Early Rumour Detection

Kaimin Zhou²

Chang Shu^{1,2} Binyang Li³ Jey Han Lau^{4,5}

¹ School of Computer Science. University of Nottingham Ningbo China ² DeepBrain

³ School of Information Science and Technology, University of International Relations

⁴ School of Computing and Information Systems. The University of Melbourne

⁵ IBM Research Australia

will@deepbrain.ai, scxcs1@nottingham.edu.cn, byli@uir.edu.cn, jeyhan.lau@gmail.com

Introduction

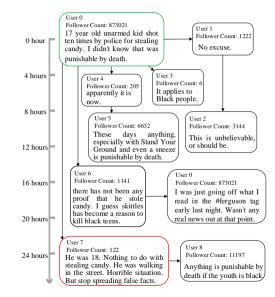
- Rumours can spread quickly through social media.
- Malicious ones can bring about significant economical and social impact.
- Our paper focuses on the task of rumour detection.
- ▶ Particularly, we are interested in understanding how *early* we can detect them.

Importance of Timeliness

- Rumour detection isn't a new task: there are numerous studies and data sets on rumour detection.
- Few, however, are concerned with the timing of the detection.
- A successfully-detected malicious rumour can still cause significant damage if it isn't detected in a timely manner.

► Timing is crucial.

Michael Brown's Shooting on Twitter



How Rumour Propagates

- Source message (green box) started a claim about the cause of Michael Brown's shooting.
- It claimed that he was shot for stealing candy.
- The dramatic claim was retweeted by several influential users, and within 24 hours about 900K users were involved.
- Only after 24 hours we see a user (red box) questioned the veracity of the source message.
- Had the rumour been identified earlier and rebutted, its propagation could have been contained.

Background

- Most studies (Qazvinian et al. [2011], Zhang et al. [2015]) consider rumour detection as a binary classification problem.
- More recent works (Long et al. [2017], Ruchansky et al. [2017]) explore deep learning methods to enhance detection accuracy.
- ▶ In all these studies, however, timeliness isn't evaluated.
- ▶ There are a few exceptions, e.g. Ma et al. [2015] and Kwon et al. [2017].
- In these papers, the authors define a checkpoint in the timeline and use all posts prior to the checkpoint to classify a rumour.
- Checkpoint is a pre-determined value (e.g. after N posts), and so does not capture the variation of propagation patterns for different rumours.

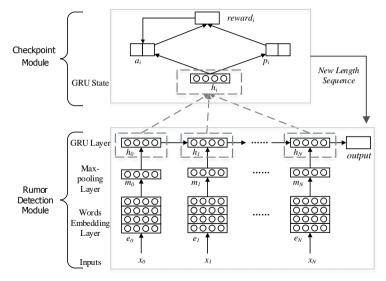
Our Approach

- We combine deep learning and reinforcement learning to identify rumours as early as possible.
- Our early rumour detection system (ERD) features two modules:
 - A rumour detection module (RDM) that classifies whether an event constitutes a rumour;
 - A checkpoint module (CM) that determines when to trigger RDM.
- What is an event? It's a collection of posts consisting a source message and all responses and reposts

High Level Description of ERD

- ERD treats incoming posts as a data stream.
- When a new post arrives, this post (along with all related prior posts) will be used to decide if it constitutes an appropriate checkpoint to trigger RDM.
- ERD integrates reinforcement learning for CM to guide RDM, using RDM's classification accuracy as a reward.
- Through this, ERD is able to learn the minimum number of posts required to identify a rumour.
- In other words, checkpoint in ERD is *dynamic*, and that's the core novelty of our methodology.

Model Architecture



Rumour Detection Module (RDM)

- Consists of several layers:
 - ▶ Word Embedding: maps input words into vectors x_i → [e⁰_i; e¹_i; ...; e^K_i]
 - Max-pooling layer: extract salient features for a post m_i = maxpool([W_me⁰_i; W_me¹_i; ...; W_me^K_i])
 - GRU: capture temporal relationship between multiple posts $h_i = \text{GRU}(m_i, h_{i-1})$
 - Output layer:

 $p = \operatorname{softmax}(\mathbf{W}_p h_N + b_p)$

where N = number of posts received to date, and $p \in \mathbb{R}^2$, i.e. p^0 (p^1) gives the probability of the positive (negative) class

Checkpoint Module (CM)

- CM uses deep Q-learning model (Mnih et al. [2013]).
- The optimal action-value function $Q^*(s, a)$ is defined as the maximum expected return achievable under state s:

$$Q^*(s, a) = E_{s' \varepsilon}[r + \gamma \max_{a'} Q_i(s', a')|s, a]$$

where ${\it r}$ is the reward value, γ the discount rate.

To compute the action-value function, we use the hidden states produced by the GRU in RDM:

$$a_i = \mathbf{W}_a(\operatorname{ReLu}(\mathbf{W}_h h_i + b_h)) + b_a$$

where $a_i \in \mathbb{R}^2$ is the action value for *terminate* (a_i^0) or *continue* (a_i^1) at post x_i .

