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Probing neural networks 
as comparative psychology
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This is the "good cop" talk,
come back on Wednesday for the "bad cop"
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Recurrent neural networks
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Recurrent neural networks
The "unfolded" view
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The language modeling training objective

on the mat

sat

the cat sat

oncat the mat .
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What are LM-trained RNNs learning
about language?

on the mat

sat

the cat sat

oncat the mat .
I’ve seen cat, I bet mat

will follow
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What are LM-trained RNNs learning 
about language?
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the cat sat

oncat the mat .I’m inside a PP, 
I’m waiting for the embedded NP



Words as prior knowledge?
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look at baby

…at
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lookat...ba..by?



A finite set of words as primitives?
• iPad, covfefe, hipsterical...

• pre-, hyper-, -ment, -wise, Hong Kong, hot dog, kill the breeze, spend 
the night, the X-er the Y-er...

• t-ə-meyŋ-ə-levt-pəγt-ə-rkən
1.SG.SUBJ-great-head-hurt-PRES.1
"I have a fierce headache"
(Chukchi, from Wikipedia)
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Our study
• Train a character-level RNN on language model objective, feeding 

it input without spaces 

• Test the trained RNN to probe its linguistic knowledge at different 
levels 11
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Linguistic challenges for 
character-based RNNs
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Models and training regime

• LSTM: an LSTM trained at the character level on unsegmented text
• RNN: a "vanilla" RNN trained at the character level on unsegmented 

text
• WordNLM: an LSTM trained at the word level on segmented text

• Models trained on Wikpedia fragments containing 819M (German), 
463M (Italian) and 2,333M (English) words
• Training for 72 hours
• Best hyperparameters determined on Wikipedia-based validation set
• All best models attain reasonable language modeling performance on 

Wikipedia-based test set
13



Phonology
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Clustering of LSTM output character embeddings
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German:

Italian:



Discovering phonotactic constraints

• Create pairs of acceptable and unacceptable letter bigrams such that:
• They reasonably reflect the language phonology
• They share the first letter
• The second letter has larger unigram probability in the unacceptable bigram

• Re-train the models on versions of the corpora with either bigram 
removed
• Compute probability assigned by re-trained model to acceptable vs. 

unacceptable bigrams

16
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Discovering phonotactic constraints
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Figure 1: Clustering of German character embeddings
(alphabetic characters only)

phonological classes in all languages. This is il-
lustrated for German in Figure 1. We see a basic
split between vowels and consonants. Within the
vowels, the front vowels e and i cluster together.
Within the consonants, we observe a cluster of
alveolar sonorants (n, l, r). The labial/labiodental
f, p, b, v, w plus intruder g form a cluster. Symbols
often denoting velar or palatal sounds, such as c, k
and q cluster together. The s and ß letters, that, de-
pending on context, denote the same or closely re-
lated sounds, cluster together. While the clustering
does not reflect a single, consistent phonological
dimension, it definitely suggests that the CNLM
has discovered a fair deal about the features orga-
nizing the phonological system of the language.

Discovering phonotactic constraints Next, we
study whether the CNLM is capturing phonotac-
tic constraints more quantitatively. We focus on
German and Italian, as they have reasonably trans-
parent orthographies. We construct pairs of letter
bigrams (picked to closely approximate phoneme
bigrams) with the same first letter, but such that
one is phonotactically acceptable in the language
and the other isn’t. We control letter frequencies
such that the independent unigram probability of
the unacceptable bigram is higher than that of the
acceptable one. For example, “br” is an accept-
able Italian sequence and “bt” isn’t, although t is
more frequent than r. For each such pair, we re-
train the CNLMs on a version of the training par-
tition from which all words containing either bi-
gram have been removed. We then look at the
likelihood the re-trained model assigns to both se-
quences. If the re-trained models systematically
assign a larger probability to correct sequences,
this provides evidence that the CNLM implicitly
possesses a notion of phonological categories such
as stops and sonorants, which allows it to correctly
generalize from attested sequences (e.g., “tr”) to
unattested ones (“br”). In both languages, we
constructed two groups of bigrams: In one, the

