

Spatial Knowledge in Neural Language Models

Mehdi Ghanimifard, Simon Dobnik Centre for Linguistic Theory and Studies in Probability (CLASP) University of Gothenburg

> CLASP Seminar, Gothenburg, Sweden 10 October 2018

Generating Scene Description

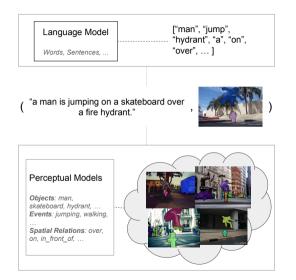
Figure: Flickr image in MSCOCO dataset id=330177

Generating Scene Description

Figure: a man is jumping on a skateboard over a fire hydrant. ¹

¹MSCOCO dataset id=330177

Generating Scene Description: Grounding and Compositionality



Generating Scene Description: Grounding and Compositionality

- Extracting visual features.
- Connecting visual features with linguistic units.
- Generating acceptable word sequence.

Generating Scene Description: Grounding and Compositionality

- Extracting visual features. (\rightarrow ConvNet)
- Connecting visual features with linguistic units. (\rightarrow Conditional LM)
- Generating acceptable word sequence. (\rightarrow Conditional RLM)

Generating Scene Description: Extracting visual features

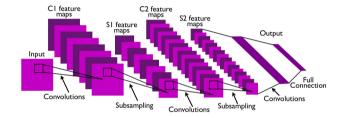


Figure: A ConvNet with two feature map layers (LeCun et al., 2010).

Generating Scene Description: Generating Description

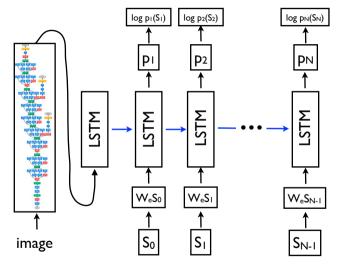


Figure: A Conditional Recurrent Language Model (Vinyals et al., 2015)

How to ground "spatial relations" in visual clues?

How to ground "spatial relations" in visual clues?

- ▶ Not all aspects of meaning in spatial terms are visual.
- > CNN features doesn't correspond to any explicit spatial representation.

Question: Distributional Bias In Language

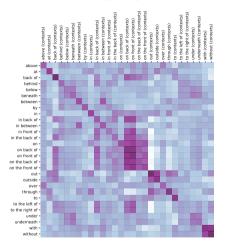


Figure: The distributional bias in language makes spatial relations predictable without looking at images. (Ghanimifard and Dobnik, in SLTC 2018)

Question: Spatial Attention

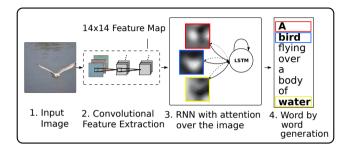


Figure: The spatial attention for caption generation in Xu et al. (2015).

- ► Weighted pool instead of average pool on last layer of ConvNet.
- > Attention weights based on the hidden states of the language model.

Question: Spatial Attention

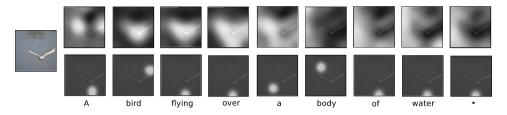


Figure: An example of spatial attention for caption generation in Xu et al. (2015).

Adaptive Attention

- Spatial attentions similar to Xu et al. (2015)
- $+\,$ Attention on a representation from recurrent language model.

