Tabula nearly rasa: Probing the linguistic knowledge of character-level neural language models trained on unsegmented text

Marco Baroni and Michael Hahn

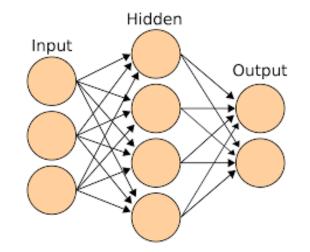
Outline

Motivation

• Linguistic challenges for near-tabula-rasa RNNs

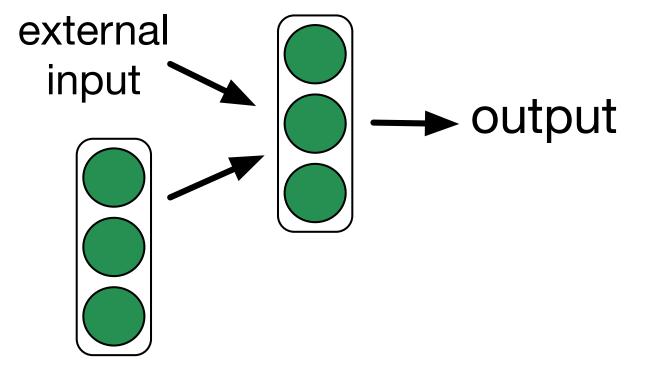
• Discussion

Probing neural networks as comparative psychology

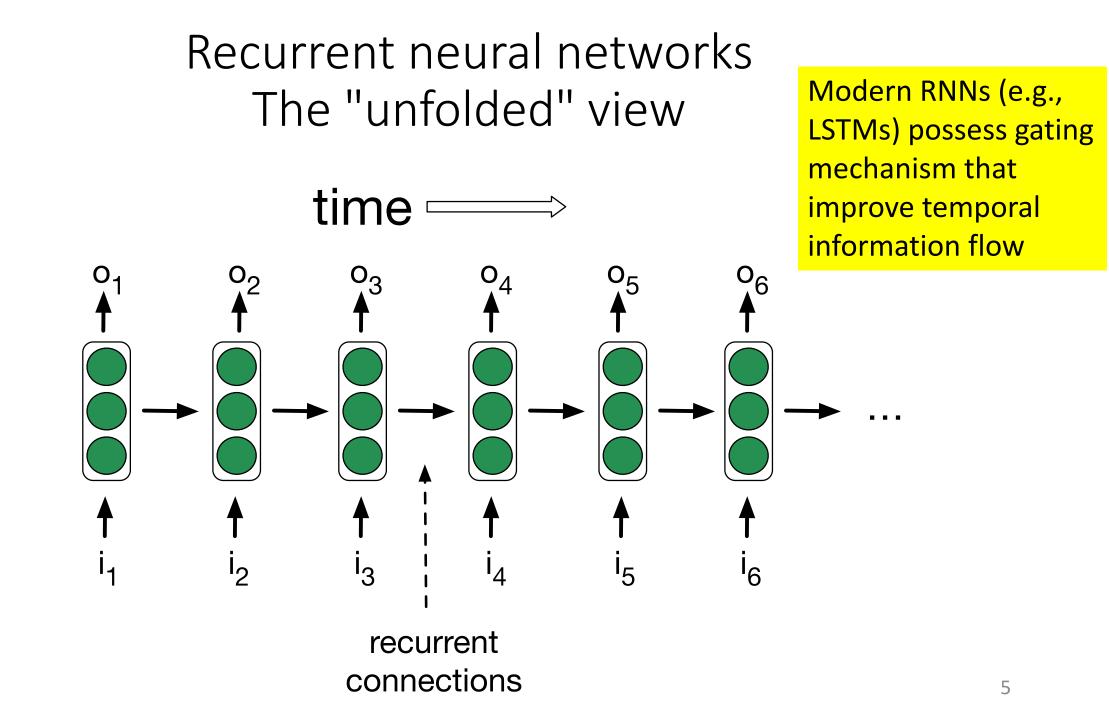


This is the "good cop" talk, come back on Wednesday for the "bad cop"

