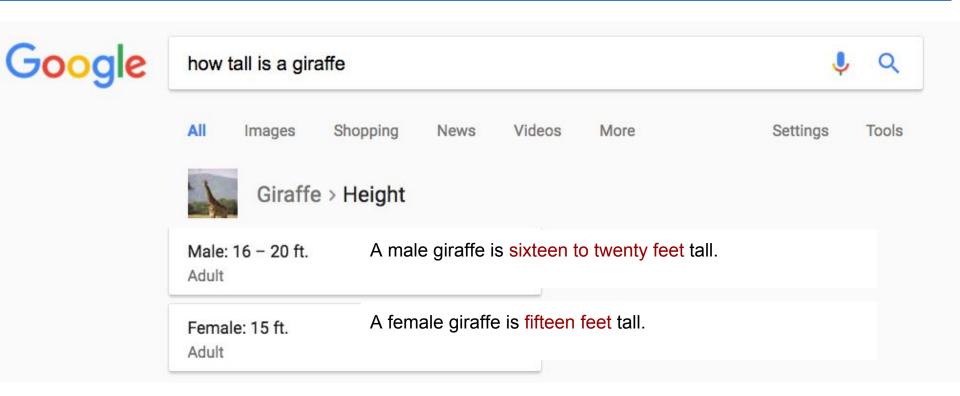
Information extraction/retrieval: Converting written representations of entities (e.g. dates) into a canonical format:

Input	Normalized form
November 11	11/11
the 11th of Nov.	11/11
November the eleventh	11/11



Speech applications: Converting "non-standard words" (NSWs) into a lexical representation of how people would *say* them:

Input	Normalized form
11/11	November the eleventh
2.5 cm	two point five centimeters
₹500 note	five hundred rupee note



Text normalization and text generation

Text normalization and text generation

Somebody has to produce that red text - whether it's done as part of generation or passed to TTS to expand.

- The problem is that there are a great many classes of cases
- And languages with heavy inflectional morphology present a particular challenge

A bit of terminology

Text-to-Speech Synthesis Paul Taylor Paul Taylor, in his textbook on *Text-to-Speech Synthesis* (2009) refers to things like **6 ft**, **150 lb**, or **3:30** as instances of *semiotic classes*

Taxonomy of semiotic classes

(C)			
alpha	EXPN LSEQ ASWD MSPL	abbreviation letter sequence read as word misspelling	adv, N.Y, mph, gov't CIA, D.C, CDs CAT, proper names geogaphy
N U M B E R S	NUM NORD NTEL NDIG NIDE NADDR NZIP NTIME NDATE NYER MONEY BMONEY PRCT	number (cardinal) number (ordinal) telephone (or part of) number as digits identifier number as street address zip code or PO Box a (compound) time a (compound) time a (compound) date year(s) money (US or other) money tr/m/billions percentage	12, 45, 1/2, 0.6 May 7, 3rd, Bill Gates III 212 555-4523 Room 101 747, 386, 15, pc110, 3A 5000 Pennsylvania, 4523 Forbes 91020 3.20, 11:45 2/2/99, 14/03/87 (or US) 03/14/87 1998, 80s, 1900s, 2003 \$3.45, HK\$300, Y20,000, \$200K \$3.45 billion 75%, 3.4%
	SPLT	mixed or "split"	<i>WS99, x220, 2-car</i> (see also SLNT and PUNC examples)
M I	SLNT PUNC	not spoken, word boundary not spoken,	word boundary or emphasis character: M.bath, KENT*RLTY, _really_ non-standard punctuation: "***" in
S C	FNSP URL NONE	phrase boundary funny spelling url, pathname or email should be ignored	\$99,9K***Whites, "" in DECIDEYear slloooooww, sh*t http://apj.co.uk, /usr/local, phj@tpt.com ascii art, formatting junk

From Sproat, R. et al (2001), "Normalization of non-standard words." *Computer Speech and Language.*

