Dependent Event Types

Zhaohui Luo Royal Holloway University of London

This talk

- I. Davidsonian event semantics
- II. Dependent event types
 - DETs in simple type theory (Montague's setting)
 - Adequacy: conservativity over Church's simple type theory (*)
 - ✤ DETs in modern type theories (MTT-semantics)
- III. Two applications of DETs
 - ✤ Event quantification problem and its DET solution
 - Selectional restriction in MTT-semantics with DETs (*)
- Work based on
 - ☆ Z. Luo & S. Soloviev. Dependent Event Types. WoLLIC 2017.
- But, (*) above are new, not in the above paper.

I. Davidsonian event semantics

- Original motivation: adverbial modifications

 (1) John buttered the toast.
 - (2) John buttered the toast with the knife in the kitchen.
 - Do we have (2) \Rightarrow (1)?

3

- Cumbersome in MG with meaning postulates (next slide)
- Davidson (1967): verbs tacitly introduce existentially quantified events, doing away with meaning postulates.
- In neo-Davidsonian notation (1980s) with thematic roles (slide) (1') ∃e:Event. butter(e)
 - & agent(e)=john & patient(e)=toast
 - (2') ∃e:Event. butter(e) & with(e,knife) & at(e,kitchen)

& agent(e)=john & patient(e)=toast

Obviously, $(2') \Rightarrow (1')$

MG approaches without events

- (1) John buttered the toast.
 - (1") butter(john,toast), where butter : $e^2 \rightarrow t$.
- (2) John buttered the toast with the knife in the kitchen.
 (2") butter(j,t,k,m), where butter : e⁴→t
 (2"') kitchen(knife(butter(john)))(toast), where butter : e→e→t, knife/kitchen : (e→t)→(e→t)
- ∗ Both need meaning postulates to get, eg,
 (2") ⇒ (1") or (2"") ⇒ (1"),
 rather ad hoc.

Major thematic relations [edit]

Here is a list of the major thematic relations.^[3]

- Agent: deliberately performs the action (e.g., Bill ate his soup quietly.).
- Experiencer: the entity that receives sensory or emotional input (e.g. Susan heard the song. I cried.).
- Stimulus: Entity that prompts sensory or emotional feeling not deliberately (e.g. David Peterson detests onions!).
- Theme: undergoes the action but does not change its state (e.g., We believe in one God. I have two children. I put the book on the table. He gave the gun to the police officer.) (Sometimes used interchangeably with patient.)
- Patient: undergoes the action and changes its state (e.g., The falling rocks crushed the car.). (Sometimes used interchangeably with theme.)
- Instrument: used to carry out the action (e.g., Jamie cut the ribbon with a pair of scissors.).
- Force or Natural Cause: mindlessly performs the action (e.g., An avalanche destroyed the ancient temple.).
- Location: where the action occurs (e.g., Johnny and Linda played carelessly in the park. I'll be at Julie's house studying for my test.).
- Direction or Goal: where the action is directed towards (e.g., The caravan continued on toward the distant oasis. He walked to school.).
- Recipient: a special kind of goal associated with verbs expressing a change in ownership, possession. (E.g., I sent John the letter. He gave the book to her.)

5

- Source or Origin: where the action originated (e.g., The rocket was launched from Central Command. She walked away from him.).
- Time: the time at which the action occurs (e.g., The pitcher struck out nine batters today)
- Beneficiary: the entity for whose benefit the action occurs (e.g., I baked Reggie a cake. He built a car for me. I fight for the king.).
- Manner: the way in which an action is carried out (e.g., With great urgency, Tabitha phoned 911.).
- Purpose: the reason for which an action is performed (e.g., Tabitha phoned 911 right away in order to get some help.).
- Cause: what caused the action to occur in the first place; not for what, rather because of what (e.g., Because Clyde was hungry, he ate the cake.).

Problems in Event-semantics + Montague

For example, "event quantification problem" (EQP) Incompatibility between event semantics and MG. (1) Nobody talked. Intended neo-Davidsonian event semantics is (2): (2) $\neg \exists x: e.$ human(x) & $\exists v: Event.$ talk(v) & agent(v,x) But the incorrect semantics (3) is also possible – it is well-typed: (3) $\exists v: Event. \neg \exists x: e. human(x) \& talk(v) \& agent(v, x)$ which moves the event quantifier " $\exists v: Event''$ in (2) to the left.

Some proposed solutions to EQP

Many different proposals (only mentioning two below) Purpose: to force scope of event quantifier to be narrower. Champollion's quantificational event sem. [2010, 2015] Trick: taking a <u>set</u> E of events as argument, but **talk**(e) ... ★ talk : (Event \rightarrow t) \rightarrow t with talk(E) = \exists e:Event. e \in E & talk(e) Debatable: intuitive meanings, compositionality & complexity Winter-Zwarts [2011] & de Groote [2014] Use Abstract Categorial Grammar (see, eg, [de Groote 01]) ACG structure prevents incorrect interpretation. Seemingly coincidental (and what if one does not use ACG?) Our proposal: dependent event types (solution to EQP & ...)