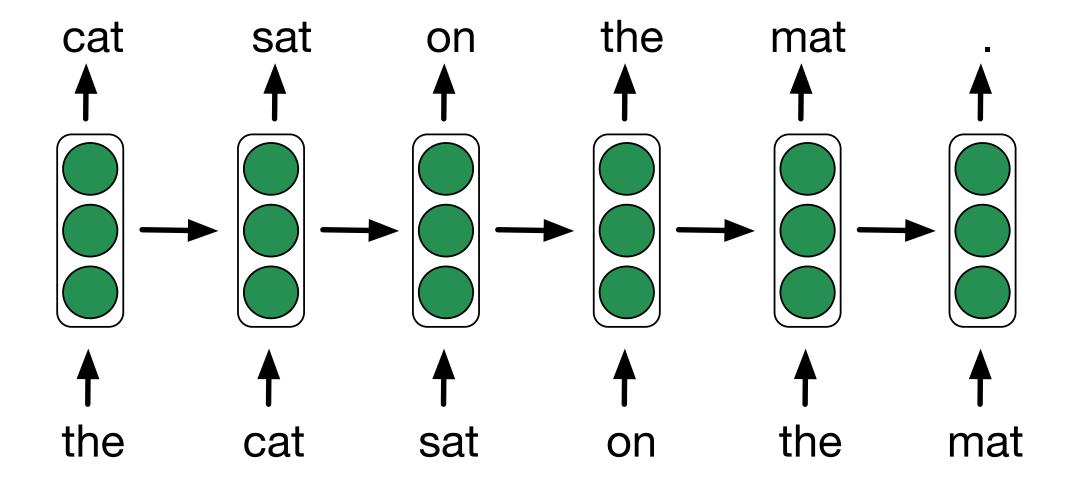
Recurrent neural networks

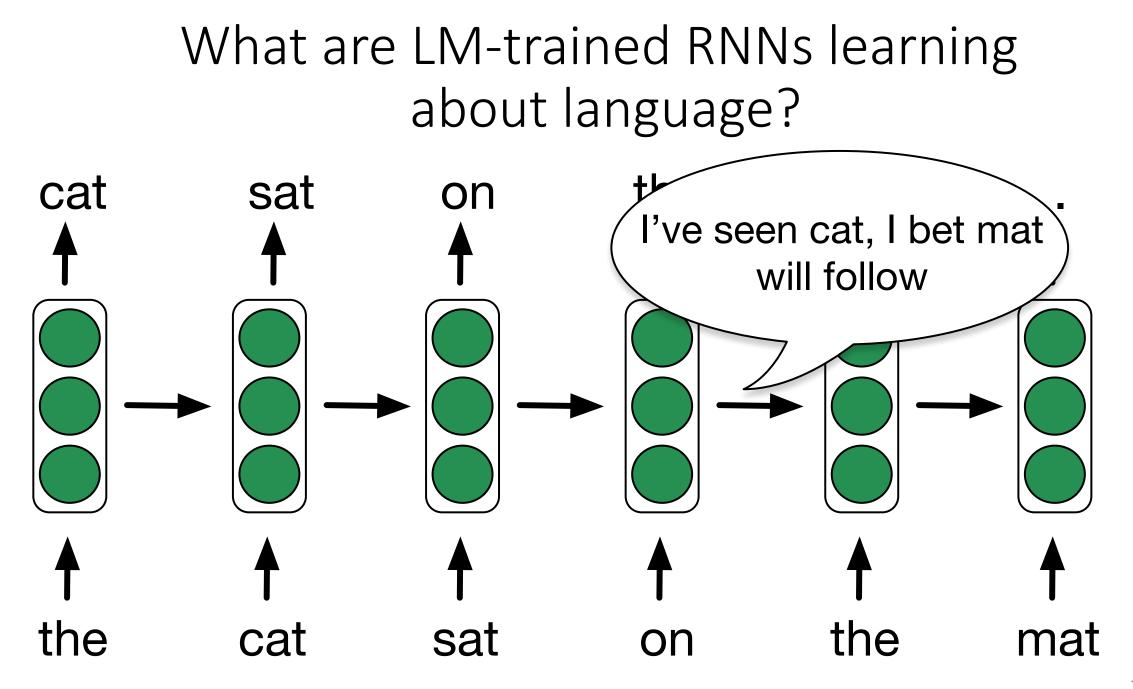


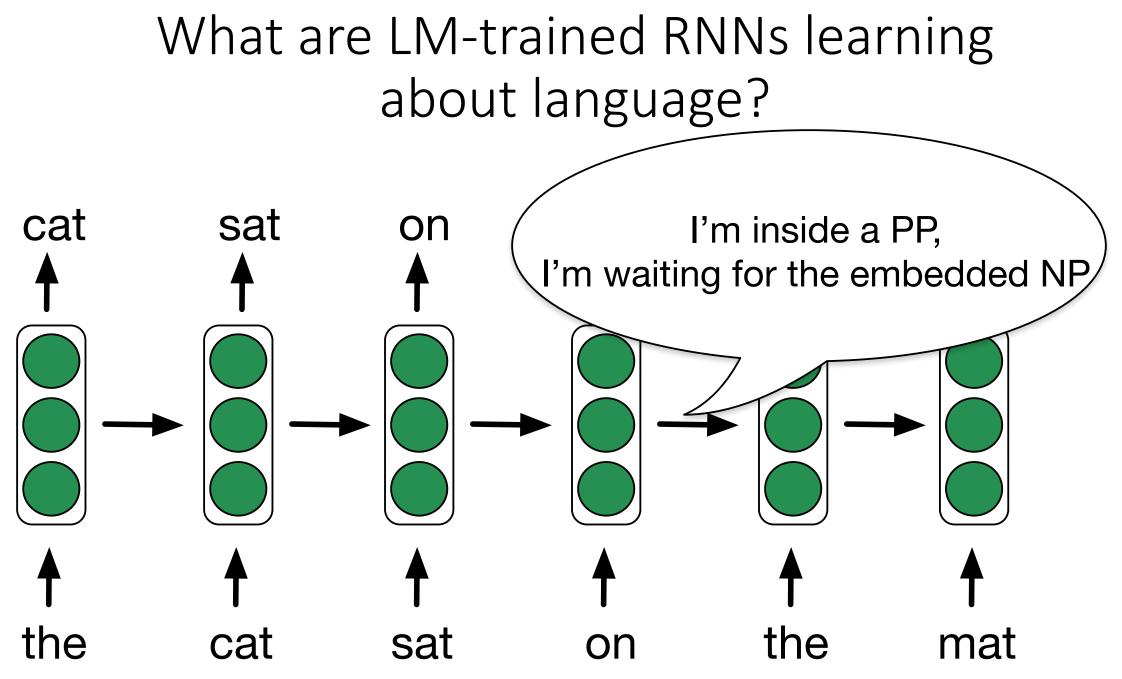
state of the network at the previous time step