Taxonomy of semiotic classes

EXPNabbreviationadv, N.Y, mph, gov'talphaLSEQletter sequenceCIA, D.C, CDsASWDread as wordCAT, proper namesMSPLmisspellinggeogaphyNUMnumber (cardinal)12, 45, 1/2, 0.6NORDnumber (ordinal)May 7, 3rd, Bill Gates IIINTELtelephone (or part of)212 555-4523NDIGnumber as digitsRoom 101NNIDEidentifier747, 386, I5, pc110, 3A1020UNADDRnumber as street addressMNZIPzip code or PO Box9102091020BNTIMEa (compound) time3.20, 11:451998, 80s, 1900s, 2003SMONEYmoney (US or other)BMONEYmoney (US or other)BMONEYmoney tr/m/billionsPRCTpercentage75%, 3.4%SPLTmixed or "split"	- 10-			
NORDnumber (ordinal)May 7, 3rd, Bill Gates IIINTELtelephone (or part of)212 555-4523NDIGnumber as digitsRoom 101NNIDEidentifier747, 386, 15, pc110, 3AUNADDRnumber as street address5000 Pennsylvania, 4523 ForbesMNZIPzip code or PO Box91020BNTIMEa (compound) time3·20, 11:45ENDATEa (compound) date2/2/99, 14/03/87 (or US) 03/14/87RNYERyear(s)1998, 80s, 1900s, 2003SMONEYmoney (US or other)\$3·45, HK\$300, Y20,000, \$200KBMONEYpercentage75%, 3·4%	alpha	LSEQ ASWD	letter sequence read as word	CIA, D.C, CDs CAT, proper names
SPLT mixed or "split" WS99, x220, 2-car	U M B E R	NORD NTEL NDIG NIDE NADDR NZIP NTIME NDATE NDATE NYER MONEY BMONEY	number (ordinal) telephone (or part of) number as digits identifier number as street address zip code or PO Box a (compound) time a (compound) date year(s) money (US or other) money tr/m/billions	May 7, 3rd, Bill Gates III 212 555-4523 Room 101 747, 386, 15, pc110, 3A 5000 Pennsylvania, 4523 Forbes 91020 3.20, 11:45 2/2/99, 14/03/87 (or US) 03/14/87 1998, 80s, 1900s, 2003 \$3.45, HK\$300, Y20,000, \$200K \$3.45 billion
SLNTnot spoken, word boundary(see also SLNT and PUNC examples) word boundary or emphasis character: M.bath, KENT*RLTY, _really_Mword boundaryM.bath, KENT*RLTY, _really_IPUNCnot spoken, phrase boundarynon-standard punctuation: "***" in \$99,9K***Whites, "" in DECIDE Year slloooooww, sh*t URLCFNSP URLfunny spelling url, pathname or emailslloooooww, sh*t http://apj.co.uk, /usr/local, phj@tpt.com	I S	SLNT PUNC FNSP URL	word boundary not spoken, phrase boundary funny spelling url, pathname or email	(see also SLNT and PUNC examples) word boundary or emphasis character: <i>M.bath, KENT*RLTY, _really</i> non-standard punctuation: "***" in \$99,9K***Whites, "" in DECIDEYear slloooooww, sh*t http://apj.co.uk, /usr/local, phj@tpt.com
NONE should be ignored ascii art, formatting junk		NONE	snould be ignored	asen art, tormatting junk

Some other cases:

- Seasons/episodes S02E02
- Ratings: 4.5/5, **** (four stars)
- Chess notation: Nc6, Rxc6
- Vision: 20/20

• ...

Sproat & van Esch, 2017, "An Expanded Taxonomy of Semiotic Classes for Text Normalization", *Interspeech*

Sometimes verbalization rules can be very specific

3:03 세시 삼분 se si sam bun three hour three minute

[native vs Sino-Korean]

Sometimes verbalization rules can be very specific

3:03 세시 삼분 se si sam bun three hour three minute

[native vs Sino-Korean]

조폭마누라 3 *jopok manura 3* My Wife is a Gangster 3

Sometimes verbalization rules can be very specific

세시 삼분 se si sam bun [native vs Sino-Korean] three hour three minute 조폭마누라 3 jopok manura 3 My Wife is a Gangster 3

3:03

 $3 \rightarrow \angle 2$ seuri [English] three

Statement of problem: text norm for speech applications

"Speak" text like the left column as in the right column:

A	a
baby	baby
giraffe	giraffe
is	is
6ft	six feet
tall	tall
and	and
weighs	weighs
1501b	one hundred fifty pounds
•	sil

Statement of problem: text norm for speech applications

"Speak" text like the left column as in the right column:

