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Conversational relevance
(a) nice

A: What would you like to cook today?
U: Miso soup
A: How many portions?
U: Four

(b) not very nice
A: What would you like to cook today?
U: Four portions of miso soup
A: How many portions?
U: ???

Conversational relevance is crucial for dialogue management. In
this respect one should follow dialogue theories (in our case
KoS Ginzburg, 2012). There hasn’t been much progress in this
respect since the early 2000s (Larsson, 2002).
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Why (constructive) TTR

1. We use KoS (Ginzburg, 2012) which provides one of the
most detailed analysis of conversational relevance

2. KoS is based on the Type Theory with Records (TTR)
(Cooper, 2005)

3. Constructive type theories are used as a framework for
semantics (e.g. Ranta, 1994)

4. TTR is set-theoretic, and hereby we are presenting
proof-theoretic (constructive) version of it; our
implementation follows MiniTT (Coquand et al., 2009)
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TTR: types
– judgements

a : Ind
a is a witness of (the type) Ind(ividual)

– ptypes: greet(speaker, addressee)
– record typesspeaker : Ind

addressee : Ind
content : greet(speaker, addressee)


– records

(1) is a witness of the type above iff a : Ind, b : Ind,
θ : greet(speaker, addressee) and the weather doesn’t
matter. 

speaker = a
addressee= b
content = θ
weather = sunny

 (1)
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TTR: type construction operators
– Function types

(T1 → T2)

– List types
[T], ne[T], operations on lists: cons, head and tail

– Meet types (merge “∧
·
” in Cooper’s TTR)

[
f :Pasta

]
∧
[

f :Cheese
d :Wine

]
reduces to

[
f :Pasta ∧ Cheese
d :Wine

]
– Singleton types

if T is a type and x:T, then Tx is a type. a:Tx iff a = x.
In record types we use manifest field notation to a
represent singleton type. Notations [a : Tx] and [a = x : T]
represent the same object.
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Subtyping
Assuming that Pasta ⊑ Food and spaghetti : Pasta:[

x :Pasta
]
⊑

[
x :Food

]
(2)[

x :Pasta
c : tasty(x)

]
⊑

[
x :Pasta

]
(3)

[
x :Pasta

]
̸⊑

[
x :Pasta
c : tasty(x)

]
(4)[

x=spaghetti :Food
]
⊑

[
x :Pasta

]
(5)[

x :Foodspaghetti
]
⊑

[
x :Pasta

]
(6)

Given that s : S, s =
[
x= spaghetti

]
and S =

[
x :Food

]
Ss ⊑

[
x=spaghetti :Food

]
(7)
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Update rules
1. We maintain dialogue state as a pair of a value and a type

(s,S) such that s : S

2. Update rules are defined

r : A → B

3. Applicability condition

Ss ⊑ A

4. After applying of the rule r state becomes

(r(s),B)
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Example (state and rules)
(si : Si), s1 =

[
x= spaghetti

]
, S1 =

[
x :Pasta

]
rcook :

[
x :Pasta

]
→

[
x :Pasta
c : cooked(x)

]
rcook =λs.

[
x= s.x
c = θc(x)

]
,

where θc(x) is a proof that the spaghetti is cooked.

rserve :

[
x :Pasta
c : cooked(x)

]
→

x :Pasta
c : cooked(x)
d : served(x)


rserve =λs.

x = s.x
c = s.c
d= θd(x)

 ,

where θd(x) is a proof that the spaghetti is served.
Vladislav Maraev et al. CLASP seminar · October 17, 2018 10 / 30



Example (change of state)
S1 =

[
x :Pasta

]
s1 =

[
x= spaghetti

]

S2 =

[
x :Pasta
c : cooked(x)

]
s2 = rcook(s1) =

[
x= spaghetti
c = θc(x)

]

S3 =

x :Pasta
c : cooked(x)
d : served(x)


s3 = rserve(s2) =

x = spaghetti
c = θc(x)
d= θd(x)
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Minimal example
Proof-of-concept: basic interaction
U: hello
A: Hello world!