The language modeling training objective



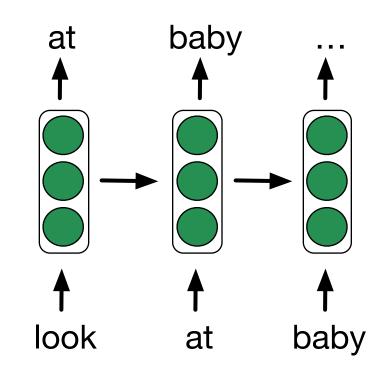




Words as prior knowledge?

lookat…ba..by? ▲

† lookatbaby

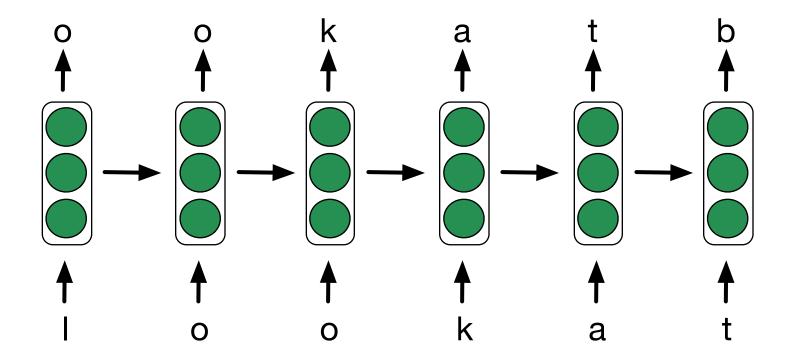


A finite set of words as primitives?