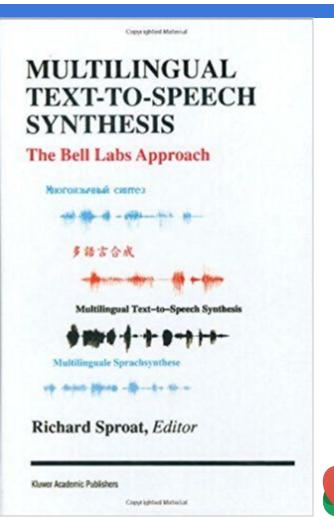
A baby giraffe	a baby giraffe	On 11/11/2016 £1	on november eleventh twenty sixteen one pound
is	is	was	was
6ft	six feet	worth	worth
tall	tall	\$1.26	one dollar and twenty six cents
and	and	•	sil
weighs	weighs		
1501b	one hundred and	l fifty pound	S
•	sil		

Statement of problem: text norm for speech applications

"Speak" text like the left column as in the right column:

A baby giraffe	a baby giraffe	On 11/11/2016 £1	on november eleventh twenty sixteen one pound
is	is	was	was
6ft	six feet	worth	worth
tall	tall	\$1.26	one dollar and twenty six cents
and	and	•	sil
weighs	weighs		
1501b	one hundred and	d fifty pound	ls
	sil		

Between 7% and 9% of tokens in Wikipedia require some normalization.



The state of the art for TTS text norm ... since the mid 1990's

- Carefully crafted hand-built rules compiled into (weighted) finite-state transducers**
 - The approach we used 20 years ago at Bell Labs is still used today!

**Peter Ebden and Richard Sproat. 2015. "<u>The Kestrel TTS text normalization system</u>", *Natural Language Engineering*, 21(3).

Also open-sourced as Sparrowhawk: <u>https://github.com/google/sparrowhawk</u>

Example of rules, written in Thrax*: Hindi phone numbers

parsed number = (d.DIGIT util.ins space) * d.DIGIT;

extension = m.extension ("" : " sil विस्तार sil ") parsed number m.rec sep;

country code = m.country code parsed number m.rec sep;

number part = m.number part parsed number m.rec sep;

```
number parts = (number part (("" : " sil ") number part)*);
```

```
phone_number = Optimize[
  (country_code ("" : " sil "))?
  number_parts
  extension?
```

```
];
```

*http://openfst.org/twiki/bin/view/GRM/Thrax

How many rules are there?

Language	# lines of Thrax code
English	9,840
Russian	13,278
Icelandic	2,281
Hindi	4,527
Bangla	4,097
Finnish	9,145
Hungarian	3,220
Filipino (Tagalog)	4,546
Thai	7,085
Khmer	2,582

- Some previous ML work at Google:
 - Abbreviation expansion (Roark & Sproat, 2014, ACL)
 - Letter sequence classification (Sproat & Hall, 2014, Interspeech)
 - Sentence-boundary detection
 - Homograph disambiguation (Gorman et al, forthcoming)
- But none of these treat the whole problem

А	a
baby	baby
giraffe	giraffe
is	is
6ft	six feet
tall	tall
and	and
weighs	weighs
1501b	one hundred fifty pounds
•	sil

- Great simplicity: just need input text, and how it is spoken
- Similar to what (neural) Machine Translation does

- ASR/MT/TTS voices have had trainable systems for years
 - The point of moving to neural models is not so much simplicity as possible performance gains
- Text normalization has never been fully trainable. A neural approach allows for:
 - fully trainable system
 - ease of adaptation to new domains
 - possible performance gains once we get better data

- NMT can rely on lots of *found* data: people translate text for a reason
 - No motivation to produce lots of verbalized text
 - (If you are thinking: what about aligned text and speech? I have a lot to say about that point...)
- ... we must create our own data, and we need approaches that work with the amount of data that can be reasonably hand-curated.

- 5-10 million tokens is not unreasonable to hand-curate.
- Seems like a lot ... but actually we are well on the way to getting it.
- But what I report on here depends on normalizations produced by our current TTS text normalization system, Kestrel.

Neural methods work quite well overall
 But they are prone "silly errors", like reading

2mA **as** two million liters

• One approach is to constrain decoding with (finite-state) constraints

Outline of remainder of talk

- Datasets
- Baseline attention RNN model + results
- Improvements on the baseline
 - Multitask models w/ tokenization and classification
- Constraints and weak covering grammars:
- Future directions

Data from English and Russian Wikipedia run through Kestrel

	Total # tokens	Training	Test
English	990M	10.5M	100K
Russian	260M	11.1M	100K

The data are open source:

https://github.com/rwsproat/text-normalization-data.