German Italian
LSTM RNN LSTM RNN

bu bt 4.6 0.2 bu bd ⇡ 1 ⇡ 0
do dd 1.9 0.1 du dt 1.3 ⇡ 0
fu ft 6.5 ⇡ 0 fu ft 30.5 ⇡ 0
po pt 6.4 0.1 pu pt 6.8 ⇡ 0
tu tt 5.4 ⇡ 0 tu td 0.2 ⇡ 0
zu zt 2.4 0.2 vu vd 2.0 ⇡ 0
bl bd 0.8 0.2 zu zt 55.7 ⇡ 0
fl fd 2.1 0.8 br bt ⇡ 1 ⇡ 0
fr fn 2.7 0.1 dr dt 2.5 0.4
kl kt 3.8 0.1 fr ft 2.9 ⇡ 0
pl pt 2.5 0.9 pr pt 5.0 ⇡ 0
AM 3.6 0.2 AM 10.7 ⇡ 0
GM 3.0 0.1 GM 3.2 ⇡ 0

Table 2: Likelihood ratio between acceptable and un-
acceptable bigrams, with arithmetic (AM) and geomet-
ric (GM) means. Values > 1 in bold.

valid bigram had a vowel following an obstruent;
in the other, the obstruent was followed by a liq-
uid. In both cases, in the invalid bigram, the ob-
struent was followed by a stop or nasal.

Results are shown in Table 2 for all bigram pairs
(acceptable: left, impossible: right). The LSTM
assigns higher probability to the acceptable bi-
grams in all but two cases. This confirms that
it has learnt about phonological categories such
as vowels and consonants and their phonotactic
properties. The model makes the correct general-
izations entirely on the basis of distributional ev-
idence, with no aid from perceptual or articula-
tory cues. The RNN systematically prefers the im-
possible bigrams, presumably because they have
higher unigram probability. The dramatic differ-
ence is surprising, since the relevant generaliza-
tions pertain to adjacent symbols that either model
should capture. Possibly, although the tested rules
are local, phonological categories are better learnt
by a model that can extract generalizations about
phoneme classes from wider contexts.

4.2 Word segmentation

We tested whether our CNLM developed an im-
plicit notion of word, despite not being endowed
with a hard-coded word dictionary, and being ex-
posed to unsegmented input. Early work on word
segmentation has shown that low transition prob-
abilities (Harris, 1954; Saffran et al., 1996), high
uncertainty about the next character (Cohen and
Adams, 2001; Feng et al., 2004) and low mutual
information (Sun et al., 1998) serve as statistical

17
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Word segmentation



Word segmentation

• Train a classifier to predict if character is word-initial
• Features use probabilities computed by pre-trained models:
• surprisal: log-probability of character given prior context
• entropy of character distribution given prior context
• context PMI, computed as total log-likelihood of next 20 characters 

considering previous 20 characters context minus unconditioned log-
likelihood

• Features computed for 6-character windows, resulting in 21-feature 
classifier

19



Segmentation results
precision/recall/F1

• Wikipedia test data:

• Brent child-directed English corpus (with re-training):

20
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LSTM RNN 8-grams
English 66/60/63 63/60/61 56/51/53
German 57/52/55 53/49/51 43/36/39
Italian 64/57/60 62/57/60 48/40/44

Table 3: Percentage precision, recall, and F1 on test
set word segmentation.

cues to word segmentation. Based on these con-
siderations, we tested the model segmentation ca-
pabilities as follows. We used the development
sets to train logistic classifiers predicting whether
a character is first in a word or not, based on the
following features, derived from the pre-trained
CNLMs without further tuning: (1) surprisal, the
log-probability of the character given prior con-
text, (2) entropy of the distribution over the charac-
ter given prior context, (3) context PMI, that is, the
total likelihood of the next 20 characters, minus
the unconditional likelihood estimated by starting
the CNLM at the current position. We collected
these quantities for each position and the preced-
ing and following three characters, resulting in a
21-feature classifier. We repeated the experiment
with features extracted from a character-level 8-
gram model estimated on the training set, closer to
earlier non-neural work (Saffran et al., 1996; Feng
et al., 2004).

Results are in Table 3. The CNLM-based clas-
sifiers robustly segment more than half of the to-
kens correctly, and do considerably better than the
8-gram model, with a slight edge for the LSTM.

How does the LSTM compare to ad-hoc word
segmentation models? We look at the Bayesian bi-
gram model of Goldwater et al. (2009), an elegant
approach using a hierarchical Dirichlet process.
The latter, unlike our method, is unsupervised, but
it has a specifically designed built-in bias towards
a discrete lexicon with a power-law frequency dis-
tribution. Note that, while supervised, our model
is rather parameter-lean, consisting in a logistic
classifier trained on 21 features.