- iPad, covfefe, hipsterical...
- pre-, hyper-, -ment, -wise, Hong Kong, hot dog, kill the breeze, spend the night, the X-er the Y-er...
- t-ə-meyŋ-ə-levt-pəγt-ə-rkən
 1.SG.SUBJ-great-head-hurt-PRES.1
 "I have a fierce headache"
 (Chukchi, from Wikipedia)

Our study

• Train a character-level RNN on language model objective, feeding it input without spaces



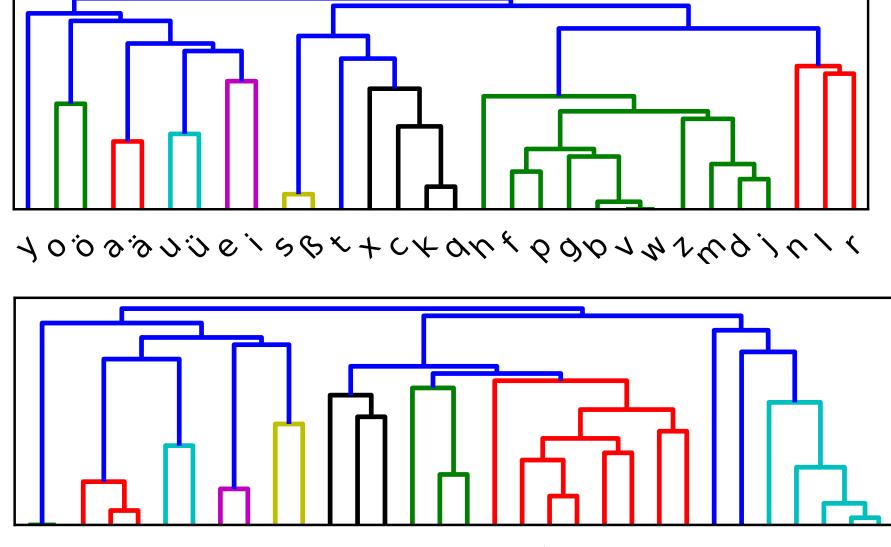
 Test the trained RNN to probe its linguistic knowledge at different levels Linguistic challenges for character-based RNNs

Models and training regime

- LSTM: an LSTM trained at the character level on unsegmented text
- RNN: a "vanilla" RNN trained at the character level on unsegmented text
- WordNLM: an LSTM trained at the word level on segmented text
- Models trained on Wikpedia fragments containing 819M (German), 463M (Italian) and 2,333M (English) words
- Training for 72 hours
- Best hyperparameters determined on Wikipedia-based validation set
- All best models attain reasonable language modeling performance on Wikipedia-based test set

Phonology

Clustering of LSTM output character embeddings



Italian:

Discovering phonotactic constraints

- Create pairs of acceptable and unacceptable letter bigrams such that:
 - They reasonably reflect the language phonology
 - They share the first letter
 - The second letter has larger unigram probability in the unacceptable bigram

tu *td (in Italian)

- Re-train the models on versions of the corpora with either bigram removed
- Compute probability assigned by re-trained model to acceptable vs. unacceptable bigrams