We ran a Kaggle competition based on the data (more on that below)

Data format

A	<self></self>
baby	<self></self>
giraffe	<self></self>
is	<self></self>
6ft	six feet
tall	<self></self>
and	<self></self>
Weighs	<self></self>
150lb	one hundred fifty pounds
•	sil

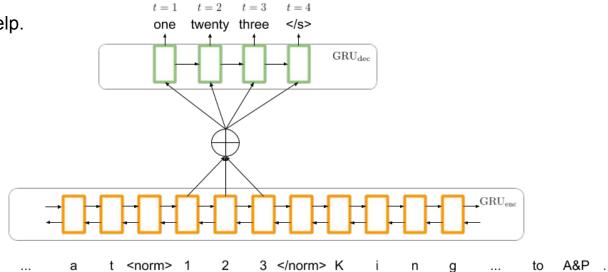
NSA n_letter s_letter a_letter Williams y_trans и_trans л_trans ь_trans я_trans м_trans c_trans

Data format

В	<self></self>
1950 году	тысяча девятьсот пятидесятом году
окончил	<self></self>
школу	<self></self>
профсоюзного	<self></self>
движения	<self></self>
В	<self></self>
Москве	<self></self>
•	sil

- Seq-to-seq model for each token in context
- Output vocabulary fairly limited: 1-2K words

- Seq-to-seq model for each token in context
- Output vocabulary fairly limited: 1-2K words



- Seq-to-seq model for each token in context
- Output vocabulary fairly limited: 1-2K words

Baseline system

- seq2seq with attention (Bahdanau et al., 2014)
- Embedding size: 256.
- BiRNN:
 - GRU, 1 layer, 256 units × 2.
- Decoder RNN:
 - GRU, 1 layer, 256 units.
- Larger models don't seem to help.

Baseline results (100K test examples)

	English		Russian	
ALL	92416	0.996	93184	0.994
PLAIN	68029	0.997	60747	0.999
PUNCT	17726	1.000	20263	1.000
DATE	2808	0.974	1495	0.977
TRANS	_		4103	0.942
LETTERS	1404	0.974	1839	0.991
CARDINAL	1067	0.991	2387	0.954
VERBATIM	894	0.977	1298	1.000
MEASURE	142	0.958	409	0.927
ORDINAL	103	0.971	427	0.981
DECIMAL	89	1.000	60	0.917
ELECTRONIC	21	0.952	2	1.000
DIGIT	37	0.703	16	1.000
MONEY	36	0.972	19	0.895
FRACTION	13	0.846	23	0.739
TIME	8	0.625	8	0.750
ADDRESS	3	1.000	<u></u> 40	<u> </u>

221.049 km² \rightarrow

two hundred twenty one point o four nine square kilometers

24 March 1951 \rightarrow twenty fourth of march nineteen fifty one

 $$42,100 \rightarrow$

forty two thousand one hundred dollars.

Input	Correct	Prediction
2 mA	two milliamperes	two million liters
11/10/2008	the tenth of november two thousand eight	the tenth of october two thousand eight
1/2 cc	half a c c	one minute c c
18:00:00Z	eighteen hours zero minutes and zero seconds z	eighteen hundred cubic minutes
55th	fifty fifth	five fifth
750 вольт	семисот пятидесяти вольт	семьсот пятьдесят гектаров
750 volts	seven hundred fifty volts	seven hundred fifty hectares
70 градусами.	семьюдесятью градусами	семьюдесятью граммов
70 degrees	seventy degrees	seventy grams
16 ГБ	шестнадцати гигабайтов	шестнадцати герц
16 GB	sixteen gigabytes	sixteen hertz

Neural MT has the same issues

Input:	I come from Tunisia.
Reference:	チュニジア の出身です。
	Chunisia no shusshindesu.
	(I'm from Tunisia.)
System:	<mark>ノルウェー</mark> の出身です。
	Noruue- no shusshindesu.
	(I'm from Norway.)

Philip Arthur, Graham Neubig, Satoshi Nakamura. 2016. Incorporating Discrete Translation Lexicons into Neural Machine Translation. In *EMNLP*.

"The use of continuous representations is a major advantage, allowing NMT to share statistical power between similar words (e.g. "dog" and "cat") or contexts (e.g. "this is" and "that is"). However, this property also has a drawback in that NMT systems often mistranslate into words that seem natural in the context, but do not reflect the content of the source sentence."