Running Bayesian methods on Wikipedia
dumps is computationally unfeasible. We re-
trained instead the LSTM (with fixed hyperpa-
rameters) on the Brent corpus of English child-
directed speech (Brent, 1999) also used by Gold-
water and colleagues. We used 90% to train
our language model, 5% to fit the logistic classi-
fier, and 5% for evaluating both the classifier and
the Bayesian model on word segmentation. The
Bayesian model is trained on the full data-set, as it

LSTM Bayesian
Tokens 75.3/76.6/76.0 74.9/69.8/72.3
Lexical 41.2/61.2/49.2 63.6/60.2/61.9
Boundaries 91.3/90.0/90.5 93.0/86.7/89.8

Table 4: Word segmentation results (percentage preci-
sion/recall/F1) on our test partition of the Brent corpus
for our CNLM-based model and the Bayesian approach
of Goldwater et al. (2009). Following them, we evalu-
ate at the level of tokens, the lexicon of induced word
types, and boundaries.

does not rely on word boundary information dur-
ing training. Results in Table 4 show that the
CNLM performance is comparable to that of the
sophisticated Bayesian segmentation method.

We looked at common errors made by the En-
glish CNLM-based segmenter. Considering first
the 30 most common undersegmentations in the
test set (that is, cases in which the model failed
to split two or more words): About half (16) are
function word sequences that could reasonably be
re-analyzed as single words (e.g., more than, as
well as, such as). Of the remaining cases, 8 fol-
low the N of pattern, where N is a (typically rela-
tional) noun commonly occurring in this construc-
tion (member of, end of, part of . . . ). There are
3 fixed multi-word expressions (New York, United
States and high school). The final undersegmenta-
tions based on, known as and according to can be
seen as lexicalized connectives, especially in the
Wikipedia text the model was trained on.

The picture is murkier but still fairly linguis-
tically grounded for the 30 most common over-
segmentation errors (that is, character fragments
that are wrongly segmented from inside the largest
number of distinct words).7 More than half (17)
are common affixes (prefixes such as re and de or
suffixes such as ing and ly). 3 strings identical to
frequent function words were wrongly carved out
of longer words (the, to and on). The strings land
and man are not unreasonably segmented out of
compounds. It’s hard to find a linguistically sound
motivation for the 8 remaining top oversegmenta-
tions, that are, intriguingly, all CV syllables (la, le,
ma, na, ra, ro, se, ta).

Interestingly, the CNLM-generated cues we
used for word segmentation also cue constituents
larger than words. To illustrate this, we cre-
ated constituency trees for the German validation

7We ignore here single-letter segmentations, that would
otherwise account for one third of the most-frequent set.
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LSTM RNN 8-grams
English 66/60/63 63/60/61 56/51/53
German 57/52/55 53/49/51 43/36/39
Italian 64/57/60 62/57/60 48/40/44

Table 3: Percentage precision, recall, and F1 on test
set word segmentation.

cues to word segmentation. Based on these con-
siderations, we tested the model segmentation ca-
pabilities as follows. We used the development
sets to train logistic classifiers predicting whether
a character is first in a word or not, based on the
following features, derived from the pre-trained
CNLMs without further tuning: (1) surprisal, the
log-probability of the character given prior con-
text, (2) entropy of the distribution over the charac-
ter given prior context, (3) context PMI, that is, the
total likelihood of the next 20 characters, minus
the unconditional likelihood estimated by starting
the CNLM at the current position. We collected
these quantities for each position and the preced-
ing and following three characters, resulting in a
21-feature classifier. We repeated the experiment
with features extracted from a character-level 8-
gram model estimated on the training set, closer to
earlier non-neural work (Saffran et al., 1996; Feng
et al., 2004).

Results are in Table 3. The CNLM-based clas-
sifiers robustly segment more than half of the to-
kens correctly, and do considerably better than the
8-gram model, with a slight edge for the LSTM.

How does the LSTM compare to ad-hoc word
segmentation models? We look at the Bayesian bi-
gram model of Goldwater et al. (2009), an elegant
approach using a hierarchical Dirichlet process.
The latter, unlike our method, is unsupervised, but
it has a specifically designed built-in bias towards
a discrete lexicon with a power-law frequency dis-
tribution. Note that, while supervised, our model
is rather parameter-lean, consisting in a logistic
classifier trained on 21 features.