Discovering phonotactic constraints

German				Italian			
LSTM RNN			LSTM RNN				
bu	bt	4.6	0.2	bu	bd	≈ 1	pprox 0
do	dd	1.9	0.1	du	dt	1.3	pprox 0
fu	ft	6.5	≈ 0	fu	ft	30.5	pprox 0
po	pt	6.4	0.1	pu	pt	6.8	pprox 0
tu	tt	5.4	≈ 0	tu	td	0.2	pprox 0
zu	zt	2.4	0.2	vu	vd	2.0	pprox 0
bl	bd	0.8	0.2	zu	zt	55.7	pprox 0
fl	fd	2.1	0.8	br	bt	≈ 1	pprox 0
fr	fn	2.7	0.1	dr	dt	2.5	0.4
kl	kt	3.8	0.1	fr	ft	2.9	pprox 0
pl	pt	2.5	0.9	pr	pt	5.0	pprox 0
A	M	3.6	0.2	A	M	10.7	pprox 0
GM		3.0	0.1	GI	N	3.2	pprox 0

likelihood ratios of acceptable/unacceptable bigrams

Word segmentation

Word segmentation

- Train a classifier to predict if character is word-initial
- Features use probabilities computed by pre-trained models:
 - *surprisal*: log-probability of character given prior context
 - entropy of character distribution given prior context
 - context *PMI*, computed as total log-likelihood of next 20 characters considering previous 20 characters context minus unconditioned loglikelihood
- Features computed for 6-character windows, resulting in 21-feature classifier

Segmentation results precision/recall/F1

- Wikipedia test data: LSTM RNN 8-grams 66/60/63 63/60/61 56/51/53 English 57/52/55 German 53/49/51 43/36/39 62/57/60 48/40/44 Italian 64/57/60
- Brent child-directed English corpus (with re-training):

	LSTM	Bayesian	
Tokens	75.3/76.6/76.0	74.9/69.8/72.3	-
Lexical	41.2/61.2/49.2	63.6/60.2/61.9	
Boundaries	91.3/90.0/90.5	93.0/86.7/89.8	20

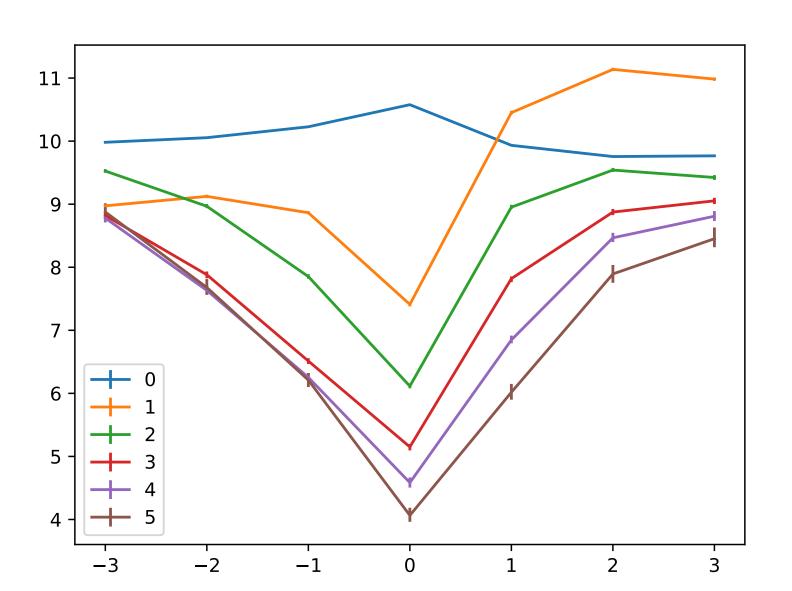
Most frequent **under**segmentations

Most frequent **over**segmentations

- morethan, aswellas, tothe, basedon, canbe, didnot, accordingto, oneofthe, knownas, tobe, dueto, itis, onthe, itwas, suchas, inthe, isa, asa, atthe, ofthe
- highschool, newyork, unitedstates
- useof, memberof, universityof, numberof, endof, oneof, partof

- re, de, un, pro, en, co
- ing, ed, ly, er, al, es, ic, ers
- in, to, on, an, the, or
- man, land
- ma, ra, la, le, ta, na, ro, se

Model-based context PMI at constituent boundaries



in German validation set

Morphological categories

Nouns vs Verbs

 500 verbs and nouns ending in *-en* (German) and *-re* (Italian) from the training corpus

cantare altare V N

- 10 verbs and nouns for training, the rest for testing
- Classifier trained on last hidden state of pre-trained language model after it reads a full word