Sinhala silly errors

Sem. class Inp. tok. Correct Output from the RNN g - ග්රෑම් In output 54g ග්රෑම් පනස් හතර සැතපුම් පනස් හතර became 54 miles miles - සැතපුම් MEASURE 54 g ms - මිලිතත්පර In output 8ms GB - ගිගාබයිට් මිලිතත්පර අට ගිගාබයිට් අට MEASURE 8ms became 8GB

- Some mistakes are really bad:
 - $2mA \rightarrow two$ million liters
- Some less so:
 - $$2.50 \rightarrow two dollar fifty cent$
- Guide the system away from the bad ones using grammatical constraints implemented as finite-state transducers (FSTs)

- The best way we have to counter silly errors is *overgenerating covering grammars* which constrain the decoding for some classes.
 - Crucially this depends on having a *symbolic* output
 - ... which is why "end-to-end" TTS like Tacotron* or Char2Wav** will never work
- Two issues:
 - How to learn covering grammars
 - How to use covering grammars

*Wang et al. 2017. <u>"Tacotron: Towards end-to-end speech synthesis."</u> **Sotelo et al. 2017. <u>"Char2Wav: End-to-end speech synthesis."</u>

- Guiding principle:
 - We don't mind grammars ... what we mind is spending massive resources developing grammars
- Key differences from Kestrel's grammars:
 - Provides a set of *possible* verbalizations, rather than the verbalization for a given context
 - Are much easier to write
 - indeed many of them can be learned from small amounts of data

- E.g.: read 123 as one hundred twenty three
- >70 languages with hand-built grammars
- If we know the meaning of number words:
 - *twenty* \rightarrow 20 (i.e. 2 * 10^1)
 - hundred \rightarrow 100 (i.e. 10²)
- ...plus examples of complex number names:
 - one hundred twenty eight \rightarrow 128
- ...then we should be able to infer a grammar

Large powers of ten that are not powers of 1e3 (Khmer):

Weak vigesimalism (French):

quatre-vingt-dix-sept4020107(+(*420)107)=97

Creative use of zero (Mandarin):

萬零五十 1e40510 (+ 1e40(*510)) = 10,050

Halving (Welsh):

hanner cant .5 100 (* .5 100) = 50

Fortunately, there are limits to the variation. Following Hurford (1975) we view number expressions as simple arithmetic expressions with operators (and parentheses) elided.

The most common operations are addition and multiplication:

- *dix-sept* '17' (lit. 'ten seven'): addition
- quatre-vingt '80' (lit. 'four twenty'): multiplication

Within a language, there may be systematic cues for recovering the elided arithmetic structure. E.g.:

- In English and French, an expression X Y is usually a product if X < Y and a sum otherwise
- In Malagasy, *amby* 'rest' separates two addends; otherwise, it's a multiplicand

We first build an FST A^{-1} that evaluates arithmetic expressions; e.g., with (+ (* 4 20) 10 7) it produces 97. Then for a digit sequence *d*, define:

$$\Gamma(d) = \pi_o(d \circ A)$$

So Γ(97) might produce:

We then make an FST *M* that deletes arithmetic markup, and define (for a lexical map *L* and a particular verbalization *I*):

$$\Delta(I) = \pi_i (M \circ L \circ I)$$

So $\Delta(4 \ 20 \ 10 \ 7)$ might produce:
 $(+ \ 4 \ 20 \ 10 \ 7)$
 $(+ \ 4 \ 20 \ (* \ 10 \ 7))$

Then, given a digit sequence/number expression pair (*d*, *l*), the intersection of $\Gamma(d)$ and $\Delta(l)$ contains the correct factorization of *d*. In most cases this will contain exactly one path. We can use this to extract syntactic rules for number expressions:

$$S \rightarrow (7 | 90 | * | +) * \rightarrow (7 | 90) 1000 + \rightarrow 90 7$$

We compile the language-specific grammar into a *pushdown transducer*, henceforth *G*. Then our final model is given by:

$$N(d) = \pi_o(d \circ A \circ M \circ G \circ L)$$

- A : Language-universal factorization
- *M* : Language-universal markup deletion
- G : Language-specific factorization
- L : Language-specific verbalization

Expressions which contain multiplication by 1 (as in one hundred) or addition with 0 (as in Mandarin) are inherently ambiguous as the 1 or 0 can attach in nearly any location: We simply stipulate that +0 has the highest possible attachment and that *1 has the lowest possible attachment.

2. Numbers that contain "verbal palindromes" like *two hundred two* may have multiple equivalent parses:
(* (+ 2 100) 2) (* 2 (+ 100 2))
(+ (* 2 100) 2) (+ 2 (* 100 2))
While only one of these is "correct", we can only know this

by reference to the overall grammar. So we ignore these examples.

