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Generating Scene Description

Figure: Flickr image in MSCOCO dataset id=330177
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Generating Scene Description

Figure: a man is jumping on a skateboard over a fire hydrant. !
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IMSCOCO dataset id=330177



Generating Scene Description: Grounding and Compositionality @

GOTHENBURG

Language Model [‘man”, “jump”,
""""""""""""" “hydrant”, “a”, “on”,

Words, Sentences, ... “over’, ... ]

( “a man is jumping on a skateboard over
a fire hydrant.”

Perceptual Models

Objects: man,
skateboard, hydrant,
Events: jumping, walking,

Spatial Relations: over,
on, in_front_of, ...
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Generating Scene Description: Grounding and Compositionality

UNI Y OF
GOTHENBURG

» Extracting visual features.
» Connecting visual features with linguistic units.

» Generating acceptable word sequence.
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Generating Scene Description: Grounding and Compositionality

» Extracting visual features. (— ConvNet)
» Connecting visual features with linguistic units. (— Conditional LM)

» Generating acceptable word sequence. (— Conditional RLM)
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Generating Scene Description: Extracting visual features
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Figure: A ConvNet with two feature map layers (LeCun et al., 2010).
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Generating Scene Description: Generating Description
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Figure: A Conditional Recurrent Language Model (Vinyals et al., 2015)"
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Question

How to ground “spatial relations” in visual clues?

GOTHENBURG
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Question

UNIVERSITY OF
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How to ground “spatial relations” in visual clues?
> Not all aspects of meaning in spatial terms are visual.

» CNN features doesn't correspond to any explicit spatial representation.
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Question: Distributional Bias In Language
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Figure: The distributional bias in language makes spatial relations predictable without looking
at images. (Ghanimifard and Dobnik, in SLTC 2018) CLASP ==
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Question: Spatial Attention

Image  Feature Extraction

(.

over the image

1.Input 2. Convolutional 3. RNN with attention 4. Word by

word

generation]

Figure: The spatial attention for caption generation in Xu et al. (2015).

» Weighted pool instead of average pool on last layer of ConvNet.

» Attention weights based on the hidden states of the language model.

CLASP

UNIVERSITY OF
GOTHENBURG

centre for
linguistc theory
and studies in probabilty

11/35



Question: Spatial Attention
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bird flying over body water
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Figure: An example of spatial attention for caption generation in Xu et al. (2015).

centre for
linguistc theory
and studies in probabilty

12/35



Adaptive Attention

» Spatial attentions similar to Xu et al. (2015)
-+ Attention on a representation from recurrent language model.
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Figure: Adaptive attention

on two types of input features Lu et al. (2017) ASP

UNIVERSITY OF
GOTHENBURG

centre for
linguistc theory
and studies in probabilty

13/35



Adaptive Attention: When to Attend

Table: Visual attention is stronger on nominal phrase (NOUN, DET, ADJ) (Ghanimifard and

Dobnik, 2018)

POS Mean =+ std
NUM 0.814+0.08
NOUN | 0.78 £0.12
ADJ 0.77 = 0.14
DET 0.734+0.12
VERB 0.70 £0.11
CONJ 0.70 £ 0.13
ADV 0.69 £0.12
ADP 0.62 £0.15
PRON 0.53+0.14
PRT 0.524+0.21




Adaptive Attention: When/Where to Attend
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Figure: Visual attention on spatial relations are lower and more spread over 2D space
(Ghanimifard and Dobnik, 2018).
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Adaptive Attention: Question
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» Can we improve this?
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Method
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» Gradually add modules to the neural network and compare the results.
> Including different ways to use spatial features.

» Adaptive attention as the base architecture.

» Enhance the visual features with annotated information.

» Annotations as feature extraction tool.
» Annotations as explicit spatial features.




Method: Extracting visual features
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Method: The Simple Model
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Method: Annotation for extracting features
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Method: Annotations as explicit spatial features
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Figure: Two strategies to convert bounding box information into feature representation of their
spatial relations.
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Method: Models

Use annotations to extract + Spatial features as an extra

visual vectors

feature vector
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Method:

Models

Attention
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Figure: (c) Inspired from adaptive attention in Lu et al. (2017)
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Evaluation: Dataset

lamp behind couch
teddy bear on couch

chair next to table
table top near window

Figure: Annotated relations in VisualGenome (Krishna et al., 2017).
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Evaluation: Dataset ¢
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» Dataset: VisualGenome with 108K Images.

» ~ 2 million annotated triplets in relation dataset: [objl, rel, obj2] (maximum 15
words)

» After pre-processing: 1.6 million phrases.

» Training: trained on 95% and test on 5% (80K phrases)




Evaluation: Results
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Token level loss on validation data after 15 epochs training (cross-entropy error):
» 0.9490 no attention
0.7968 adaptive attention on ConvNet regions

v

v

0.6522 only object vectors
0.6484 object vectors + (98D) explicit spatial vector
0.6455 object vectors + (11D) explicit spatial vector
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Evaluation: How it works?

h S obji obj> word
0.802 | 0.028 | 0.165 | 0.005 || man
0.773 | 0.170 | 0.020 | 0.037 || in
0.839 | 0.031 | 0.008 | 0.121 || jacket
0.899 | 0.012 | 0.013 | 0.076 || EOS
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Evaluation: How it works?

Objl

obj>

word

0.054
0.034
0.002
0.003
0.004

0.111
0.030
0.018
0.009
0.011

0.039
0.060
0.134
0.140
0.085
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Evaluation: Analysis

Observations:
» Language model gets the highest attention.
> Using spatial annotations improves the results.

» Spatial annotations as feature vector has potentials for deeper investigation.
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Summary
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We compared end-to-end language generation enriched with spatial knowledge:
» Spatial knowldge to extract visual features.

» Spatial knowldge as feature vectors.
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Discussions

» Visual grounding of spatial terms can be grounded in:
» (1) visual clues from locations (where)
» (2) visual clues from objects (what)

» Spatial knowledge about “where” can be used for finding “what”.
» Spatial relations are different from just location of two objects.
» Visual relations are rich concepts:
non-spatial aspects in spatial relations “on”, “in", etc.
spatial aspects in non-spatial relations “wearing”, “working on", etc.
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Figure: The meaning of “in” is an interplay between functional and geometric aspects
(Coventry et al., 2001)
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Future
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» More in-depth evaluating CNNs for detecting spatial relations.
» Augment other model such as (Anderson et al., 2018) with spatial information.

Explore other spatial representations (i.e. AVS).

v

Test on other datasets.

v

v

Report on different part of speech.
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Thank you!
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