
Towards KoS/TTR-based
proof-theoretic dialogue

management
Vladislav Maraev∗ Jonathan Ginzburg† Staffan Larsson∗

Ye Tian‡,† Jean-Philippe Bernardy∗

∗University of Gothenburg, †Université Paris Diderot, ‡Amazon Research Cambridge

CLASP seminar · October 17, 2018

Vladislav Maraev et al. CLASP seminar · October 17, 2018 1 / 30



Conversational relevance
(a) nice

A: What would you like to cook today?
U: Miso soup
A: How many portions?
U: Four

(b) not very nice
A: What would you like to cook today?
U: Four portions of miso soup
A: How many portions?
U: ???

Conversational relevance is crucial for dialogue management. In
this respect one should follow dialogue theories (in our case
KoS Ginzburg, 2012). There hasn’t been much progress in this
respect since the early 2000s (Larsson, 2002).

Vladislav Maraev et al. CLASP seminar · October 17, 2018 2 / 30



Conversational relevance
(a) nice

A: What would you like to cook today?
U: Miso soup
A: How many portions?
U: Four

(b) not very nice
A: What would you like to cook today?
U: Four portions of miso soup
A: How many portions?
U: ???

Conversational relevance is crucial for dialogue management. In
this respect one should follow dialogue theories (in our case
KoS Ginzburg, 2012). There hasn’t been much progress in this
respect since the early 2000s (Larsson, 2002).

Vladislav Maraev et al. CLASP seminar · October 17, 2018 2 / 30



Conversational relevance
(a) nice

A: What would you like to cook today?
U: Miso soup
A: How many portions?
U: Four

(b) not very nice
A: What would you like to cook today?
U: Four portions of miso soup
A: How many portions?
U: ???

Conversational relevance is crucial for dialogue management. In
this respect one should follow dialogue theories (in our case
KoS Ginzburg, 2012). There hasn’t been much progress in this
respect since the early 2000s (Larsson, 2002).

Vladislav Maraev et al. CLASP seminar · October 17, 2018 2 / 30



Why (constructive) TTR

1. We use KoS (Ginzburg, 2012) which provides one of the
most detailed analysis of conversational relevance

2. KoS is based on the Type Theory with Records (TTR)
(Cooper, 2005)

3. Constructive type theories are used as a framework for
semantics (e.g. Ranta, 1994)

4. TTR is set-theoretic, and hereby we are presenting
proof-theoretic (constructive) version of it; our
implementation follows MiniTT (Coquand et al., 2009)

Vladislav Maraev et al. CLASP seminar · October 17, 2018 3 / 30



Outline

TTR, subtyping and update rules

Dialogue management

Question-answer relevance

Concluding remarks

Vladislav Maraev et al. CLASP seminar · October 17, 2018 4 / 30



Next

TTR, subtyping and update rules

Dialogue management

Question-answer relevance

Concluding remarks

Vladislav Maraev et al. CLASP seminar · October 17, 2018 5 / 30



TTR: types
– judgements

a : Ind
a is a witness of (the type) Ind(ividual)

– ptypes: greet(speaker, addressee)
– record typesspeaker : Ind

addressee : Ind
content : greet(speaker, addressee)


– records

(1) is a witness of the type above iff a : Ind, b : Ind,
θ : greet(speaker, addressee) and the weather doesn’t
matter. 

speaker = a
addressee= b
content = θ
weather = sunny

 (1)

Vladislav Maraev et al. CLASP seminar · October 17, 2018 6 / 30



TTR: types
– judgements

a : Ind
a is a witness of (the type) Ind(ividual)

– ptypes: greet(speaker, addressee)

– record typesspeaker : Ind
addressee : Ind
content : greet(speaker, addressee)


– records

(1) is a witness of the type above iff a : Ind, b : Ind,
θ : greet(speaker, addressee) and the weather doesn’t
matter. 

speaker = a
addressee= b
content = θ
weather = sunny

 (1)

Vladislav Maraev et al. CLASP seminar · October 17, 2018 6 / 30



TTR: types
– judgements

a : Ind
a is a witness of (the type) Ind(ividual)

– ptypes: greet(speaker, addressee)
– record typesspeaker : Ind

addressee : Ind
content : greet(speaker, addressee)



