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Introduction

Classical model-theoretic semantics interprets declarative sentences
in terms of truth conditions. But:
I this excludes vagueness from semantic interpretation;
I this does not provide a natural framework for explaining

semantic learning.

Several theories of probabilistic semantics for natural language have
been proposed; but all su�er from some shortcomings.
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Our Approach

I a compositional Bayesian semantics, interpreting declarative
sentences by assigning them probability conditions

I the conditional probability of a sentence is the likelihood that an
idealised speaker would accept the assertion

I assessing the probability of a sentence is an instance of
evaluating the application of a classifier to a new argument

I straightforward treatments of vagueness in predication,
gradable predicates, comparatives, generalised quantifiers, and
probabilistic inferences across several property dimensions

I a prototype that o�ers a proof of concept for our approach
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Implementation

Our semantics draws inspiration from (i) Montague semantics, (ii)
vector space models, and (iii) Bayesian inference, and

I interprets sentences as probabilistic programs;
I uses the precise semantics for probabilistic programming

provided by Borgström et al. (2013);
I uses Markov Chain Monte Carlo (MCMC) sampling to estimate

probabilities, as described by Goodman et al. (2008);
I is encoded as a Haskell library, with calls into the WebPPL

language of Goodman and Stuhlmüller (2014);
I code is available at https://github.com/GU-CLASP/

CompositionalBayesianSemantics.
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Implementation (cont.)

Following Montague, our semantics assumes an assignment from
syntactic categories to types. These assignments are given in Haskell
as follows:

type Pred = Ind -> Prop
type Measure = Ind -> Scalar
type AP = Measure
type CN = Ind -> Prop
type VP = Ind -> Prop
type NP = VP -> Prop
type Quant = CN -> NP
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Implementation (cont.)

I Individuals and properties are represented as vectors in a
multidimensional vector space.

I The distribution of individuals is a multivariate normal
distribution of dimension k, with a zero mean and a unit
covariance matrix.

I Predicates are parameterised by a bias b and a vector d .
I An individual x satisfies a predicate if the expression

b + d · x > 0 is true.
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The Simplest Code Example

modelSimplest = do
p <- newPred
x <- newInd
return (p x)

In the absence of further information, an arbitrary predicate has an
even chance to hold of an arbitrary individual. Running the model
gives the following approximate result:

true : 0.456 false : 0.544
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A Simple Code Example

We may make assumptions about predicates and individuals, using
the observe primitive.

modelSimple = do
p <- newPred
x <- newInd
observe (p x)
return (p x)

Even when using our approximating implementation, evaluating the
above model yields certainty.

true : 1
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Comparatives
We support scalar predicates and comparatives. The expression
b + d · x can be interpreted as a degree to which the individual x
satisfies the property characterised by (b, d).

modelTall :: P Scalar
modelTall = do

tall <- newMeasure
john <- newInd
mary <- newInd
observe (more tall john mary)

return (is tall john)

For the above example, we get:

true : 0.552 false : 0.448
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Vague predicates

We support vague predication, by adding an uncertainty to each
measure we make for the predicate in question. This is implemented
through a Gaussian error with a given std. dev. σ for each measure.

modelTall :: P Prop
modelTall = do

tall <- vague 3 <$> newMeasure
john <- newInd
mary <- newInd
observe (more tall john mary)

return (is tall john)

In this situation the tallness of John is more uncertain than before:

true : 0.488 false : 0.512
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Generalised �antifiers in General

On a standard reading, a generalised quantifier like “most" can be
seen as a constraint on a ratio between the cardinality of sets.

most(cn, vp) =
#{x : cn(x) ∧ vp(x)}

#{x : cn(x)}
> θ

for a suitable threshold θ. In a probabilistic framework, we posit that
the expected value of vp(x) given that cn(x) holds should be greater
than θ.

most(cn, vp) = E(1(vp(x))|cn(x)) > θ
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Generalised �antifiers in General (cont.)