Running Bayesian methods on Wikipedia
dumps is computationally unfeasible. We re-
trained instead the LSTM (with fixed hyperpa-
rameters) on the Brent corpus of English child-
directed speech (Brent, 1999) also used by Gold-
water and colleagues. We used 90% to train
our language model, 5% to fit the logistic classi-
fier, and 5% for evaluating both the classifier and
the Bayesian model on word segmentation. The
Bayesian model is trained on the full data-set, as it

LSTM Bayesian
Tokens 75.3/76.6/76.0 74.9/69.8/72.3
Lexical 41.2/61.2/49.2 63.6/60.2/61.9
Boundaries 91.3/90.0/90.5 93.0/86.7/89.8

Table 4: Word segmentation results (percentage preci-
sion/recall/F1) on our test partition of the Brent corpus
for our CNLM-based model and the Bayesian approach
of Goldwater et al. (2009). Following them, we evalu-
ate at the level of tokens, the lexicon of induced word
types, and boundaries.

does not rely on word boundary information dur-
ing training. Results in Table 4 show that the
CNLM performance is comparable to that of the
sophisticated Bayesian segmentation method.

We looked at common errors made by the En-
glish CNLM-based segmenter. Considering first
the 30 most common undersegmentations in the
test set (that is, cases in which the model failed
to split two or more words): About half (16) are
function word sequences that could reasonably be
re-analyzed as single words (e.g., more than, as
well as, such as). Of the remaining cases, 8 fol-
low the N of pattern, where N is a (typically rela-
tional) noun commonly occurring in this construc-
tion (member of, end of, part of . . . ). There are
3 fixed multi-word expressions (New York, United
States and high school). The final undersegmenta-
tions based on, known as and according to can be
seen as lexicalized connectives, especially in the
Wikipedia text the model was trained on.

The picture is murkier but still fairly linguis-
tically grounded for the 30 most common over-
segmentation errors (that is, character fragments
that are wrongly segmented from inside the largest
number of distinct words).7 More than half (17)
are common affixes (prefixes such as re and de or
suffixes such as ing and ly). 3 strings identical to
frequent function words were wrongly carved out
of longer words (the, to and on). The strings land
and man are not unreasonably segmented out of
compounds. It’s hard to find a linguistically sound
motivation for the 8 remaining top oversegmenta-
tions, that are, intriguingly, all CV syllables (la, le,
ma, na, ra, ro, se, ta).

Interestingly, the CNLM-generated cues we
used for word segmentation also cue constituents
larger than words. To illustrate this, we cre-
ated constituency trees for the German validation

7We ignore here single-letter segmentations, that would
otherwise account for one third of the most-frequent set.



Most frequent undersegmentations

• morethan, aswellas, tothe, 
basedon, canbe, didnot, 
accordingto, oneofthe, knownas, 
tobe, dueto, itis, onthe, itwas, 
suchas, inthe, isa, asa, atthe, 
ofthe
• highschool, newyork, unitedstates
• useof, memberof, universityof, 

numberof, endof, oneof, partof

Most frequent oversegmentations

• re, de, un, pro, en, co
• ing, ed, ly, er, al, es, ic, ers
• in, to, on, an, the, or
• man, land
• ma, ra, la, le, ta, na, ro, se

21



Model-based context PMI at constituent boundaries
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Morphological categories



Nouns vs Verbs

• 500 verbs and nouns ending in –en (German) and –re (Italian) from 
the training corpus

• 10 verbs and nouns for training, the rest for testing
• Classifier trained on last hidden state of pre-trained language model 

after it reads a full word

24
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Nouns vs Verbs: results
accuracy and std error over 100 random train/test splits
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Figure 2: PMI between left and right contexts, as es-
timated by the LSTM CNLM in German, organized
by syntactic hierarchical distance between subsequent
characters (with bootstrapped 95 % confidence inter-
vals).

set using the Berkeley Parser (Petrov and Klein,
2007). For each character in the data, we counted
its hierarchical distance from the preceding char-
acter, operationalized as the number of interven-
ing closing and opening brackets. This number is
zero if both characters belong to the same word,
1 at word boundaries, larger at larger-constituent
boundaries. Figure 2 plots CNLM-based PMI by
hierarchical distance, for all distances for which
at least 1,000 data-points occurred in the data-
set. The plot shows that longer hierarchical dis-
tance between neighboring characters correspond
to lower average PMI, generalizing the finding for
word boundaries. This illustrates how it is use-
ful for segmentation knowledge to be implicit, as
the model can discover about different kinds of
boundaries in a continuous manner.

4.3 Discovering morphological categories
Besides being sensitive, to some extent, to word
boundaries, does the CNLM also store linguistic
properties of words, such as their part of speech
and number? These experiments focus on German
and Italian, as it’s harder to design reliable test sets
for morphologically impoverished English.