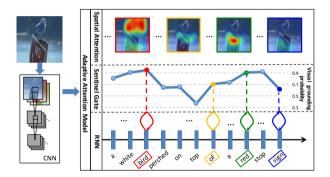


Figure: Adaptive attention on two types of input features Lu et al. (2017) ASP

Adaptive Attention: When to Attend

POS	$\mathbf{Mean} \pm \mathbf{std}$
NUM	0.81 ± 0.08
NOUN	0.78 ± 0.12
ADJ	0.77 ± 0.14
DET	0.73 ± 0.12
VERB	0.70 ± 0.11
CONJ	0.70 ± 0.13
ADV	0.69 ± 0.12
ADP	0.62 ± 0.15
PRON	0.53 ± 0.14
PRT	0.52 ± 0.21

Table: Visual attention is stronger on nominal phrase (NOUN, DET, ADJ) (Ghanimifard and Dobnik, 2018)

Adaptive Attention: When/Where to Attend

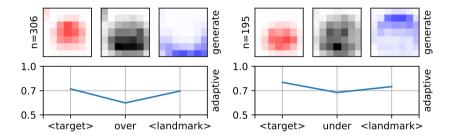


Figure: Visual attention on spatial relations are lower and more spread over 2D space (Ghanimifard and Dobnik, 2018).

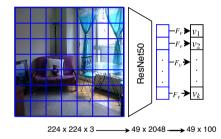
Adaptive Attention: Question

Can we improve this?

16 / 35

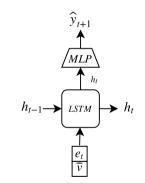
- ► Gradually add modules to the neural network and compare the results.
 - Including different ways to use spatial features.
- Adaptive attention as the base architecture.
- Enhance the visual features with annotated information.
 - Annotations as feature extraction tool.
 - Annotations as explicit spatial features.

Method: Extracting visual features



$$F_{v}: W_{v} \in \mathbb{R}^{100 \times 2048}, b_{v} \in \mathbb{R}^{100}$$
$$v_{i} = ReLU(W_{v}v_{i}' + b_{v})$$
$$\bar{v} = \sum_{i=1}^{k} v_{i}$$

Method: The Simple Model



19/35

Method: Annotation for extracting features

$$egin{aligned} &v_{obj_1} = \textit{ReLU}(W_v v'_{obj1} + b_v) \ &v_{obj_2} = \textit{ReLU}(W_v v'_{obj2} + b_v) \end{aligned}$$

Method: Annotations as explicit spatial features

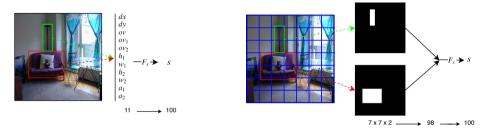
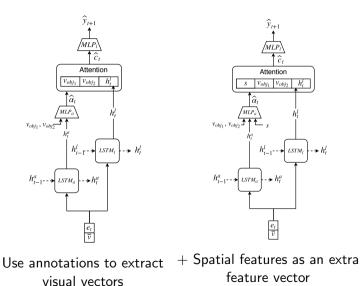


Figure: Two strategies to convert bounding box information into feature representation of their spatial relations.

$$\begin{aligned} &F_s: W_s^2 \in \mathbb{R}^{100 \times 100}, W_s^1 \in \mathbb{R}^{100 \times 11}(or \mathbb{R}^{100 \times 98}) \\ &s = W_s^2 tanh(W_s^1 s' + b_s^1) \end{aligned}$$

Method: Models



CLASP CONTRACTOR CONTR

Method: Models

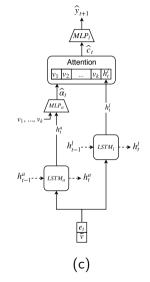


Figure: (c) Inspired from adaptive attention in Lu et al. (2017)

23 / 35

Evaluation: Dataset

lamp behind couch teddy bear on couch chair next to table table top near window

Figure: Annotated relations in VisualGenome (Krishna et al., 2017)².

