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This talk

N

*+* Brief introduction to
. MTT-semantics (Formal Semantics in Modern Type Theories)
» Universes and [[-polymorphism in type theory
¢ Linguistic universes
» CN — universe of CNs
» LType — universe for coordination

**» Logical universes (and proof irrelevance for MTT-sem)
» Prop — universe in UTT of all logical propositions

» PROP, — “universe” of small/mere propositions in HOTT’s h-logic
< MLTT/PaT-logic — inadequate (cannot have proof irrelevance)
< MLTT,, MLTT extended with h-logic, is adequate for MTT-sem (like UTT).




I. MTT-semantics
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** Montague Semantics
- R. Montague (1930-1971) & Church’s simple TT
» Dominating in linguistic semantics since 1970s
» Set-theoretic, using simple type theory as intermediate
» Types ("single-sorted”): e, t, e—t, ...

** MTT-semantics: formal semantics in modern type theories

. Examples of MTTs:
< Martin-L6f's TT: predicative (adequate for MTT-sem? Later.)
< UTT (Luo 1994) & pCIC (Coq): impredicative (MTT-sem so far)
» Ranta (1994): formal semantics in Martin-L6f’s type theory
» Recent development on MTT-semantics
=» full-scale alternative to Montague semantics
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**» Recent development on rich typing in NL semantics

+ Asher, Bekki, Cooper, Grudzinska, Retoré, ...
< S. Chatzikyriakidis and Z. Luo (eds.) Modern Perspectives in Type
Theoretical Sem. Springer, 2017. (Collection on rich typing & ...)
+ MTT-semantics is one of these developments.

< Z. Luo. Formal Semantics in Modern Type Theories with Coercive
Subtyping. Linguistics and Philosophy, 35(6). 2012.

< S. Chatzikyriakidis and Z. Luo. Formal Semantics in Modern Type
Theories. Wiley/ISTE. (Monograph on MTT-semantics, to appear)

< S. Chatzikyriakidis and Z. Luo. From Montague to MTTs. ESSLLI 2019.

*»» Advantages of MTT-semantics, including

» Both model-theoretic & proof-theoretic — new perspective
not available before.




MTT-semantics: basic categories
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Category

Semantic Type

S

Prop (the type of all propositions)

CNs (book, man, ...)

types (each common noun is interpreted as a type)

I\

A—Prop (A is the "meaningful domain” of a verb)

Adj

A—Prop (A is the “meaningful domain” of an adjective)

Adv

[TA:CN.(A—Prop)—(A—Prop) (polymorphic on CNs)

In MTT-semantics, CNs are types rather than predicates:

o%

L)

4

.
*

&

A man talked.

A/
& 0‘

S
*

* “man” is interpreted as a type Man : Type.
Man could be a structured type (say, ~(Human,male))

dm:Man.talk(m) : Prop, where talk : Human->Prop and Man<Human

(subtyping — crucial for MTT-semantics; see later.)




Modelling Adjective Modification: Case Study
[ Chatzikyriakidis & Luo: FG13, JoLLI17]
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Classical examble Characterisation MTT-semantics
classification P of Adj(N)
intersective handsome man N & Adj > X:Man.handsome(x)
: N large : TTA:CN. A->Prop
subsective large mouse (Adj depends on N) | large(Mouse) : Mouse->Prop
privative fake gun —N G = Gp+Gy

with Gy <, G, G¢ <, G

non-committal

alleged criminal

nothing implied

Fh:Human. Hy A(...)

<* Hy, a(...) expresses, eg, “h alleges ...”, for various non-committal
adjectives A; it uses the Leibniz equality =p,. [Luo 2018] (*)

*» cf, work on hyperintensionality (Cresswell, Lappin, Pollard, ...)




Note on Subtyping in MTT-semantics
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**» Simple example
A human talks. Paul is a handsome man.
Does Paul talk?
Semantically, can we type talk(p)?
(talk : Human->Prop & p : X(Man,handsome))
Yes, because p : X(Man,handsome) < Man < Human.

¢ Subtyping is crucial for MTT-semantics

+ Coercive subtyping [Luo 1999, Luo, Soloviev & Xue 2012]
is adequate for MTTs and we use it in MTT-semantics.

+ Note: Traditional subsumptive subtyping is inadequate for
MTTs (eg, canonicity fails with subsumption.)




Advanced features in MTT-semantics: examples
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¢ Copredication
» Linguistic phenomenon studied by many (Pustejovsky, Asher, Cooper, Retoré, ...)