– records
(1) is a witness of the type above iff a : Ind, b : Ind,
θ : greet(speaker, addressee) and the weather doesn’t
matter. 

speaker = a
addressee= b
content = θ
weather = sunny

 (1)

Vladislav Maraev et al. CLASP seminar · October 17, 2018 6 / 30



TTR: types
– judgements

a : Ind
a is a witness of (the type) Ind(ividual)

– ptypes: greet(speaker, addressee)
– record typesspeaker : Ind

addressee : Ind
content : greet(speaker, addressee)


– records

(1) is a witness of the type above iff a : Ind, b : Ind,
θ : greet(speaker, addressee) and the weather doesn’t
matter. 

speaker = a
addressee= b
content = θ
weather = sunny

 (1)

Vladislav Maraev et al. CLASP seminar · October 17, 2018 6 / 30



TTR: type construction operators
– Function types

(T1 → T2)

– List types
[T], ne[T], operations on lists: cons, head and tail

– Meet types (merge “∧
·
” in Cooper’s TTR)

[
f :Pasta

]
∧
[

f :Cheese
d :Wine

]
reduces to

[
f :Pasta ∧ Cheese
d :Wine

]
– Singleton types

if T is a type and x:T, then Tx is a type. a:Tx iff a = x.
In record types we use manifest field notation to a
represent singleton type. Notations [a : Tx] and [a = x : T]
represent the same object.

Vladislav Maraev et al. CLASP seminar · October 17, 2018 7 / 30



TTR: type construction operators
– Function types

(T1 → T2)
– List types

[T], ne[T], operations on lists: cons, head and tail

– Meet types (merge “∧
·
” in Cooper’s TTR)

[
f :Pasta

]
∧
[

f :Cheese
d :Wine

]
reduces to

[
f :Pasta ∧ Cheese
d :Wine

]
– Singleton types

if T is a type and x:T, then Tx is a type. a:Tx iff a = x.
In record types we use manifest field notation to a
represent singleton type. Notations [a : Tx] and [a = x : T]
represent the same object.

Vladislav Maraev et al. CLASP seminar · October 17, 2018 7 / 30



TTR: type construction operators
– Function types

(T1 → T2)
– List types

[T], ne[T], operations on lists: cons, head and tail
– Meet types (merge “∧

·
” in Cooper’s TTR)

[
f :Pasta

]
∧
[

f :Cheese
d :Wine

]
reduces to

[
f :Pasta ∧ Cheese
d :Wine

]

– Singleton types
if T is a type and x:T, then Tx is a type. a:Tx iff a = x.
In record types we use manifest field notation to a
represent singleton type. Notations [a : Tx] and [a = x : T]
represent the same object.

Vladislav Maraev et al. CLASP seminar · October 17, 2018 7 / 30



TTR: type construction operators
– Function types

(T1 → T2)
– List types

[T], ne[T], operations on lists: cons, head and tail
– Meet types (merge “∧

·
” in Cooper’s TTR)

[
f :Pasta

]
∧
[

f :Cheese
d :Wine

]
reduces to

[
f :Pasta ∧ Cheese
d :Wine

]
– Singleton types

if T is a type and x:T, then Tx is a type. a:Tx iff a = x.
In record types we use manifest field notation to a
represent singleton type. Notations [a : Tx] and [a = x : T]
represent the same object.

Vladislav Maraev et al. CLASP seminar · October 17, 2018 7 / 30



Subtyping
Assuming that Pasta ⊑ Food and spaghetti : Pasta:[

x :Pasta
]
⊑

[
x :Food

]
(2)[

x :Pasta
c : tasty(x)

]
⊑

[
x :Pasta

]
(3)

[
x :Pasta

]
̸⊑

[
x :Pasta
c : tasty(x)

]
(4)[

x=spaghetti :Food
]
⊑

[
x :Pasta

]
(5)[

x :Foodspaghetti
]
⊑

[
x :Pasta

]
(6)

Given that s : S, s =
[
x= spaghetti

]
and S =

[
x :Food

]
Ss ⊑

[
x=spaghetti :Food

]
(7)