²https://cs.stanford.edu/people/rak248/VG_100K/4.jpg

- **Dataset**: VisualGenome with 108K Images.
- $\blacktriangleright \sim 2$ million annotated triplets in relation dataset: [obj1, rel, obj2] (maximum 15 words)
- ▶ After pre-processing: 1.6 million phrases.
- ▶ Training: trained on 95% and test on 5% (80K phrases)

Token level loss on validation data after 15 epochs training (cross-entropy error):

- ▶ 0.9490 no attention
- 0.7968 adaptive attention on ConvNet regions
- 0.6522 only object vectors
- ▶ 0.6484 object vectors + (98D) explicit spatial vector
- ▶ 0.6455 object vectors + (11D) explicit spatial vector

Evaluation: How it works?

h _t	5	obj ₁	obj ₂	word
0.802	0.028	0.165	0.005	man
0.773	0.170	0.020	0.037	in
0.839	0.031	0.008	0.121	jacket
0.899	0.012	0.013	0.076	EOS

Evaluation: How it works?

h _t	5	obj ₁	obj ₂	word
0.796	0.054	0.111	0.039	topping
0.876	0.034	0.030	0.060	on
0.846	0.002	0.018	0.134	а
0.849	0.003	0.009	0.140	pizza
0.900	0.004	0.011	0.085	EOS

Observations:

- Language model gets the highest attention.
- Using spatial annotations improves the results.
- > Spatial annotations as feature vector has potentials for deeper investigation.

We compared end-to-end language generation enriched with spatial knowledge:

- Spatial knowldge to extract visual features.
- Spatial knowldge as feature vectors.

Discussions

- Visual grounding of spatial terms can be grounded in:
 - (1) visual clues from locations (where)
 - (2) visual clues from objects (what)
- Spatial knowledge about "where" can be used for finding "what".
- Spatial relations are different from just location of two objects.
- Visual relations are rich concepts:

non-spatial aspects in spatial relations "on", "in", etc.

spatial aspects in non-spatial relations "wearing", "working on", etc.

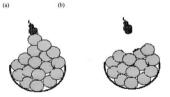


Figure: The meaning of "in" is an interplay between functional and geometric aspects (Coventry et al., 2001)

- More in-depth evaluating CNNs for detecting spatial relations.
- ▶ Augment other model such as (Anderson et al., 2018) with spatial information.
- Explore other spatial representations (i.e. AVS).
- Test on other datasets.
- Report on different part of speech.

Thank you!

References I

- Anderson, P., X. He, C. Buehler, D. Teney, M. Johnson, S. Gould, and L. Zhang (2018). Bottom-up and top-down attention for image captioning and visual question answering. In *CVPR*, Volume 3, pp. 6.
- Coventry, K. R., M. Prat-Sala, and L. Richards (2001). The interplay between geometry and function in the comprehension of over, under, above, and below. *Journal of memory and language* 44(3), 376–398.
- Ghanimifard, M. and S. Dobnik (2018). Knowing when to look for what and where: Evaluating generation of spatial descriptions with adaptive attention. In *Proceedings* of the 1st Workshop on Shortcomings in Vision and Language (SiVL'18), ECCV, 2018.
- Krishna, R., Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz, S. Chen, Y. Kalantidis, L.-J. Li, D. A. Shamma, et al. (2017). Visual genome: Connecting language and vision using crowdsourced dense image annotations. *International Journal of Computer Vision 123*(1), 32–73.

References II

- LeCun, Y., K. Kavukcuoglu, C. Farabet, et al. (2010). Convolutional networks and applications in vision. In *ISCAS*, Volume 2010, pp. 253–256.
- Lu, J., C. Xiong, D. Parikh, and R. Socher (2017). Knowing when to look: Adaptive attention via a visual sentinel for image captioning. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, Volume 6.
- Vinyals, O., A. Toshev, S. Bengio, and D. Erhan (2015). Show and tell: A neural image caption generator. In *Computer Vision and Pattern Recognition (CVPR)*, 2015 IEEE Conference on, pp. 3156–3164. IEEE.
- Xu, K., J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel, and
 Y. Bengio (2015). Show, attend and tell: Neural image caption generation with
 visual attention. In *International Conference on Machine Learning*, pp. 2048–2057.