Word classes (nouns vs. verbs) We sampled
500 verbs and 500 nouns from the Wikipedia train-
ing sets, requiring that they end in -en (German)
or -re (Italian) (so that models can’t rely on the af-
fix for classification), and that they are unambigu-
ously tagged in the corpus. We randomly selected
20 training examples (10 nouns and 10 verbs), and
tested on the remaining items. We repeated the
experiment 100 times to control for random train-

German Italian
LSTM 89.0 (± 0.14) 95.0 (± 0.10)
RNN 82.0 (± 0.64) 91.9 (± 0.24)
Autoencoder 65.1 (± 0.22) 82.8 (± 0.26)
WordNLMsubs. 97.4 (± 0.05) 96.0 (± 0.06)
WordNLM 53.5 (± 0.18) 62.5 (± 0.26)

Table 5: Word class accuracy, with standard errors.
‘subs.’ marks in-vocabulary subset evaluation.

test split variation. We recorded the final hidden
state of a pre-trained CNLM after reading a word,
without context, and trained a logistic noun-verb
classifier on these representations.

As a baseline, we used a character-level LSTM
autoencoder trained to reconstruct words in isola-
tion. The hidden state of the autoencoder should
capture relevant orthographic features. We fur-
ther considered word embeddings from the output
layer of the WordNLM, reporting its test accuracy
both when OOV words are ignored and when they
are randomly classified.

Results are shown in Table 5. All language
models outperform the autoencoders, showing that
they learned categories based on broader distri-
butional evidence, not just typical strings cuing
nouns and verbs. Moreover, the LSTM CNLM
outperforms the RNN, probably because it can
track broader contexts. Not surprisingly, the word-
based model fares better, but the gap, especially in
Italian, is rather narrow, and there is a strong neg-
ative impact of OOV words.

Number We turn next to number, a more granu-
lar morphological feature. We study German as it
possesses nominal classes that form plural through
different morphological processes. We train a
number classifier on a subset of these classes, and
test on the others. If a model generalizes correctly,
it means that it is sensitive to number as an abstract
feature, independently of its surface expression.

We extracted plural nouns from the German UD
treebank (De Marneffe et al., 2006; McDonald
et al., 2013). We selected nouns with plurals in -n,
-s, or -e to train the classifier (e.g., Geschichte-n
‘stories’), and tested on plurals formed with -r or
through vowel change (Umlaut, e.g., Töchter for
singular Tochter ‘daughter’).

For the training set, we randomly selected 15
singulars and plurals from each training class. As
plural suffixes make words longer, we sampled
singulars and plurals from a single distribution
over lengths, to ensure that their lengths were ap-

25
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Number across German nominal classes

• Generalize number classifier across pural types
• E.g., train on Geschichte / Geschichten, test on Tochter / Töchter

• Training classes: -n, -s, -e
• Test classes: -r, Umlaut

• Data from German Universal Dependencies treebank
• 15 singulars and plurals per training class (controlling for length)
• Test on all remaining pairs in training and test classes

26



Number results
accuracy and std error over 200 random train/test splits
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train classes test classes
-n/-s/-e -r Umlaut

LSTM 77.9 (± 0.8) 88.2 (± 0.3) 52.8 (± 0.6)
RNN 70.3 (± 0.9) 81.3 (± 0.7) 53.3 (± 0.6)
Autoencoder 64.0 (± 1.0) 73.8 (± 0.6) 59.2 (± 0.5)
WordNLMsubs. 97.8 (± 0.3) 86.6 (± 0.2) 96.7 (± 0.2)
WordNLM 82.1 (± 0.1) 73.1 (± 0.1) 77.6 (± 0.1)

Table 6: German number classification accuracy, with
standard errors computed from 200 runs.

proximately matched. For the test set, we selected
all plurals in -r (127) or Umlaut (38), with their
respective singulars. We also used all remaining
plurals ending in -n (1467), -s (98) and -e (832)
as in-domain test data. To control for the impact
of training sample selection, we report accuracies
averaged over 200 repetitions. We extract word
representations as above, and we compare to an
autoencoder and embeddings from the WordNLM.
As before, we report results ignoring OOV words,
and with random classification for OOV words.
Results are summarized in Table 6.

The classifier based on word embeddings is the
most successful, confirming that the latter reliably
encode number (Mikolov et al., 2013b). CNLM
encodings outperform the autoencoder on plurals
formed with suffixes, indicating some capability
to detect number beyond orthographic cues. For
-r plurals, the CNLM LSTM even outperforms the
WordNLM. In contrast, the CNLMs do not gen-
eralize to Umlaut plurals, where they are virtu-
ally at chance level, and worse than the autoen-
coder. Evidently, CNLM number encoding is not
abstract enough to generalize across very different
surface morphological processes (adding a suffix
vs. changing the root vowel).