Vladislav Maraev et al. CLASP seminar · October 17, 2018 8 / 30



Subtyping
Assuming that Pasta ⊑ Food and spaghetti : Pasta:[

x :Pasta
]
⊑

[
x :Food

]
(2)[

x :Pasta
c : tasty(x)

]
⊑

[
x :Pasta

]
(3)

[
x :Pasta

]
̸⊑

[
x :Pasta
c : tasty(x)

]
(4)[

x=spaghetti :Food
]
⊑

[
x :Pasta

]
(5)[

x :Foodspaghetti
]
⊑

[
x :Pasta

]
(6)

Given that s : S, s =
[
x= spaghetti

]
and S =

[
x :Food

]
Ss ⊑

[
x=spaghetti :Food

]
(7)

Vladislav Maraev et al. CLASP seminar · October 17, 2018 8 / 30



Update rules
1. We maintain dialogue state as a pair of a value and a type

(s,S) such that s : S

2. Update rules are defined

r : A → B

3. Applicability condition

Ss ⊑ A

4. After applying of the rule r state becomes

(r(s),B)

Vladislav Maraev et al. CLASP seminar · October 17, 2018 9 / 30



Update rules
1. We maintain dialogue state as a pair of a value and a type

(s,S) such that s : S

2. Update rules are defined

r : A → B

3. Applicability condition

Ss ⊑ A

4. After applying of the rule r state becomes

(r(s),B)

Vladislav Maraev et al. CLASP seminar · October 17, 2018 9 / 30



Update rules
1. We maintain dialogue state as a pair of a value and a type

(s,S) such that s : S

2. Update rules are defined

r : A → B

3. Applicability condition

Ss ⊑ A

4. After applying of the rule r state becomes

(r(s),B)

Vladislav Maraev et al. CLASP seminar · October 17, 2018 9 / 30



Update rules
1. We maintain dialogue state as a pair of a value and a type

(s,S) such that s : S

2. Update rules are defined

r : A → B

3. Applicability condition

Ss ⊑ A

4. After applying of the rule r state becomes

(r(s),B)

Vladislav Maraev et al. CLASP seminar · October 17, 2018 9 / 30



Example (state and rules)
(si : Si), s1 =

[
x= spaghetti

]
, S1 =

[
x :Pasta

]
rcook :

[
x :Pasta

]
→

[
x :Pasta
c : cooked(x)

]
rcook =λs.

[
x= s.x
c = θc(x)

]
,

where θc(x) is a proof that the spaghetti is cooked.

rserve :

[
x :Pasta
c : cooked(x)

]
→

x :Pasta
c : cooked(x)
d : served(x)


rserve =λs.

x = s.x
c = s.c
d= θd(x)

 ,

where θd(x) is a proof that the spaghetti is served.
Vladislav Maraev et al. CLASP seminar · October 17, 2018 10 / 30



Example (change of state)
S1 =

[
x :Pasta

]
s1 =

[
x= spaghetti

]

S2 =

[
x :Pasta
c : cooked(x)

]
s2 = rcook(s1) =

[
x= spaghetti
c = θc(x)

]

S3 =

x :Pasta
c : cooked(x)
d : served(x)


s3 = rserve(s2) =

x = spaghetti
c = θc(x)
d= θd(x)



Vladislav Maraev et al. CLASP seminar · October 17, 2018 11 / 30



Example (change of state)
S1 =

[
x :Pasta

]
s1 =

[
x= spaghetti

]
S2 =

[
x :Pasta
c : cooked(x)

]
s2 = rcook(s1) =

[
x= spaghetti
c = θc(x)

]

S3 =

x :Pasta
c : cooked(x)
d : served(x)


s3 = rserve(s2) =

x = spaghetti
c = θc(x)
d= θd(x)



Vladislav Maraev et al. CLASP seminar · October 17, 2018 11 / 30



Example (change of state)
S1 =

[
x :Pasta

]
s1 =

[
x= spaghetti

]
S2 =

[
x :Pasta
c : cooked(x)

]
s2 = rcook(s1) =

[
x= spaghetti
c = θc(x)

]

S3 =

x :Pasta
c : cooked(x)
d : served(x)


s3 = rserve(s2) =

x = spaghetti
c = θc(x)
d= θd(x)


Vladislav Maraev et al. CLASP seminar · October 17, 2018 11 / 30



Next

TTR, subtyping and update rules

Dialogue management

Question-answer relevance

Concluding remarks

Vladislav Maraev et al. CLASP seminar · October 17, 2018 12 / 30



Minimal example
Proof-of-concept: basic interaction
U: hello
A: Hello world!