- A: Language-independent FST that maps between digit sequences to possible arithmetic factorizations (sums of products of bases)
 - Derived from knowledge of how languages may factorize numbers
- *L*: Language-dependent FST that maps from factorizations to words

Inducing language-particular number name grammars

- Given a set of training pairs ...
 - $\mathcal{J} \qquad O$
 - 22 twenty two
 - 302 three hundred two
- ... grammar can be extracted from:

$$\pi_{\textit{output}}[\mathcal{I} \circ \mathcal{A}] \cap \pi_{\textit{input}}[\mathcal{L} \circ \mathcal{O}]$$

Inducing number name grammars

J

97

quatre vingt dix sept

Inducing number name grammars

 \mathcal{J} \mathcal{A}

97

(+ 90 7), (+ 80 10 7), (+ (* 4 20) 10 7) ...

quatre vingt dix sept

Inducing number name grammars

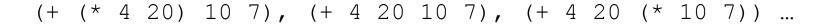
 \mathcal{J}


L

97

(+ 90 7), (+ 80 10 7), (+ (* 4 20) 10 7) ...

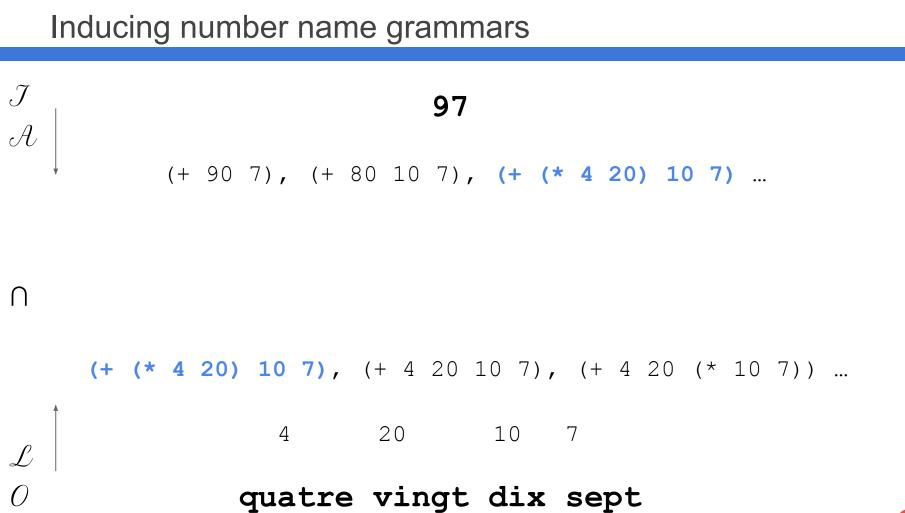
4 20 10 7 quatre vingt dix sept



 \mathcal{J} \mathcal{A}

L

(+ 90 7), (+ 80 10 7), (+ (* 4 20) 10 7) ...


97

4 20 10 7

quatre vingt dix sept

- We extract syntactic rules from the intersection, which usually contains just one analysis:
 - $S \rightarrow (7 \mid 10 \mid 4 \mid 20 \mid * \mid +)$
 - ***** → 4 20
 - + → * 10 7
- Resulting grammar \mathcal{G} is combined as follows:

 $\mathcal{A} \circ \mathcal{G} \circ \mathcal{L}$

We may have seen *thirteen thousand* and *fourteen million* but never *fourteen thousand* or *thirteen million*; in such a case, *G* will be deficient. To better generalize, we introduce "pre-terminals" over numerals:

> teen \rightarrow (11 | 12 | 13 | ... 19) power_of_ten \rightarrow (1000 | 10000 | ...)

To resolve ambiguities in *L* (where needed) we compose N with a language model trained on verbalizations. This knows that in Russian we say две тысячи and not два тысяч, etc.

Training this model does not require any parallel text.

- Learns with about 300 examples
 - Nothing like that is possible with an RNN
- Currently using it to develop number name grammars for 200 languages (about 40 done so far)

Kyle Gorman and Richard Sproat, 2016, "<u>Minimally supervised models</u> for number name normalization," *Transactions of the Association for Computational Linguistics* 4: 507-519.

