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Generating Scene Description

Figure: Flickr image in MSCOCO dataset id=330177
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Generating Scene Description

Figure: a man is jumping on a skateboard over a fire hydrant. 1

1MSCOCO dataset id=330177
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Generating Scene Description: Grounding and Compositionality

(                                                   ,                       )

[“man”, “jump”, 
“hydrant”, “a”, “on”, 
“over”, … ]

Language Model

Words, Sentences, ...

Perceptual Models

Objects: man, 
skateboard, hydrant, … 
Events: jumping, walking, 
… 
Spatial Relations: over, 
on, in_front_of, … 

“a man is jumping on a skateboard over 
a fire hydrant.”
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Generating Scene Description: Grounding and Compositionality

I Extracting visual features.

I Connecting visual features with linguistic units.

I Generating acceptable word sequence.
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Generating Scene Description: Grounding and Compositionality

I Extracting visual features. (→ ConvNet)

I Connecting visual features with linguistic units. (→ Conditional LM)

I Generating acceptable word sequence. (→ Conditional RLM)
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Generating Scene Description: Extracting visual features

Figure: A ConvNet with two feature map layers (LeCun et al., 2010).
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Generating Scene Description: Generating Description
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Figure: A Conditional Recurrent Language Model (Vinyals et al., 2015).
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Question

How to ground “spatial relations” in visual clues?

I Not all aspects of meaning in spatial terms are visual.

I CNN features doesn’t correspond to any explicit spatial representation.
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How to ground “spatial relations” in visual clues?

I Not all aspects of meaning in spatial terms are visual.
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Question: Distributional Bias In Language
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Figure: The distributional bias in language makes spatial relations predictable without looking
at images. (Ghanimifard and Dobnik, in SLTC 2018)

I Weighted pool instead of average pool on last layer of ConvNet.
I Changes on each word prediction.

10 / 35



Question: Spatial Attention

1. Input 
    Image

2. Convolutional
Feature Extraction

3. RNN with attention

LSTM

4. Word by 
word

14x14 Feature Map

over the image
generation

A
bird 
flying 
over 
a 
body 
of 
water 

Figure: The spatial attention for caption generation in Xu et al. (2015).

I Weighted pool instead of average pool on last layer of ConvNet.

I Attention weights based on the hidden states of the language model.

11 / 35



Question: Spatial Attention

Figure: An example of spatial attention for caption generation in Xu et al. (2015).
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Adaptive Attention
I Spatial attentions similar to Xu et al. (2015)
+ Attention on a representation from recurrent language model.
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Figure: Adaptive attention on two types of input features Lu et al. (2017)
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Adaptive Attention: When to Attend

POS Mean± std
NUM 0.81± 0.08
NOUN 0.78± 0.12
ADJ 0.77± 0.14
DET 0.73± 0.12
VERB 0.70± 0.11
CONJ 0.70± 0.13
ADV 0.69± 0.12
ADP 0.62± 0.15
PRON 0.53± 0.14
PRT 0.52± 0.21

Table: Visual attention is stronger on nominal phrase (NOUN, DET, ADJ) (Ghanimifard and
Dobnik, 2018)
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Adaptive Attention: When/Where to Attend
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Figure: Visual attention on spatial relations are lower and more spread over 2D space
(Ghanimifard and Dobnik, 2018).
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Adaptive Attention: Question

I Can we improve this?
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Method

I Gradually add modules to the neural network and compare the results.
I Including different ways to use spatial features.

I Adaptive attention as the base architecture.
I Enhance the visual features with annotated information.

I Annotations as feature extraction tool.
I Annotations as explicit spatial features.
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Method: Extracting visual features
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Method: The Simple Model
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Method: Annotation for extracting features
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Method: Annotations as explicit spatial features
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Figure: Two strategies to convert bounding box information into feature representation of their
spatial relations.
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Method: Models
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ŷ
t+1

α̂t

MLPa

Attention
ĉt
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+ Spatial features as an extra
feature vector
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Method: Models
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Figure: (c) Inspired from adaptive attention in Lu et al. (2017)
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Evaluation: Dataset

lamp behind couch
teddy bear on couch
chair next to table

table top near window
...

Figure: Annotated relations in VisualGenome (Krishna et al., 2017)2.

2https://cs.stanford.edu/people/rak248/VG_100K/4.jpg
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Evaluation: Dataset

I Dataset: VisualGenome with 108K Images.

I ∼ 2 million annotated triplets in relation dataset: [obj1, rel, obj2] (maximum 15
words)

I After pre-processing: 1.6 million phrases.

I Training: trained on 95% and test on 5% (80K phrases)
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Evaluation: Results

Token level loss on validation data after 15 epochs training (cross-entropy error):

I 0.9490 no attention

I 0.7968 adaptive attention on ConvNet regions

I 0.6522 only object vectors

I 0.6484 object vectors + (98D) explicit spatial vector

I 0.6455 object vectors + (11D) explicit spatial vector
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Evaluation: How it works?

ht s obj1 obj2 word

0.802 0.028 0.165 0.005 man
0.773 0.170 0.020 0.037 in
0.839 0.031 0.008 0.121 jacket
0.899 0.012 0.013 0.076 EOS
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Evaluation: How it works?

ht s obj1 obj2 word

0.796 0.054 0.111 0.039 topping
0.876 0.034 0.030 0.060 on
0.846 0.002 0.018 0.134 a
0.849 0.003 0.009 0.140 pizza
0.900 0.004 0.011 0.085 EOS
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Evaluation: Analysis

Observations:

I Language model gets the highest attention.

I Using spatial annotations improves the results.

I Spatial annotations as feature vector has potentials for deeper investigation.
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Summary

We compared end-to-end language generation enriched with spatial knowledge:

I Spatial knowldge to extract visual features.

I Spatial knowldge as feature vectors.
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Discussions
I Visual grounding of spatial terms can be grounded in:

I (1) visual clues from locations (where)
I (2) visual clues from objects (what)

I Spatial knowledge about “where” can be used for finding “what”.
I Spatial relations are different from just location of two objects.
I Visual relations are rich concepts:

non-spatial aspects in spatial relations “on”, “in”, etc.
spatial aspects in non-spatial relations “wearing”, “working on”, etc.

Figure: The meaning of “in” is an interplay between functional and geometric aspects
(Coventry et al., 2001)
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Future

I More in-depth evaluating CNNs for detecting spatial relations.

I Augment other model such as (Anderson et al., 2018) with spatial information.

I Explore other spatial representations (i.e. AVS).

I Test on other datasets.

I Report on different part of speech.
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Thank you!
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