II. Dependent event types [Luo & Soloviev (WoLLIC17)]

Dependent event types

- Refining event structure by (dependent) typing
- Applications include
 - ✤ A solution to EQP
 - Selection restrictions in MTT-semantics with events

8

Refining event structure:

Event \rightarrow Evt(a)/Evt(a,p)

which are event types dependent on thematic roles a/p, called agents/patients, respectively.

DETs and their subtyping relationships

For a:Agent and p:Patient, consider DETs

Event, $Evt_A(a)$, $Evt_P(p)$, $Evt_{AP}(a,p)$

Subsumptive subtyping

a: $A \leq B$

a : B

Subtyping between DETs (eg, Any event with agent a and patient p is an event with agent a.)

9

Two systems with DETs

- Extension of Montague's simple TT with DETs
 - $\ast~C_{e}$ extends Church's STT (1940) with DETs
 - Montague's system is familiar for many hopefully better understanding of DETs.

Extension of modern type theories with DETs

- * T[E] extends type theory T with DETs (e.g., T = UTT).
- ✤ This shows how DETs work in MTTs.

Dependent event types in Montagovian setting

★ Eg. John talked loudly.
* talk, loud : Event→t
* agent : Event→e→t
★ (neo-)Davidsonian event semantics
∃e : Event. talk(e) & loud(e) & agent(e, j)
★ Dependent event types in Montagovian setting:
∃e : Evt_A(j). talk(e) & loud(e)
which is well-typed because Evt_A(j) ≤ Event.

C_e: extending Church's simple TT with DETs

First, Church's simple type theory (1940)

- Employed in Montague's semantics (c.f., Gallin 1975)
- Its rules are presented in the Natural Deduction style as follows.

• Rules for sorts/judgements and λ -calculus

 $\overline{\mathbf{e} \ type}$ $\overline{\mathbf{t} \ type}$ $\overline{x:A \ [x:A]}$ $\overline{P \ true \ [P \ true]}$ $\underline{A \ type \ B \ type}$ $\underline{b:B \ [x:A] \ x \notin FV(B)}$ $\underline{f:A \to B \ a:A}$ $\overline{A \to B \ type}$ $\underline{b:R \ [x:A] \ x \notin FV(B)}$ $\underline{f:A \to B \ a:A}$

Note: the side condition in the λ -rule is there only for DETs.

Rules for truth of logical formulas

$$\begin{array}{c} \displaystyle \frac{P: \mathbf{t} \ Q: \mathbf{t}}{P \supset Q: \mathbf{t}} \quad \frac{Q \ true \ [P \ true]}{P \supset Q \ true} \quad \frac{P \supset Q \ true \ P \ true}{Q \ true} \\ \\ \displaystyle \frac{A \ type \ P: \mathbf{t} \ [x:A]}{\forall (A, x.P): \mathbf{t}} \quad \frac{P \ true \ [x:A]}{\forall (A, x.P) \ true} \quad \frac{\forall (A, x.P[x]) \ true \ a:A}{P[a] \ true} \end{array}$$

***** Rule for "conversion" of logical formulas (λ -conversion omitted)

$$\frac{P \ true \quad Q: \mathbf{t}}{Q \ true} \quad (P \simeq Q)$$

Dependent event types in C_e

Conservativity (new result)

Background notes (1) Conservative extension: "J in C and |-J in C_e, then |-J in C." (2) Logical consistency is preserved by conservative extensions. Theorem. C_e is a conservative extension over ·Evt(a) Church's simple type theory. Proof. \bullet Define R : C_e→C that preserves derivations. R maps Evt(...) to Event and Agent/Patient to e. ♦ R(t)=t for $t \in C$. * For any C_{e} -derivation D, R(D) is a C-derivation. Corollary. C_e is logically consistent.

1 6

DET-solution to EQP

- (1) Nobody talked.
- Neo-Davidsonian in Montague's setting (repeated): (2) $\neg \exists x: e$. human(x) & $\exists v: Event. talk(v) & agent(v,x)$ (3) $\exists v: Event. \neg \exists x: e$. human(x) & talk(v) & agent(v,x) The incorrect (3) is well-typed.
- Dependent event types in Montague's setting: (4) $\neg \exists x: \mathbf{e}$. human(x) & $\exists v: Evt_A(x)$. talk(v) (#) $\exists v: Evt_A(x)$. $\neg \exists x: \mathbf{e}$. human(x) & talk(v) where (#) is ill-typed since the first "x" is outside scope of " $\exists x: \mathbf{e}$ ".