Nouns vs Verbs: results accuracy and std error over 100 random train/test splits

	German	Italian
LSTM	89.0 (± 0.14)	95.0 (± 0.10)
RNN	$82.0 (\pm 0.64)$	91.9 (± 0.24)
Autoencoder	65.1 (± 0.22)	$82.8~(\pm 0.26)$
WordNLM _{subs}	$97.4~(\pm 0.05)$	$96.0~(\pm 0.06)$
WordNLM WordNLM	53.5 (± 0.18)	$62.5~(\pm 0.26)$

Excluding OOVs

Number across German nominal classes

- Generalize number classifier across pural types
 - E.g., train on Geschichte / Geschichten, test on Tochter / Töchter
- Training classes: -n, -s, -e
- Test classes: -r, Umlaut
- Data from German Universal Dependencies treebank
- 15 singulars and plurals per training class (controlling for length)
- Test on all remaining pairs in training and test classes

Number results

accuracy and std error over 200 random train/test splits

train classes	classes test classes	
-n/-s/-e	- <i>Y</i>	Umlaut
77.9 (± 0.8)	$88.2 (\pm 0.3)$	$52.8 (\pm 0.6)$
$70.3 (\pm 0.9)$	$81.3 (\pm 0.7)$	$53.3 (\pm 0.6)$
$64.0 (\pm 1.0)$	73.8 (\pm 0.6)	$59.2 (\pm 0.5)$
97.8 (\pm 0.3)	$86.6 (\pm 0.2)$	96.7 (± 0.2)
$ 82.1 (\pm 0.1)$	$ 73.1(\pm 0.1) $	77.6 (± 0.1)
	$ \begin{array}{c c} -n/-s/-e \\ \hline 77.9 (\pm 0.8) \\ 70.3 (\pm 0.9) \\ 64.0 (\pm 1.0) \\ 97.8 (\pm 0.3) \end{array} $	

Excluding OOVs

Syntactic dependencies

German gender agreement

{der, die, das} sehr extrem unglaublich rote Baum
the very extremely incredibly red tree

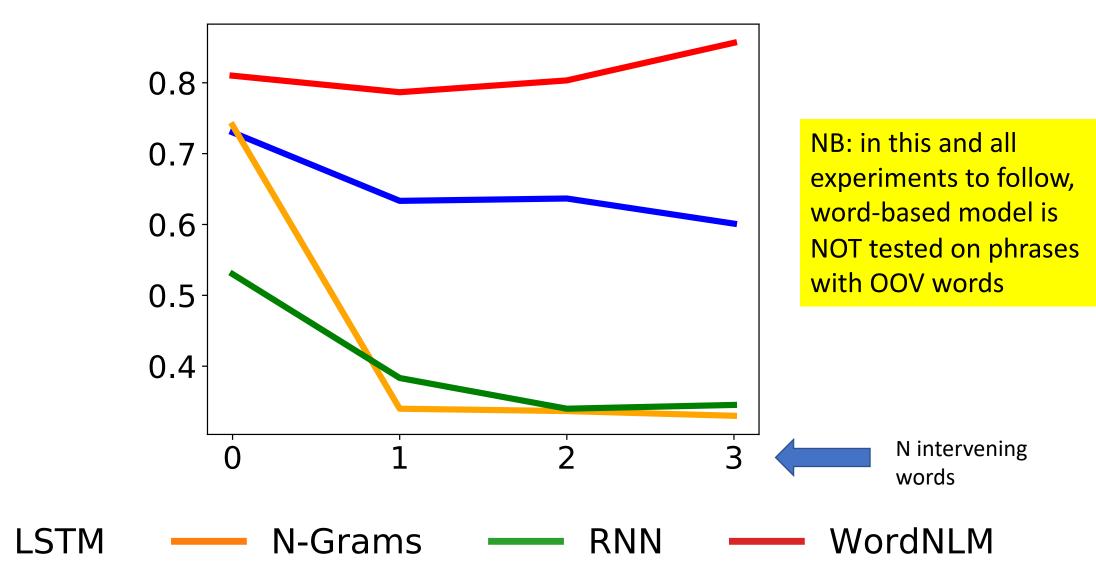
- Nominal forms from the Universal Dependencies treebank (~ 7k stimuli)
- Pre-trained character-based model fed 3 variations of each sentence without whitespace, lower-cased, delimited by periods
 .dersehrextremunglaublichrotebaum.
- Model must assign highest probability to version with correct case

NB: "long-distance" for word- vs character-based models

. das rote baum .