The expected value can be given a definite symbolic form:

most(cn, vp) =

∫
Ind fN (x)1(cn(x) ∧ vp(x))dx∫

Ind fN (x)1(cn(x))dx
> θ

where fN denotes the density of the multivariate Gaussian
distribution for individuals.
We implement the this in WebPPL by creating a probabilistic
program p, which samples over all individuals x which satisfy cn, and
we evaluate vp(x). The compound statement is satisfied if the
expected value of the program p, itself evaluated using an inner
MCMC sampling procedure, is larger than θ.
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Generalised �antifiers and Chairs

On this basis, we make inferences of the following kind. “If many
chairs have four legs, then it is likely that any given chair has four
legs". We model this sentence as follows:

chairExample1 = do
chair <- newPred
fourlegs <- newPred
observe (many chair fourlegs)
x <- newIndSuch [chair]
return (fourlegs x)

Our model yields:

true : 0.821 false : 0.179
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Generalised �antifiers and Chairs (cont.)
The models that we are building implement generalised quantifiers
through correlation of predicates, so we get ‘inverse’ correlation as
well. In the absence of further information, and given an individual x
with four legs, we will predict a high probability for chair(x).

chairExample2 :: P Prop
chairExample2 = do

chair <- newPred
fourlegs <- newPred
observe (many chair fourlegs)
x <- newIndSuch [fourlegs]
return (chair x)

The model yields:

true : 0.653 false : 0.347

Bernardy et al. A Compositional Bayesian Semantics



Generalised �antifiers and Chairs (cont.)
The model’s assumptions can be augmented with the hypothesis that
most individuals are not chairs. This will lower the probability of
being a chair appropriately.

chairExample3 :: P Prop
chairExample3 = do

chair <- newPred
fourlegs <- newPred
observe (many chair fourlegs)
observe (most anything (not’ . chair))
x <- newIndSuch [fourlegs]
return (chair x)

The model yields:

true : 0.221 false : 0.779
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An Example Inference

Assume that

1. most animals do not fly;

2. most birds fly;

3. every bird is an animal.

Can we conclude that “most animals are not birds”?
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An Example Inference (cont.)

We model the example as follows:

birdExample = do
animal <- newPred
bird <- newPred
fly <- newPred

observe (most animal (not’ . fly))
observe (most bird fly)
observe (every bird animal)
return (most animal (not’ . bird))

Our implementation concludes that “most animals are not birds”
with overwhelming probability:

true : 0.941 false : 0.059
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An Example Inference (cont.)

bird

fly

1

1
I We may assume that “animal”

holds for every individual.

I “Most animals don’t fly”
implies that “fly” has a large
bias.

I “Most birds fly” can be
satisfied only if “fly” is highly
correlated with “bird”, and if
the bias of “bird” is even
greater than that of “fly”.
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Semantic Learning

Our model can adapt to new
observations, giving rise to
learning.
Consider the data taken from
https://en.wikipedia.
org/wiki/Naive_Bayes_
classifier.

Person weight (lbs)
male 180
male 190
male 170
male 165
female 100
female 150
female 130
female 150

When given the person and weight data, our model predicts that an
individual of weight 190 is male with the following probabilities.

true : 0.57805 false : 0.42195
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Semantic Learning (cont.)

By directly measuring the cosine of the angle between the weight
and male vector, we get the following distribution, indicating a strong
correlation:
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Future Work

In future work we expect to
I extend the syntactic and semantic coverage of our framework;
I improve our modelling and sampling mechanisms to

accommodate large scale applications more e�iciently and
robustly;

I develop our Bayesian learning theory to handle more complex
cases of classifier acquisition.
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Conclusions

I a compositional Bayesian semantics, interpreting declarative
sentences by assigning them probability conditions

I the conditional probability of a sentence is the likelihood that an
idealised speaker would accept the assertion

I assessing the probability of a sentence is an instance of
evaluating the application of a classifier to a new argument

I straightforward treatments of vagueness in predication,
gradable predicates, comparatives, generalised quantifiers, and
probabilistic inferences across several property dimensions
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Thank you!
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