Dot-types in MTTs: formal proposal [Luo 2009] (*), implementation [Xue &
Luo 2012] and copredication with quantification [Chatzikyriakidis & Luo 2018]

Linguistic feature difficult, if not impossible, to find satisfactory treatment in

a CNs-as-predicates framework. (For a mereological one, see [Gotham16].)
¢ Anaphora analysis/resolution via X-types

[Sundholm 1986, Ranta 1994] in Martin-L6f’s type theory

+¢ Linguistic coercions via coercive subtyping [Asher & Luo 2012]

¢ Several recent developments
Propositional forms of judgemental interpretations [Xue et al (NLCS18)]
CNs as setoids [Chatzikyriakidis & Luo (Oslo Studies in Language 2018)]
(later today) MTT-sem in Martin-L6f's TT with h-logic [Luo (LACompLing18)]
(Wednesday) Event semantics in MTT-framework [Luo & Soloviev (WoLLIC17)]




ITI. Universes and IT-polymorphism

N

L

**» Example for a first look
+ How to model predicate-modifying adverbs (eg, quickly)?
» Informally, it can take a verb and return a verb.

** Montague: quickly : (e=>t)>(e>t)
quickly(run) : e>t

** MTT-semantics?
= quickly : (A,,,2Prop)—=>(A.,,~Prop), where A,,, is domain for run.
= Other verbs? Adjectives? Generically? One type for all?
» I1-types for polymorphism come for a rescue: (*)
quickly : TTA:CN. (A->Prop)—>(A->Prop)

“ Q: What is CN? A: CN is a universe of types (ie, of CNs).




Universes in type theory
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objects a: A types

¢ Objects and types:
+ Two worlds connected by a:A.
+ Types collect objects into totalities.

**» What if we want to collect some types into a totality?
+ Collecting (the names of) some types into a new type.

+ E.g., common nouns are types; Can we have a type CN
whose objects are the types that interpret common nouns?

+ Yes, we need a universe CN.

values

10




N

¢ Martin-L6f introduced the notion of universe (1973).
**» A universe is a type of (hames of) types.

i

¢ Notes on I1-quantification
» Let U be a universe.
+» We can quantify over U to have, e.q.,
Ix:u. ... ...
Functions of this type is polymorphic. (c.f., quickly)

+ Let Type be the collection of all types. One cannot use IT to
quantify over Type to form type I'TX:Type...., because Type
itself cannot be a type — otherwise, logical paradox.

11




N
U

**» Examples in mathematics

+ Type theory as foundation of math, one needs to define
type-valued functions.

» f(n) = Nat x ... x Nat (n times)

+ Universe containing Nat is needed because a function’s
codomain must be a type (the universe in this case; it
cannot be Type — paradox).

*** Examples in MTT-semantics — today
+ Linguistic universes (CN, LType)
» Logical universes (Prop in UTT, PROP, in MLTT,)
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III. Linguistic universes
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*» Let’s start by reviewing CN
+ Universe of (interpretations of) common nouns
+ CN : Type

= Then, n,y : CN (name of A) and Ty (ny) = A.

» Omitting Ty and identifying n, with A, we have A : CN.
*»» Example (review): predicate-modifying adverbs

+ Montague: quickly : (e=>t)>(e>t)

+« MTT-semantics: quickly : TTA:CN. (A=>Prop)—~>(A->Prop)

< “run quickly” — quickly(A,,,, run) : A, ,~>Prop
< “begin quickly” — quickly(Apegin , bEGIN)  Apegin=Prop

» Let A : Type be the interpretation of some common noun.

13




Modelling subsective adjectives
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¢ Nature of such adjectives
+ Their meanings are dependent on the nouns they modify.
+ Eg, “a large mouse” is not a large animal
¢ Our proposal:
+ large : I1A:CN. (A=>Prop)
» large(Mouse) : Mouse - Prop
+ [large mouse] = Xx:Mouse. large(Mouse)(x)

14




skilful [cL 2014]
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+» If skilful : TTIA:CN. (A->Prop)
» skilful(Doctor) : Doctor - Prop
+ [skilful doctor] = Xx:Doctor. skilful(Doctor)(x)

*»* But, we could also have “skilful car”. How to exclude it?
¢ skilful : TTA:CN,. (A>Prop)
» CNy — sub-universe of CN of subtypes of Human
A:CN A<Human

A : CNy
= Then, under the above typing for skilful with CN ,
« skilful(Doctor) : Doctor - Prop
< skilful(Car) is ill-typed (and excluded).