Results

Locale	Training size	Num. acc.	Morph. acc.	Overlap
eng_us	9,000	1.000	1.000	0%
	300	1.000	1.000	< 1%
kat_ge	9,000	1.000	1.000	0%
	300	1.000	1.000	< 1%
	9,000	1.000	1.000	0%
khm_kh	300	1.000	1.000	< 1%
rus_ru	28,000	1.000	1.000	56%
	9,000	1.000	0.998	0%
	300	1.000	0.998	< 1%

Training size	LSTM Acc.	Attention Acc.	Overlap
28,000	0.999	1.000	56%
9,000	0.994	1.000	0%
300	< 0.001	< 0.001	< 1%

Covering grammars for general semiotic classes

Jan. 4, 1999

date|month:1|day:4|year:1999|

january the fourth nineteen ninety nine

Covering grammars for general semiotic classes

Jan. 4, 1999

Covering grammars for general semiotic classes

date|month:1|day:4|year:1999|

january the fourth nineteen ninety nine

C: Cardinal numbers

Y: Year readings

O: Ordinal numbers

M: Markup ("date|", "day:", "year:" ...)

L: Lexicon of month names ("month:1" = "january" ...)

E: costly Levenshtein edit distance


```
import 'en_year.grm' as y;
import 'number.grm' as n;
export CARDINAL = Optimize[RmWeight[n.CARDINAL_NUMBER_NAME]];
export MONTHS = Optimize[StringFile[
    'en_months.tsv']];
export ORDINAL = Optimize[RmWeight[
    n.ORDINAL_NUMBER_NAME_WITHOUT_OVERT_MARKING]];
export YEAR = y.YEAR;
```


Definition of components

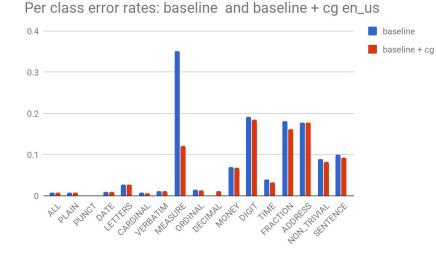
- Define *T*[*class*] = ε:<*class*> *class* ε:</*class*>
- Define $D = tags:\varepsilon$
- Define *Map* = (*T*[*C*] *U T*[*Y*] *U T*[*O*] *U T*[*M*] *U T*[*L*] *U T*[*E*])*
- For input *i* and output *o*:
 - Define $P = ShortestPath[[i \circ Map] \circ \pi_{input}[D \circ o]]$

ε date	<markup> ٤</markup>
۲۵۵۵۲ ٤	
8	<month></month>
month:1	January
3	
3	<markup></markup>
day:	8
3	
3	<edit></edit>
3	the
3	
3	<ordinal></ordinal>
4	fourth
3	
3	<markup></markup>
year:	3
3	
3	<year></year>
1999	nineteen ninety nine
3	
3	<markup></markup>
I	3
3	

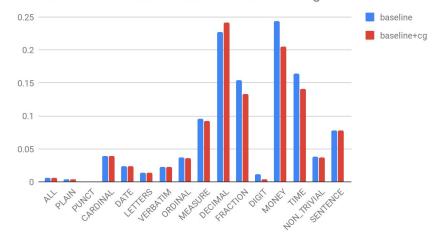
ε date	<markup> ε</markup>	
8		
3	<month></month>	
month:1	January	 Replace tagged regions with their class
3		in the path.
3	<markup></markup>	
day:	3	
3		
3	<edit></edit>	
3	the	
3		
3	<ordinal></ordinal>	
4	fourth	
3		
3	<markup></markup>	
year:	3	
3		
3	<year></year>	
1999	nineteen ninety nine	
3		
3	<markup></markup>	
	3	
3		

3	<markup></markup>	
date	3	
3		
3	<month></month>	
MO	NTH	 Replace tagged regions with their class
3		in the path.
3	<markup></markup>	Remove markup
day:	3	·
3		
3	<edit></edit>	
3	the	
3		
3	<ordinal></ordinal>	
ORI	DINAL	
3		
3	<markup></markup>	
year:	3	
3		
3	<year></year>	
YEA	-	
3		
3	<markup></markup>	
1	3	
5		

date	3	
MON	ІТН	 Replace tagged regions with their class in the path. Remove markup
day:	3	
3	the	
ORD	INAL	
year:	3	
YEA	२	
I	8	