4.4 Capturing syntactic dependencies
We take a further step up the linguistic hierarchy,
probing CNLMs for their ability to capture syn-
tactic dependencies between non-adjacent words.
We again focus on German and Italian, due to their
rich inflectional morphology, which makes it eas-
ier to construct controlled evaluation sets.

4.4.1 German
Gender agreement Each German noun belongs
to one of three genders (masculine, feminine,
neuter), morphologically marked on the article.
As the article and the noun can be separated by ad-
jectives and adverbs, we can probe knowledge of
nouns’ lexical gender together with long-distance

agreement. We create stimuli of the form

(1) {der, die, das}
the

sehr
very

rote
red

Baum
tree

where the correct nominative singular article (der,
in this case) matches the gender of the noun.
We then run the CNLM on the three versions of
this phrase (removing whitespace) and record the
probabilities it assigns to them. If the model as-
signs the highest probability to the version with
the right article, we count it as a hit for the
model. To avoid phrase segmentation ambiguities,
we present phrases surrounded by full stops.

We select all nominative singular nouns from
the German UD treebank. We construct four con-
ditions varying the number of adverbs and adjec-
tives between article and noun. We first consider
stimuli where no material intervenes. In the sec-
ond condition, an adjective with the correct (nom-
inative singular) case ending, randomly selected
from the training corpus, is added. Crucially, the
ending of the adjective does not reveal the gender
of the noun. In the third and fourth conditions, one
(sehr) or two adverbs (sehr extrem) intervene be-
tween the article and the adjective. These do not
cue gender either. In each condition, we obtained
2290 (m.), 2261 (f.), and 1111 (n.) stimuli.

We constructed an n-gram baseline that picks
the article occurring most frequently before the
phrase in the training data, choosing randomly in
case of ties. Here and below, when running the
WordNLM, we excluded OOV nouns, resulting in
a slightly easier test for this rival model. However,
testing the CNLMs on the reduced set only led to
slight improvements, that we do not report here.

Results are presented in Figure 3 (left).
WordNLM performs best, followed by the LSTM
CNLM. While the n-gram baseline performs sim-
ilarly to the CNLM when there is no intervening
material, accuracy drops to chance level (0.33) in
the presence of an adjective. This problem would
not be mitigated by interpolation with or back-
off to lower-order n-grams, as the relevant gen-
der information is present only on the first and last
word of each stimulus. We conclude that, while
direct association between articles and nouns can
be learnt from simple corpus statistics, the CNLM
has some capability to preserve the relevant infor-
mation across more than a dozen timesteps. The
RNN CNLM is much worse than the LSTM coun-
terpart and even the n-gram model for the adjacent
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Syntactic dependencies



German gender agreement

{der, die, das} sehr extrem unglaublich rote Baum
the           very extremely incredibly    red  tree

• Nominal forms from the Universal Dependencies treebank (~ 7k 
stimuli)
• Pre-trained character-based model fed 3 variations of each sentence 

without whitespace, lower-cased, delimited by periods
.dersehrextremunglaublichrotebaum.

• Model must assign highest probability to version with correct case
29



NB: "long-distance" 
for word- vs character-based models

. das rote baum .

. d a s r o t e b a u m .
30



German gender agreement

31

N intervening
words

NB: in this and all 
experiments to follow, 
word-based model is 
NOT tested on phrases 
with OOV words



German case agreement

{dem, des} sehr extrem unglaublich roten Baum
to/of-the  very extremely incredibly    red     tree (dative)

{dem, des} sehr extrem unglaublich roten Baums
to/of-the  very extremely incredibly    red     tree (genitive)

• Nominal forms from the Universal Dependencies treebank, paradigms 
from Wiktionary (~ 9k stimuli)
• Model testing as above

32



German case agreement
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N intervening
words



German case subcategorization

mit der sehr extrem unglaublich {rote, roten} 
with  the very extremely incredibly     red one (dat.)