Joint Training

- Training process is similar to that of generative adversarial networks (Goodfellow et al. [2014]).
- ▶ Key contrast: RDM and CM is working cooperatively rather than adversarially.
- ▶ We pre-train RDM based on cross-entropy before joint training.
- ▶ During joint training we train CM and RDM in an alternating fashion.

Reward for CM

- In each step of the training, new posts will be processed by RDM (to generate the hidden states h_i) which will in turn be used by CM to calculate the action values (a_i).
- If the system takes the *terminate* action, the reward is given based on RDM's prediction; otherwise a small penalty is incurred:

$$r_i = \begin{cases} \log M, & terminate \text{ with correct prediction} \\ -P, & terminate \text{ with incorrect prediction} \\ -\varepsilon, & continue \end{cases}$$

- ▶ where *M* is the number of correct predictions accumulated thus far;
- P is a large value to penalise an incorrect prediction;
- \blacktriangleright ε is a small penalty value for delaying the detection.

Data Set

- We use two standard rumour data sets: Weibo (Ma et al. [2016]) and Twitter (Zubiaga et al. [2016]).
- ▶ 10% events reserved as validation; rest is split in a ratio of 3:1 for train and test.

Weibo	Twitter
2,746,818	49,345
3,805,656	103,212
4,664	5,802
2,313	1,972
2,351	3,830
2,460.7	33.4
816	17
59,318	346
10	1
	2,746,818 3,805,656 4,664 2,313 2,351 2,460.7 816 59,318

Models

Baseline: SVM with tf-idf features

- CSI (Ruchansky et al. [2017]): neural model that integrates text and user information to classify rumours.
- CRF and HMM (Zubiaga et al. [2016], Dungs et al. [2018]): classical models that use crowd opinions of the event for classification.
- ▶ GRU-2 (Ma et al. [2016]): two-layer GRU with tf-idf features.
- **RNN**, **LSTM** and **GRU-1**: variants of GRU-2 with simpler recurrent architectures.

Detection Accuracy: Weibo

Method	Accuracy	Precision	Recall	F1
Baseline	0.724	0.673	0.746	0.707
RNN	0.873	0.816	0.964	0.884
LSTM	0.896	0.846	0.968	0.913
GRU-1	0.908	0.871	0.958	0.913
GRU-2	0.910	0.876	0.956	0.914
CSI*	0.953	_	—	0.954
RDM	0.957	0.950	0.963	0.957
ERD	0.933	0.929	0.936	0.932

Detection Accuracy: Twitter

Method	Accuracy	Precision	Recall	F1
Baseline	0.612	0.355	0.465	0.398
RNN	0.785	0.707	0.659	0.682
LSTM	0.796	0.719	0.683	0.701
GRU-1	0.800	0.735	0.685	0.709
GRU-2	0.808	0.741	0.694	0.717
CRF*	_	0.667	0.566	0.607
HMM*	—	—	—	0.524
RDM	0.873	0.817	0.823	0.820
ERD	0.858	0.843	0.735	0.785

Detection Accuracy: Findings

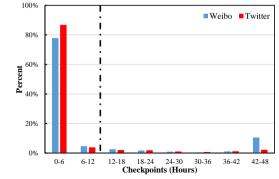
- RDM outperforms all models across most metrics.
- ERD performs very competitively, outperforming most benchmark systems and baselines, with the exception of CSI on Weibo.
- Unlike all other systems, ERD uses only a subset of posts (average = 4.03 posts) for rumour classification.
- Exception: HMM is the only benchmark that uses a subset (first 5 posts), but its performance is markedly worse.

Detection Timeliness

- Compare ERD against GRU-2, as it performed competitively for both data sets.
- GRU-2 uses a manually set checkpoint (12 hours after source message), which were found to be optimal.

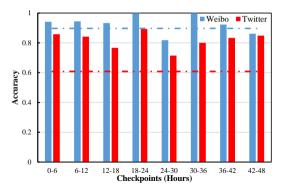
Classified Events Over Time

- ▶ We first present the proportion of events that are classified by ERD over time.
- ► Approximately 80% events are classified within first 6 hours.
- ▶ GRU-2's optimal checkpoint is 12 hours (dashed), so ERD's detection is earlier.



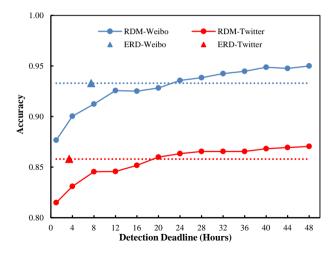
Accuracy Over Time

- ▶ We next present classification accuracy over time.
- ▶ ERD outperforms GRU-2 over all check points.
- Although checkpoints longer than 12 hours are not exactly comparable (since ERD uses more posts than GRU-2).