.dasrotebaum.

German gender agreement



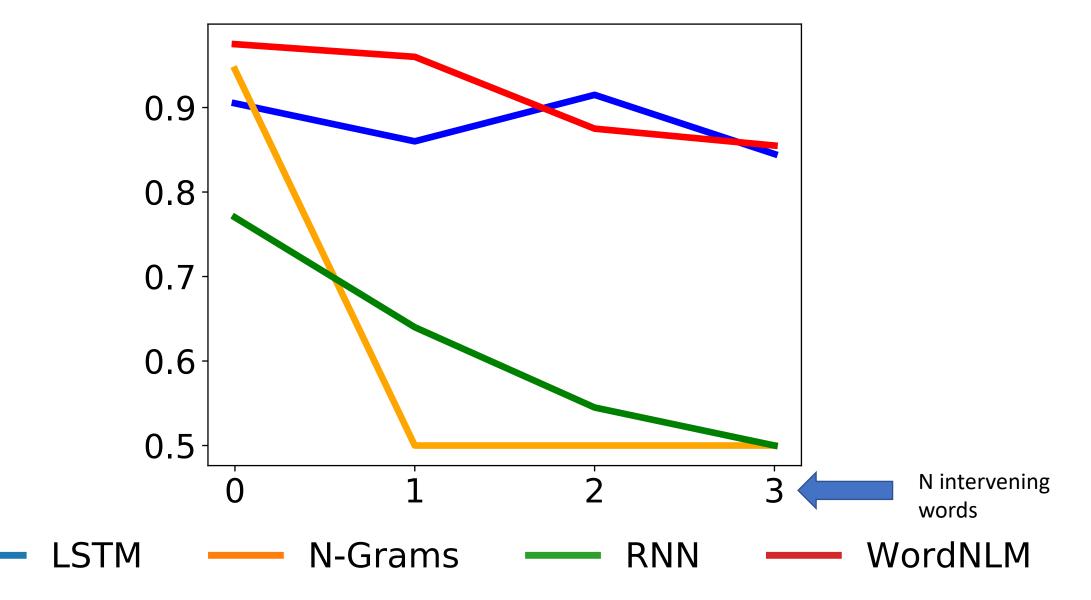
German case agreement

{dem, des} sehr extrem unglaublich roten Baum to/of-the very extremely incredibly red tree (dative)

{dem, <u>des</u>} sehr extrem unglaublich roten Baums to/<u>of-</u>the very extremely incredibly red tree (genitive)

- Nominal forms from the Universal Dependencies treebank, paradigms from Wiktionary (~ 9k stimuli)
- Model testing as above