15
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Another example — type of quantifiers [LL 2014]

*» Generalised quantifiers
+» Examples: some, three, a/an, all, ...
» In sentences like: “Some students work hard.”
*»» With IT-polymorphism, the type of binary quantifiers is:
ITA:CN. (A>Prop)—=>Prop

For Q of the above type
N:CN, V:N->Prop = Q(N,V) : Prop
E.g., Student : CN, work_hard : Human—->Prop
= Some(Student,work_hard) : Prop

Note: the above only works because Student < Human.

16




N

LType: universe for modelling coordination [cL12]
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**» Examples of conjoinable types

+ John walks and Mary talks. (sentences)
+ John walks and talks. (verbs)
» Mary is pretty and smart. (adjectives)

+ The plant died slowly and agonizingly. (adverbs)
+ Every student and some professors came. (quantified NPs)

+ Some but not all students got an A. (quantifiers)
+ John and Mary went. (proper names)
+ A friend and colleague came. (CNs)

¢ Question: can we consider coordination generically?

17
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**» LType — the universe of “linguistic types”, with formal
rules in the next slide.
+ PType < LType
+ CN < LType
X Example types in LType:
+ Prop (type of sentences)
+ Type of predicate-modifying adverbs:
ITA:CN. (A->Prop)->(A->Prop)
+ Type of quantifiers: TTIA:CN. (A->Prop)->Prop
+ Types such as Human that interpret CNs
» Universe CN of common nouns

18
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**» Then, coordination can be considered generically:
+ Every (binary) coordinator such as And is of type
[TA:LType. A>A>A

*** We can then type the coordination examples.
+ Mary is pretty and smart.
< And(Human->Prop, pretty, smart)(m)

+ Every student and some professors came.
< And((Human->Prop)->Prop, every(Student), some(Professor))(come)

+ John and Mary went.
< go(And(Human, j, m))

20
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¢ Now, although generic typing is OK, but what do
these And-terms mean?

+* For distributive readings, do we have:
+ And(pretty, smart)(m) < pretty(m) & smart(m)
+ And(every(Student), some(Professor))(come)
< every(Student,come) & some(Professor,come)
» go(And(j, m)) < go(j) & go(m)
**» This was not dealt with in [CL12]. We now give
meaning so that, for distributive readings, such
equivalences become true (see next slide).
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¢ The distributive meaning of And(A) : A>A->A, by
case analysis of type A:
o A=Tlu:Ay.. Iay,:A,.Prop (n € w). Then, for any f,q: A.
And(A, f,g)(x1s o tn) =af f(1sean) & g1, .nwy) : Prop.

When n =0, the above definition reduces to And(Prop, P,Q) =P & Q : Prop.

e A:CN. Then, foraj.as: A and P : A — Prop,
P(And(A,a1.a2)) =g P(a1) & P(a2).
o A=CcN. Then, for Ay, Ay : CN and for C': CN such that A; < C (1 =1,2).

And(CN, Ay, Ag) =g5 Xa:C. 1sc (A, x) & 150 (Az, x)
(Tech details omitted in this talk.)




IV. Logical universes for MTT-semantics
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“» Logics in MTTs
+ Propositions as types — in judgement "t : T”, T can be a
proposition and, in that case, t is a proof of T and T is true.
** Proof irrelevance
+ Any two proofs of the same proposition are the same.

+ To have adequate MTT-semantics, proof irrelevance needs
be enforced in the underlying type theory.

23




Examples in semantics
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+» Identity criteria for modified CNs [Luo (LACL 2012)]

+ A handsome man is interpreted as a pair (m,p) of a >-
type Xx:Man.handsome(x).

+ Two handsome men are the same iff they are the
same man =» proof irrelevance.

¢ Counting (the same problem as above) [Tanaka 15]
+ Any farmer who owns donkeys beat most of them.
» Counting pairs incorrectly takes proofs into account.
» Tanaka proposed a solution (ad hoc and complicated).
+ I believe proof irrelevance provides a clean/easy solution.

24
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Logic in impredicative type theory UTT

s HOL in UTT
» Prop — type of all logical propositions

< Prop is an internal totality (c.f. t in Montague’s semantics).
< Eg, a predicate over A is of type A->Prop.

+ [Ix:A.P(x) : Prop for any type A and any predicate P. (*)

< Other logical operators (A, —, 3, ...) can all be defined by IT.
< For example, PAQ = [IX:Prop.(P>Q>X)>X.