Dependent event types in MTT-semantics

- Let T be any modern type theory (eg, UTT [Luo94]) and E the basic coercions characterizing DET-subtyping. Then, T[E] extends T with DET-subtyping.
- Example of DETs in MTT-semantics
 - John talked loudly.
 - $talk: \Pi h: Human. Evt_A(h) \to Prop.$
 - $loud: Event \rightarrow Prop.$
 - $\llbracket John talked loudly \rrbracket = \exists e : Evt_A(j). talk(j, e) \& loud(e).$

T[E]: formal presentation in LF

- Constant types/families:
 - Agent, Patient: Type.
 - Event: Type,
 - $Evt_A: (Agent)Type,$
 - Evt_P : (Patient)Type, and Evt_{AP} : (Agent)(Patient)Type.

Coercive subtyping in E for DETs:

$$\begin{split} Evt_{AP}(a,p) \leq_{c_1[a,p]} Evt_A(a), & Evt_{AP}(a,p) \leq_{c_2[a,p]} Evt_P(p), \\ & Evt_A(a) \leq_{c_3[a]} Event, & Evt_P(p) \leq_{c_4[p]} Event, \\ & \text{where } c_3[a] \circ c_1[a,p] = c_4[p] \circ c_2[a,p]. \end{split}$$

T[E] has nice properties such as normalisation and consistency if T does (Luo, Soloviev & Xue 2012).

Comparison: a summary (John talked loudly)

(neo-)Davidsonian event semantics \bullet talk, loud : Event→t and agent : Event→e→t. $\exists e : Event. \ talk(e) \& \ loud(e) \& \ agent(e, j)$ Dependent event types in Montagovian setting: * talk, loud : Event \rightarrow t and agent : Event \rightarrow e \rightarrow t. $\exists e : Evt_A(j). talk(e) \& loud(e)$ which is well-typed because $Evt_A(j) \leq Event$. Dependent event types in MTT-semantics: $talk: \Pi h: Human. Evt_A(h) \to Prop.$ $loud: Event \rightarrow Prop.$ $[John talked loudly] = \exists e : Evt_A(j). talk(j, e) \& loud(e).$ Note: talk's type requires that e have a dependent event type.

III. Selectional restrictions with events

(#) Tables talk.

2 0

Montague: ∀x:e.talk(x) – well-typed but false (talk : e→t)
 MTT-sem: ∀x:Table.talk(x) – ill-typed (talk : Human→Prop)
 What happens when we have events? (talk : Event→t/Prop)
 Montague: ∀x:e ∃v:Event. talk(v) & agent(v)=x (well-typed)
 MTT-sem: ∀x:Table ∃v:Evt_A(x). talk(v)
 where we have Table ≤ Agent. (Also well-typed!)
 So? There are three approaches to enforce selectional restriction

So? There are three approaches to enforce selectional restriction with events:

- 1. Refining typing for verb phrases (like talk)
- 2. Refining typing of thematic roles (like agent)
- 3. Further refining dependent event types by subtyping

2 1

 \Rightarrow Approach 1: Instead of (neo-Davidsonian) talk : Event \rightarrow t, * talk_h : Human \rightarrow Event \rightarrow Prop (Davidson's original proposal), or \ast talk_d : ∏h:Human. Evt_A(h)→Prop (dependent typing) Then, "Tables talk" is ill-typed – table x is not a human: * (#) $\forall x$:Table $\exists v$:Event. talk_h(x,v) & agent(v)=x * (#) $\forall x$:Table $\exists v$:Evt_A(x). talk_d(x,v) Approach 2: Instead of (neo-Davidsonian) agent: Event $\rightarrow e$, * agent_h : Event \rightarrow Human (with codomain being Human) Then, "Tables talk" is ill-typed – table x is not a human: * (#) \forall x:Table \exists v:Event. talk(v) & agent_h(v)=x

Approach 3: refined DETs

- Let T ≤_c Agent. (Consider subtypes of Agent, wlg.)
 Evt_A[T] : T→Type
 - Evt_A[T](a) = Evt_A(c(a)), for any a : T.
- Examples
 - ✤ Men talk.
 - ♦ ∀x:Man ∃v:Evt_A[Human](x). talk(v) (OK because Man≤Human)
 - Tables talk.
 - ✤ John picked up and mastered the book.

Note: this approach is more flexible/powerful.

Related (and some future) work on DETs

Original idea

2 3

- ☆ Came from my treatment of an example in (Asher & Luo 12)
 - Evt(h) to represent collection of events conducted by h : Human.
- Further prompted by de Groote's talk at LENLS14 (on EQP etc.)
- Other applications of DETs
 - * For example, problem with negation in event semantics
- DETs dependent on other parameters
 - ✤ Dependency on other thematic roles, say time/location/...
 - * Dependency on other kinds of parameters than thematic roles?