Primary KoS types

InformationState =def

[
private :

[
agenda : [Move]

]
dgb :

[
moves : [Move]

] ]

GreetingMove =def

spkr : Ind
addr : Ind
content :

[
c : greet(spkr, addr)

]


(GreetingMove ⊑ Move)

Vladislav Maraev et al. CLASP seminar · October 17, 2018 13 / 30



Countergreet the user

CGU : InformationState ∧
[
⟨LM is user-greeting⟩

]
→ InformationState ∧

[
⟨agenda is non-empty⟩

]
CGU = λs.

[
private=

[
agenda= cons(CGM, s.private.agenda)

]
dgb = s.dgb

]
,

where CGM =

spkr = agent
addr = user0
content=

[
c= θ

]
 (θ is a proof of greeting)

Vladislav Maraev et al. CLASP seminar · October 17, 2018 14 / 30



Also in the paper

1. Other update rules for integrating user moves and fulfilling
the agenda

2. Full example of update chain

Vladislav Maraev et al. CLASP seminar · October 17, 2018 15 / 30



Next

TTR, subtyping and update rules

Dialogue management

Question-answer relevance

Concluding remarks

Vladislav Maraev et al. CLASP seminar · October 17, 2018 16 / 30



Small extension to TTR

1. Support for boolean types: (true : Bool) and (false : Bool)
2. Support for conditionals:

– (IF true THEN x ELSE y) = x
– (IF false THEN x ELSE y) = y

Vladislav Maraev et al. CLASP seminar · October 17, 2018 17 / 30



Questions
Question definition is a way to establish connection between
possible answer and its interpretation in the context of question.

Question : Type

Question =def

[
A :Type
Q :A → Prop

]
PolarQuestion =def

[
A=Bool :Type
Q :A → Prop

]
UnaryWhQuestion =def

[
A=Ind :Type
Q :A → Prop

]

Vladislav Maraev et al. CLASP seminar · October 17, 2018 18 / 30



Example: wh-question

Question : Type

Question =def

[
A :Type
Q :A → Prop

]
UnaryWhQuestion =def

[
A=Ind :Type
Q :A → Prop

]

JWhere do you live?K = [
A =City
Q= λa.live(a)

]

Vladislav Maraev et al. CLASP seminar · October 17, 2018 19 / 30



Example: yn-question

Question : Type

Question =def

[
A :Type
Q :A → Prop

]
PolarQuestion =def

[
A=Bool :Type
Q :A → Prop

]

JDo you live in Aix?K =[
A =Bool
Q= λa. IF a THEN live(Aix) ELSE ¬live(Aix)

]

Vladislav Maraev et al. CLASP seminar · October 17, 2018 20 / 30



Answers
Recalling the definition of question:

Question : Type

Question =def

[
A :Type
Q :A → Prop

]

Answer will return record type for given question:

Answer : Question → Type

Answer =def λq.
[

answer : q.A
sit : q.Q(answer)

]
Note: (q.A:Type) and (q.Q(answer):Prop)

Vladislav Maraev et al. CLASP seminar · October 17, 2018 21 / 30



Example: answer to wh-question

Answer : Question → Type

Answer =def λq.
[

answer : q.A
sit : q.Q(answer)

]
JWhere do you live?K = [

A =City
Q= λa.live(a)

]

Answer(JWhere do you live?)K = [
answer :City
sit : live(answer)

]
Jin AixK(JWhere do you live?K) = [

answer=Aix
sit = θla

]

Vladislav Maraev et al. CLASP seminar · October 17, 2018 22 / 30



Example: answer to wh-question

Answer : Question → Type

Answer =def λq.
[

answer : q.A
sit : q.Q(answer)

]
JWhere do you live?K = [

A =City
Q= λa.live(a)

]

Answer(JWhere do you live?)K = [
answer :City
sit : live(answer)

]
Jin AixK(JWhere do you live?K) = [

answer=Aix
sit = θla

]