German case agreement

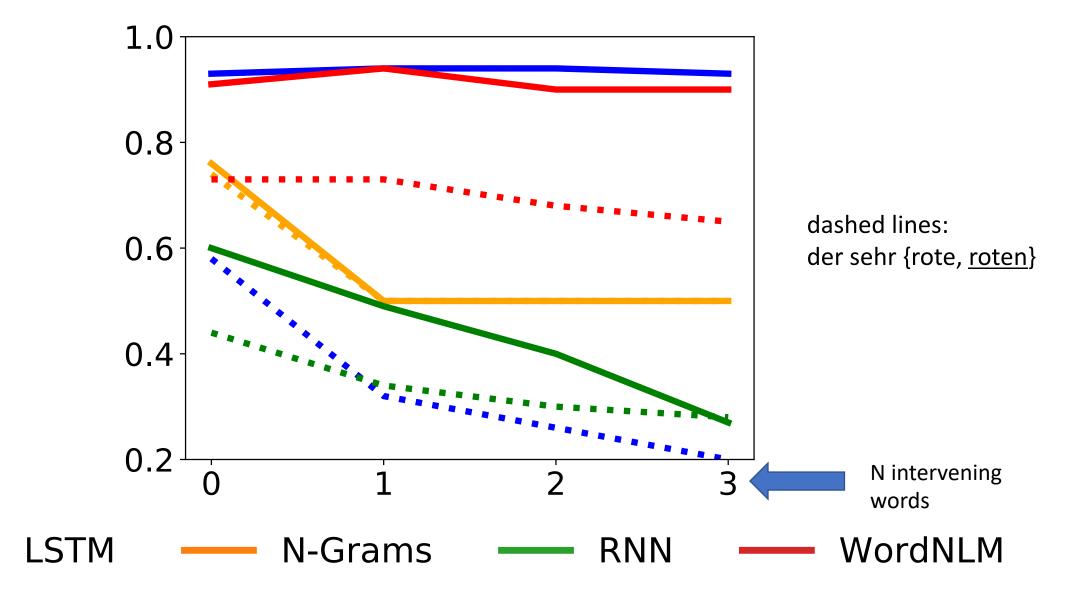


German case subcategorization

mit der sehr extrem unglaublich {rote, roten}
with the very extremely incredibly red one (dat.)

- Embedded in sentences for more natural context, extracted from Universal Dependencies treebank (~1.6k stimuli)
- Model testing as above

German case subcategorization



Italian article-noun gender agreement

il congeniale {<u>candidato</u>, candidata} the (m.) congenial candidate

la congeniale {candidato, <u>candidata</u>} the (f.) congenial candidate

- ~30k stimuli, selected based on corpus frequency and checked for semantic well-formedness
- No adjective-noun combination attested in training corpus
- Model testing as in German

Italian article-adjective gender agreement

il meno {<u>alieno</u>, aliena} the (m.) less alien

la meno {alieno, <u>aliena</u>} the (f.) less alien

• ~200 stimuli, with similar selection conditions as above

Italian article-adjective number agreement

la meno {<u>aliena</u>, aliene} the (s.) less alien

le meno {aliena, <u>aliene</u>} the (p.) less alien

• ~200 stimuli, with similar selection conditions as above

Italian syntactic dependency results

	CNLM		WordNLM	
	LSTM	RNN		
Noun Gender	93.1	79.2	97.4	
Adj. Gender	99.5	98.9	99.5	
Adj. Number	99.0	84.5	100.0	

Semantics

Microsoft Research Sentence Completion

Zweig and Burgess 2011

Was she his _____, his friend, or his mistress?

<mark>client</mark>

musings discomfiture choice opportunity

- ~1k sentences from Sherlock Holmes novels
- Chosen to be hard for language models

Microsoft Research Sentence Completion

• Evaluate pre-trained models by feeding sentence with each variant, picking most likely one as model guess

- Big gap between Wikipedia and Sherlock Holmes
- Also re-trained models with provided training data from 19th century novels (~ 41.5M words)
 - No further hyperparameter tuning

MSR Sentence Completion: Results (accuracies)

From the literature KNN WordNLM		34.1/59.0 24.3/24.0 37.1/63.3	Our models with out/in domain training		
KN5	40.0	Skipgram			48.0
Word RNN	45.0 Skipgram + RN		INs	58.9	
Word LSTM	56.0 PM		MI		61.4
LdTreeLSTM	60.7 Co		ontext Embed	dings	65.1

What have we learned?

Summary

- LSTMs trained to predict next character in unsegmented large corpus implicitly discover phonological, lexical, morphological, syntactic, semantic generalizations
- Systematically better than n-gram controls (thus, not only relying on shallow co-occurrence statistics)
- Not as good as word-trained model, but not much worse either, suggesting words are helfpul prior but not fundamental
- LSTMs generally outperform RNNs: better (or faster) learners in character domain, where information has to be carried through longer stretches of time 45

Where next?

- How much does training corpus size matter?
 - See bad-cop talk on Wednesday
- How is lexical knowledge implicitly encoded in the weights of the character-based LSTM language model?
- Can we use character-based models for better accounts of domains where word-centric view fails?
 - Polysynthetic, agglutinative languages
 - Morphemes, compounds, idioms, constructions...