• Embedded in sentences for more natural context, extracted from 
Universal Dependencies treebank (~1.6k stimuli)
• Model testing as above

34



German case subcategorization

35

N intervening
words

dashed lines:
der sehr {rote, roten}



Italian article-noun gender agreement
il congeniale {candidato, candidata}
the (m.) congenial              candidate

la          congeniale {candidato, candidata}
the (f.) congenial              candidate

• ~30k stimuli, selected based on corpus frequency and checked for 
semantic well-formedness
• No adjective-noun combination attested in training corpus
• Model testing as in German 36



Italian article-adjective gender agreement

il meno {alieno, aliena}
the (m.) less            alien

la          meno {alieno, aliena}
the (f.) less            alien

• ~200 stimuli, with similar selection conditions as above

37



Italian article-adjective number agreement

la          meno {aliena, aliene}
the (s.) less             alien

le           meno {aliena, aliene}
the (p.) less            alien

• ~200 stimuli, with similar selection conditions as above

38



Italian syntactic dependency results
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Gender Case Subcategorization

Figure 3: Accuracy on the German syntax tasks, as a function of the number of intervening elements.

gender; however, Italian has a relatively extended
paradigm of masculine and feminine nouns dif-
fering only in the final vowel (-o and -a, respec-
tively). We construct pairs of the form:

(4) a. {il, la}
the

congeniale
congenial

candidato
candidate (m.)

b. {il, la}
the

congeniale
congenial

candidata
candidate (f.)

The intervening adjective, ending in -e, does
not reveal noun gender, increasing the distance
across which gender information has to be trans-
ported. We constructed the stimuli with words
appearing at least 100 times in the training cor-
pus. We required moreover that the -a and -o
forms of a noun are reasonably balanced in fre-
quency (neither form is twice more frequent than
the other), or both rather frequent (appear at least
500 times). As the prenominal adjectives are
somewhat marked, we only considered -e adjec-
tives that occur prenominally with at least 10 dis-
tinct nouns in the training corpus. We obtained
15,005 pairs of stimuli. Here and below, stimuli
were checked for strong semantic anomalies.

Results are shown in the first line of Ta-
ble 7. WordNLM shows the strongest perfor-
mance, closely followed by the LSTM CNLM.
The RNN CNLM performs strongly above chance
(50%), but again lags behind the LSTM.

Article-adjective gender agreement We next
consider agreement between articles and adjec-
tives with an intervening adverb:

(5) a. il
the (m.)

meno
less

{alieno, aliena}
alien one

b. la
the (f.)

meno
less

{alieno, aliena}
alien one

CNLM WordNLMLSTM RNN
Noun Gender 93.1 79.2 97.4
Adj. Gender 99.5 98.9 99.5
Adj. Number 99.0 84.5 100.0

Table 7: Italian agreement results.

where we used the adverbs più ‘more’, meno
‘less’, tanto ‘so much’. We considered only ad-
jectives that occurred 1K times in the training cor-
pus (as -a/-o adjectives are very common). We
excluded all cases in which the adverb-adjective
combination occurred in the training corpus, ob-
taining 88 pairs of stimuli. Results are shown in
the second line of Table 7; all three models per-
form almost perfectly.

Article-adjective number agreement Finally,
we constructed a version of the last test that probed
number agreement. For feminine forms (illus-
trated below) it’s possible to compare same-length
phrases:

(6) a. la
the (s.)

meno
less

{aliena, aliene}
alien one(s)

b. le
the (p.)

meno
less

{aliena, aliene}
alien one(s)

Selection of stimuli was as above, but we used a
500-occurrences threshold, as feminine plurals are
less common, obtaining 99 pairs of stimuli. Re-
sults are shown in the third line of Table 7; the
LSTMs perform almost perfectly, and the RNN
still is strongly above chance.

4.5 Semantics
Finally, we probe CNLM knowledge of seman-
tics. We turn to English, as for this language we
can use the Microsoft Research Sentence Comple-



Semantics



Microsoft Research Sentence Completion
Zweig and Burgess 2011

Was she his _____, his friend, or his mistress?

• ~1k sentences from Sherlock Holmes novels
• Chosen to be hard for language models

41

client
musings
discomfiture
choice
opportunity



Microsoft Research Sentence Completion

• Evaluate pre-trained models by feeding sentence with each 
variant, picking most likely one as model guess

• Big gap between Wikipedia and Sherlock Holmes

• Also re-trained models with provided training data from 19th

century novels (~ 41.5M words)
• No further hyperparameter tuning

42



MSR Sentence Completion: Results
(accuracies)
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LSTM 34.1/59.0
RNN 24.3/24.0
WordNLM 37.1/63.3

KN5 40.0 Skipgram 48.0
Word RNN 45.0 Skipgram + RNNs 58.9
Word LSTM 56.0 PMI 61.4
LdTreeLSTM 60.7 Context Embeddings 65.1