Primary KoS types

InformationState =def

[
private :

[
agenda : [Move]

]
dgb :

[
moves : [Move]

] ]

GreetingMove =def

spkr : Ind
addr : Ind
content :

[
c : greet(spkr, addr)

]


(GreetingMove ⊑ Move)

Vladislav Maraev et al. CLASP seminar · October 17, 2018 13 / 30



Countergreet the user

CGU : InformationState ∧
[
⟨LM is user-greeting⟩

]
→ InformationState ∧

[
⟨agenda is non-empty⟩

]
CGU = λs.

[
private=

[
agenda= cons(CGM, s.private.agenda)

]
dgb = s.dgb

]
,

where CGM =

spkr = agent
addr = user0
content=

[
c= θ

]
 (θ is a proof of greeting)
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Also in the paper

1. Other update rules for integrating user moves and fulfilling
the agenda

2. Full example of update chain
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Small extension to TTR

1. Support for boolean types: (true : Bool) and (false : Bool)
2. Support for conditionals:

– (IF true THEN x ELSE y) = x
– (IF false THEN x ELSE y) = y
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Questions
Question definition is a way to establish connection between
possible answer and its interpretation in the context of question.

Question : Type

Question =def

[
A :Type
Q :A → Prop

]
PolarQuestion =def

[
A=Bool :Type
Q :A → Prop

]
UnaryWhQuestion =def

[
A=Ind :Type
Q :A → Prop

]
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Example: wh-question

Question : Type

Question =def

[
A :Type
Q :A → Prop

]
UnaryWhQuestion =def

[
A=Ind :Type
Q :A → Prop

]

JWhere do you live?K = [
A =City
Q= λa.live(a)

]
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Example: yn-question

Question : Type

Question =def

[
A :Type
Q :A → Prop

]
PolarQuestion =def

[
A=Bool :Type
Q :A → Prop

]

JDo you live in Aix?K =[
A =Bool
Q= λa. IF a THEN live(Aix) ELSE ¬live(Aix)

]
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Answers
Recalling the definition of question:

Question : Type

Question =def

[
A :Type
Q :A → Prop

]

Answer will return record type for given question:

Answer : Question → Type

Answer =def λq.
[

answer : q.A
sit : q.Q(answer)

]
Note: (q.A:Type) and (q.Q(answer):Prop)
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Example: answer to wh-question

Answer : Question → Type

Answer =def λq.
[

answer : q.A
sit : q.Q(answer)

]
JWhere do you live?K = [

A =City
Q= λa.live(a)

]

Answer(JWhere do you live?)K = [
answer :City
sit : live(answer)

]
Jin AixK(JWhere do you live?K) = [

answer=Aix
sit = θla

]
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Also in the paper:

1. Dealing with answers in form of propositions (“I live in
Aix” instead of “in Aix”)

2. Partial (and incremental) resolution of answers, for
utterances like:

A: What do you want today?
U: A beer, please, and chips.
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Concluding remarks

1. Our aim is to maintain tight connection between dialogue
theory and dialogue systems’ design

2. Dream system:
– maintains rich information state
– uses domain-dependent and domain-independent dialogue

rules
– learns probabilities for the rules
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Questions?

speaker=Vlad : Ind
attendees : [Ind]
content : thank(speaker, attendees)
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Update rules (Robin Cooper)

Update episode:

λr :
[
agenda=[

[
e : pick_up(a, c)

]
] : [RecType]

]
λe :

[
e : pick_up(a, c)

]
.[

agenda =
[
e : attract_attention(a,b)

]
: [RecType]

]
has a type:

[
agenda : [RecType]

]
→ (Rec → RecType)

… [it maps] an information state containing an agenda
(modelled as a record containing an agenda field) and
an event (modelled as a record) to a record type.
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Update rules (our approach)

IS =
[
agenda : [Event]

]
UR : IS → Event → IS

URk : IS ∧
[
agenda = [

[
e : pick_up(a, c)

]
] : [Event]

]
→

[
e : pick_up(a, c)

]
→ IS ∧

[
agenda = [

[
e : attract_attention(a,b)

]
] : [Event]

]
and we also specify how the value is assigned:

URk : λs.λe.
[
agenda= [

[
e= θ(a,b)

]
]
]
,

where θ(a,b) : attract_attention(a,b) is a proof that an event
can be counted as such.
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