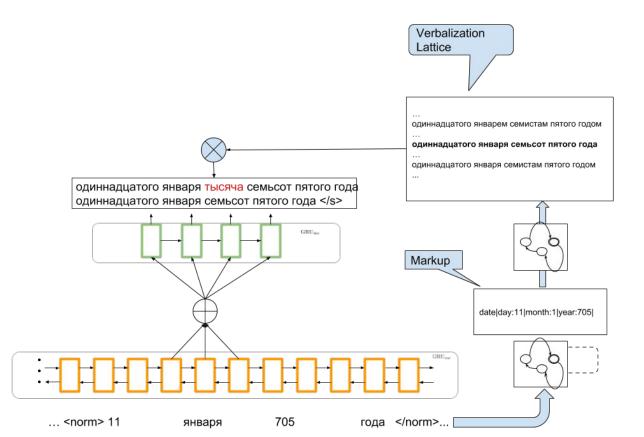


date| ε MONTH |day: ε ε the ORDINAL |year: ε YEAR | ε


- Replace tagged regions with their class in the path.
- Remove markup
- Compute the union of all such paths (possibly dropping paths that do not occur a minimum # of times)
- FstReplace the classes like MONTH, ORDINAL, with the corresponding FSTs that compute the map
- The result will be the covering grammar verbalizer

Error reduction: eval on Kaggle* data, baseline system

Per class error rates: baseline and baseline+cg ru_ru



Most corrected errors (97) were silly errors:

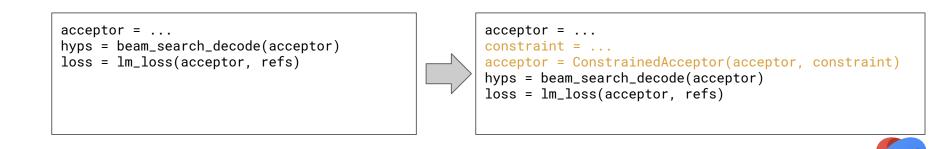
- ✤ 14-05-2013
 - четырнадцатым мая две тысячи тринадцатого года
 - (четырнадцатым марта две тысячи тринадцатого года)
 - ➢ fourteenth of May (March) of the two thousand thirteenth year
- 11 апреля 678 года
 - ≻ одиннадцатое апреля шестьсот семьдесят восьмого года
 - (одиннадцатое апреля тысяча шестьсот семьдесят восьмого года)
 - > eleventh of April of the (one thousand) six hundred seventy eighth year
- ✤ 100 mm
 - > сто миллиметров
 - ≻ (сто километров)
 - > one hundred millimeters (kilometers)

Hard constraints

• Basic idea: Constrain decoding to a smaller subset using on-the-fly intersection.

Two flavors of constraining

- Train without constraint; decode with constraint.
- Mask then softmax (i.e. locally normalize among allowed words) is wrong.
 - Distorts ranking of paths.
 - \circ Consider: "a b c" vs "a B c" when,
 - P(a b c </s>) = P(a b c) × P(</s> | a b c) = 0.4 × 0.9
 - P(a B c </s>) = P(a B c) × P(</s> | a B c) = 0.4 × 0.5
 - i.e. P(a b c </s>) > P(a B c </s>)
 - Suppose the constraint only allows "a b c" or "a B c". Mask then softmax gives,
 - Q(a b c) = P(a b c) / (P(a b c) + P(a B c)) = 0.5 = Q(a B c)
 - Q(</s>|a b c) = Q(</s>|a B c) = 1
 - => Q(a b c </s>) = Q(a B c </s>)!
- Softmax then mask is the right thing to do.



- Train with constraint; decode with constraint.
- We can only mask then softmax.
 - Because global normalization in training is infeasible.
- Saves output layer parameters (16.7% reduction in ALL error rate)

Implementation details

- Hide details of neural modeling under an Acceptor interface.
 - Acceptor: deterministic weighted (non-finite) automaton.
 - o start(), next(), logits(), gather()
- Build training/decoding logic on top of generic Acceptor interface.
 - Easily adapted for any sequence problems that can be expressed as an Acceptor.
 - Taggers
 - Shift-reduce parsers
- Add constraint as on-the-fly intersection.

- Neural models work well overall
- ... but there are still significant challenges in the form of "silly errors"
 - Best solution (thus far) is to provide finite-state constraints (which can be learned in many cases)
 - This solution depends on the fact that we are dealing with *symbolic* output:
 - "End-to-end" TTS proposals like *Tacotron* or char2wav have no solution to this problem

- Inducing FS constraints remains a challenge
 - Even more important for low-resource languages
- One topic I haven't specifically addressed:
 - Reordering: $\$1.50 \rightarrow \text{one dollar fifty (cents)}$
 - These can be handled to some extent with *pushdown transducers* but these are limited (e.g. ISO dates: 2000-05-06→May sixth two thousand)
 - We are currently investigating a neural version of ITG's for this purpose