Table 8: Results on MSR Sentence Completion. For
our models (top), we show accuracies for Wikipedia/in-
domain training. We compare with language mod-
els from prior work (left): Kneser-Ney 5-gram model
(Mikolov, 2012), Word RNN (Zweig et al., 2012),
Word LSTM and LdTreeLSTM (Zhang et al., 2016).
We further report models incorporating distributional
encodings of semantics (right): Skipgram(+RNNs)
from Mikolov et al. (2013a), the PMI-based model of
Woods (2016), and the context-embedding based ap-
proach by Melamud et al. (2016).

tion task (Zweig and Burges, 2011). The chal-
lenge consists of sentences with a gap, and a
5-word multiple choice to fill the gap. Pick-
ing the right word requires a mixture of syn-
tax, lexical semantics, world knowledge and
pragmatics. For example, in “Was she his
[ client|musings|discomfiture|choice|opportunity],
his friend, or his mistress?, the model should re-
alize that the missing word is coordinated with
friend and mistress, and that the latter are human
beings. We chose this challenge because language
models can be easily applied by calculating the
likelihood of all possible completions and select-
ing the one with the highest likelihood. The do-
main of the task (Sherlock Holmes novels) is very
different from the Wikipedia data-set we are us-
ing; thus we additionally trained our models on
the training set provided for the task, consisting of
19th century English novels.

Results are shown in Figure 8. The models
trained on Wikipedia perform poorly but above
chance (20%). When trained on in-domain data,
the LSTM CNLM outperforms many earlier word-
level neural models, and is only slightly below
WordNLM. The vanilla RNN is not successful
even when trained in domain, contrasting with
word-based vanilla RNNs, whose performance,
while below that of LSTMs, is much stronger.

5 Discussion

We probed the linguistic information induced by a
character-level LSTM language model trained on
unsegmented text. The model was found to pos-

sess implicit knowledge about phonotactics, word
units, morphological features, syntactic agreement
phenomena and basic semantics. A more standard
model pre-initialized with a word vocabulary and
reading tokenized input was in general superior
on the higher-level tasks, but the performance of
our agnostic model did not generally lag much be-
hind, suggesting that the word prior is helpful but
not fundamental. The performance of a character-
level RNN was less consistent than that of the
LSTM, suggesting that the ability of the latter to
track information across longer time stretches is
important to extract the correct linguistic gener-
alizations. N-gram baselines relying on adjacent-
string statistics failed almost everywhere, showing
that the neural models are tapping into somewhat
deeper linguistic templates.

Our results are preliminary in many ways. The
tests we used are generally quite simple (we did
not attempt, for example, to model long-distance
agreement in presence of distractors, a challenging
task even for word-based models and humans: Gu-
lordava et al., 2018). Still, they suggest that a large
corpus, combined with the weak priors encoded in
an LSTM, might suffice to support genuine lin-
guistic generalizations. In future work, we will
check if stronger priors are needed when learning
from smaller amounts of training data.

Unlike standard word-level models, CNLMs
lack a word-based lexicon. Any information they
might acquire about units larger than characters
must be stored in their recurrent weights. Given
that nearly all contemporary linguistics recognizes
a central role to the lexicon (see, e.g., Sag et al.,
2003; Goldberg, 2005; Radford, 2006; Bresnan
et al., 2016; Ježek, 2016), in future work we would
like to explore how lexical knowledge is implicitly
encoded in the distributed memory of the CNLMs.

One of our original motivations for not assum-
ing word primitives is that a rigid word notion is
problematic both cross-linguistically (cf. polysyn-
thetic and agglutinative languages) and within a
single linguistic system (cf. the common view that
the lexicon hosts units at different levels of the lin-
guistic hierarchy, from morphemes to large syn-
tactic constructions). Our brief analysis of the
CNLM over- and undersegmentations suggested
that it is indeed capable to flexibly store informa-
tion about units at different levels. However, this
topic remained largely unexplored, and we plan to
tackle it in future work.
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What have we learned?
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Summary

• LSTMs trained to predict next character in unsegmented 
large corpus implicitly discover phonological, lexical, 
morphological, syntactic, semantic generalizations
• Systematically better than n-gram controls (thus, not only 

relying on shallow co-occurrence statistics)
• Not as good as word-trained model, but not much worse 

either, suggesting words are helfpul prior but not 
fundamental
• LSTMs generally outperform RNNs: better (or faster) learners 

in character domain, where information has to be carried 
through longer stretches of time 45



Where next?

• How much does training corpus size matter?
• See bad-cop talk on Wednesday

• How is lexical knowledge implicitly encoded in the weights of 
the character-based LSTM language model?
• Can we use character-based models for better accounts of 

domains where word-centric view fails?
• Polysynthetic, agglutinative languages
•Morphemes, compounds, idioms, constructions...
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