Vladislav Maraev et al. CLASP seminar · October 17, 2018 22 / 30



Example: answer to yn-question

Answer : Question → Type

Answer =def λq.
[

answer : q.A
sit : q.Q(answer)

]
JDo you live in Aix?K =[

A =Bool
Q= λa.IF a THEN live(Aix) ELSE ¬live(Aix)

]

Answer(JDo you live in Aix?K) =[
answer=Bool
sit = IF answer THEN live(Aix) ELSE ¬live(Aix)

]
JyesK(JDo you live in Aix?K) = [

answer= true
sit = θla

]

Vladislav Maraev et al. CLASP seminar · October 17, 2018 23 / 30



Example: answer to yn-question

Answer : Question → Type

Answer =def λq.
[

answer : q.A
sit : q.Q(answer)

]
JDo you live in Aix?K =[

A =Bool
Q= λa.IF a THEN live(Aix) ELSE ¬live(Aix)

]

Answer(JDo you live in Aix?K) =[
answer=Bool
sit = IF answer THEN live(Aix) ELSE ¬live(Aix)

]
JyesK(JDo you live in Aix?K) = [

answer= true
sit = θla

]
Vladislav Maraev et al. CLASP seminar · October 17, 2018 23 / 30



Also in the paper:

1. Dealing with answers in form of propositions (“I live in
Aix” instead of “in Aix”)

2. Partial (and incremental) resolution of answers, for
utterances like:

A: What do you want today?
U: A beer, please, and chips.

Vladislav Maraev et al. CLASP seminar · October 17, 2018 24 / 30



Next

TTR, subtyping and update rules

Dialogue management

Question-answer relevance

Concluding remarks

Vladislav Maraev et al. CLASP seminar · October 17, 2018 25 / 30



Concluding remarks

1. Our aim is to maintain tight connection between dialogue
theory and dialogue systems’ design

2. Dream system:
– maintains rich information state
– uses domain-dependent and domain-independent dialogue

rules
– learns probabilities for the rules

Vladislav Maraev et al. CLASP seminar · October 17, 2018 26 / 30



Questions?

speaker=Vlad : Ind
attendees : [Ind]
content : thank(speaker, attendees)



Vladislav Maraev et al. CLASP seminar · October 17, 2018 27 / 30



References I

Cooper, R. (2005). Records and record types in semantic theory. Journal of Logic
and Computation, 15(2):99–112.

Coquand, T., Kinoshita, Y., Nordström, B., and Takeyama, M. (2009). A simple
type-theoretic language: Mini-TT.

Ginzburg, J. (2012). The interactive stance. Oxford University Press.
Larsson, S. (2002). Issue-based dialogue management. Department of Linguistics,

Göteborg University.
Ranta, A. (1994). Type-theoretical grammar.

Vladislav Maraev et al. CLASP seminar · October 17, 2018 28 / 30



Update rules (Robin Cooper)

Update episode:

λr :
[
agenda=[

[
e : pick_up(a, c)

]
] : [RecType]

]
λe :

[
e : pick_up(a, c)

]
.[

agenda =
[
e : attract_attention(a,b)

]
: [RecType]

]
has a type:

[
agenda : [RecType]

]
→ (Rec → RecType)

… [it maps] an information state containing an agenda
(modelled as a record containing an agenda field) and
an event (modelled as a record) to a record type.

Vladislav Maraev et al. CLASP seminar · October 17, 2018 29 / 30



Update rules (our approach)

IS =
[
agenda : [Event]

]
UR : IS → Event → IS

URk : IS ∧
[
agenda = [

[
e : pick_up(a, c)

]
] : [Event]

]
→

[
e : pick_up(a, c)

]
→ IS ∧

[
agenda = [

[
e : attract_attention(a,b)

]
] : [Event]

]
and we also specify how the value is assigned:

URk : λs.λe.
[
agenda= [

[
e= θ(a,b)

]
]
]
,

where θ(a,b) : attract_attention(a,b) is a proof that an event
can be counted as such.

Vladislav Maraev et al. CLASP seminar · October 17, 2018 30 / 30


	TTR, subtyping and update rules
	Dialogue management
	Question-answer relevance
	Concluding remarks