ERD vs. RDM

▶ We next compare ERD and RDM to understand the impact of CM.



Impact of CM?

- Dashed lines indicate average performance of ERD, which detects rumours on average in 7.5 and 3.4 hours on Weibo and Twitter respectively.
- Solid lines show accuracy of RDM, which increases over time as it has more evidence.
- For RDM to achieve the same performance as ERD, it requires approximately at least 20 hours of posts.
- These observations highlights the importance of the checkpoint module, which allows ERD to detect rumours much earlier.
- In certain events, they are detected within 3 minutes.

Case Study: Toxic Crabs on Weibo

A set of salient words (2nd column) are extracted from posts published during a particular period (1st column) using tf-idf features.

Interval	Salient Words	Translation
18:41 - 18:44	大闸蟹,毒性,激素,有害,吃 惊	hairy crabs, toxicity, hormone, harmful, amazed
18:48 - 18:51	大闸蟹,爆出,消息,吃惊,上 市	hairy crabs, bursts, message, amazed, on the market
18:51 - 18:59	美食,为何,这样,晕,同城会	delicious food, why, so, dizzy, one city club
18:59 - 19:09	敢吃吗,吃得起,喜欢,惨,偷 笑	dare to eat, afford to eat, like, miserable, laughing
19:11 - 19:15	食品安全,真的吗,失望,神 马,不能	food safety, really, disappointment, what, cannot
	Rumour Det	ected
19:34 - 19:49	是不是,大闸蟹,吃不成,疑 问,围观	is it, hairy crabs, cannot eat, doubt, look around

Case Study: Toxic Crabs on Weibo

- The rumour was started by a message claiming that hairy crabs contain harmful toxins on August 18th, 2012.
- ▶ Within 12 hours, 2.3M users participated in its propagation.
- The rumour spread quickly and led to significant economic damage to the aquaculture industry in China.
- It was officially rebutted after 24 hours, but ERD detects the rumour in less than an hour.

Conclusion

- ▶ We present ERD, an early rumour detection system.
- ERD learns dynamically the minimum number of posts required to identify a rumour.
- ERD integrates reinforcement learning with deep learning to monitor microblogs in real time to decide when classify rumours.
- Across two data sets in different languages, ERD achieves a competitive detection accuracy compared to state-of-the-art systems.
- In terms of detection timeliness, ERD identifies rumours much earlier: on average 4.5 or 8.6 hours earlier depending on the dataset.

Questions?

References I

- Sebastian Dungs, Ahmet Aker, Norbert Fuhr, and Kalina Bontcheva. Can rumour stance alone predict veracity? In *Proceedings of the 27th International Conference on Computational Linguistics*, pages 3360–3370, 2018.
- Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In *Advances in neural information processing systems*, pages 2672–2680, 2014.
- Sejeong Kwon, Meeyoung Cha, and Kyomin Jung. Rumor detection over varying time windows. *PloS one*, 12(1):e0168344, 2017.
- Yunfei Long, Qin Lu, Rong Xiang, Minglei Li, and Chu-Ren Huang. Fake news detection through multi-perspective speaker profiles. In *Proceedings of the Eighth International Joint Conference* on Natural Language Processing (Volume 2: Short Papers), volume 2, pages 252–256, 2017.
- Jing Ma, Wei Gao, Zhongyu Wei, Yueming Lu, and Kam-Fai Wong. Detect rumors using time series of social context information on microblogging websites. In *Proceedings of the 24th ACM International on Conference on Information and Knowledge Management*, pages 1751–1754. ACM, 2015.

References II

Jing Ma, Wei Gao, Prasenjit Mitra, Sejeong Kwon, Bernard J Jansen, Kam-Fai Wong, and Meeyoung Cha. Detecting rumors from microblogs with recurrent neural networks. In *IJCAI*, pages 3818–3824, 2016.

- Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. *arXiv preprint arXiv:1312.5602*, 2013.
- Vahed Qazvinian, Emily Rosengren, Dragomir R Radev, and Qiaozhu Mei. Rumor has it: Identifying misinformation in microblogs. In *Proceedings of the Conference on Empirical Methods in Natural Language Processing*, pages 1589–1599. Association for Computational Linguistics, 2011.
- Natali Ruchansky, Sungyong Seo, and Yan Liu. Csi: A hybrid deep model for fake news detection. In *Proceedings of the 2017 ACM on Conference on Information and Knowledge Management*, pages 797–806. ACM, 2017.
- Qiao Zhang, Shuiyuan Zhang, Jian Dong, Jinhua Xiong, and Xueqi Cheng. Automatic detection of rumor on social network. In *Natural Language Processing and Chinese Computing*, pages 113–122. Springer, 2015.

References III

Arkaitz Zubiaga, Maria Liakata, and Rob Procter. Learning reporting dynamics during breaking news for rumour detection in social media. *arXiv preprint arXiv:1610.07363*, 2016.