** UTT for MTT-semantics

+ UTT — employed in development of MTT-semantics.
+ Proof irrelevance can be enforced:

I'-P:Prop I'tkp:P I'kgq:P
I'tp=gq:P

25




Martin-Lof’s type theory with PaT logic (MLTT/PaT)
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**» Martin-Lof's type theory for formal semantics
+ Sundholm, Ranta & many others (all use MLTT/PaT)

*» PaT logic in MLTT

+ Types and propositions are identified: types = propositions!
<« [1/v, 2/3, X/n, +/v, 2>, A>T/-A, ... (non-standard first-order logic)

+ There is no type of all propositions (otherwise, paradox)
< Could only approximate predicates by means of predicative universes.
Problem: Cannot have proof irrelevance in MLTT/PaT.

+« In MLTT/PaT, proof irrelevance would mean that every type
collapses (into empty/singleton types)! Obviously absurd.

+ S0, MLTT/PaT is inadequate for MTT-semantics.

26




MLTT,: Extension of MLTT with H-logic
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Homotopy
Type Theory
Univalent Foundations of Mathematics

*** H-logic (Voevodsky in HoTT)
= A mere proposition is a type with at most one
object. (In symbols, isProp(A) = [1x,y:A.(x=Y).)
» Logical operators, examples (see next slide):
< Po>Q =P—->Q and Vx:A.P = [[x:A.P
< PvQ = [P+Q] and 3x:A.P = [Zx:A.P]
where [_] is propositional truncation, a proper extension.

X ML‘I‘I’h = MLTT + h-logic (adequate for MTT-sem)
+ Proof irrelevance is “built-in” in h-logic (by definition).
+ PROP, = 2(U, isProp) ( = =x:U.isProp(x) )
= Note: MLTT,, does not have univalence or other HITs.
+ Details in the short paper in LACompLing18 proceedings.

27
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*»» Truncation [A] is a proper extension of MLTT.
+ For any type A, stipulate existence of truncation type [A]:
a:A a:[A] b:[A]

|lal : [A] p(a,b) : Id,(a,b)
» Proper extension — the 2" rule stipulates that [A] is mere.
** Only some logical operations preserve truncations:
+ If P and Q are mere propositions, so is P=>Q.
+ But, for some mere propositions P and Q, P+Q is not mere.
+ That’s why one needs truncations — [P+Q] is always mere!

*+* Remark: Canonicity fails to hold in this extension.

28




Concluding summary
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**» Universes in type-theoretic semantics
*¢ Linguistic universes

+ CN and [I-polymorphism — a powerful tool in constructing
formal semantics

+ LType — coordination typing plus new semantic development
** Logical universes in the underlying type theories
+ Prop in impredicative UTT

» MLTT, — MLTT extended with h-logic, can be employed
adequately for MTT-semantics. (MLTT/PaT is inadequate.)
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Non-committal Adjectives
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*** Let A be a hon-committal adjective and h : Human.
» alleged, predicted, arguable, ... (human agents) and others
X Zh,A : Fin(n)—>Prop
» A=alleged/predicted = X, = h's aIIegations/predictions.

« Hh A(P) = Ji:Fin(n). X, A(l) Prop
- A=alleged/predicted = H, A(P) = h alleged/predicted P.

X John is an alleged criminal.

« dh:Human. Hy jeqeq(JOhN is @ criminal),
<» where [John is a criminal] = IS, ,.,(Criminal, j).
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Hom:?ﬁ T;Is Q o nlk MOE® sk - R BT ©¢ v
(I1,) I'FAtype T, x:AF Blz| type
g [+ Iz : A.B[x] type
(I1,) I'FAtype I', x:AF Plx| prop
" '+ 1z : A.P[z] prop
) I' v:AFb: B
['FAx:Ab:Ilx: A.B|x]
(app) '+f:Mr:ABlx] TFa:A
v C'F f(a): Bld]
m LS ® m U Y ~ = = & F o, B

11 for I1-types and I1, for universal quantification
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Logical operators in, eg, UTT
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Vr:A. Pz
Pl D) PQ

true

false
P& Py
PV P

- P

dz: A. P|x]

=,
=,
=,
=
=
=,
=

[lx:A.P[x]

Vo PPy

VX:Prop. X DX

VX:Prop. X

VX:Prop. (PPDPD>X)DX
VX:Prop. ( PPDX)D(ADX)D X
P, D false

VX:Prop. (Vx:A.(Plx] D X)) D X.
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Definition 3.7.1. We define traditional logical notation using truncation
as follows, where P and Q denote mere propositions (or families thereof):

T =1
L =0
PAQ = PxQ
P=Q :=P—=0Q
P Q :=P=0
—-P :=P—=0
PVQ = ||P+Q]
V(x:A).P(x) := [ [ P(x)
x:A
I(x: A).P(x) = \Z P(x)H




