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Natural Language Inference

Roughly: the task of determining whether a NL hypothesis H
follows from an NL premise P

‘inferential ability is not only a central manifestation of
semantic competence but is in fact centrally constitutive of it’
Cooper et al. (1996)
inferential ability as a means to test the semantic adequacy of
NLP systems
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What Humans Infer?

Reasoning: part of our every day routine:

we hear Natural Language (NL) sentences
we participate in dialogues
we read books or legal documents.

Successfully understanding, participating or communicating
with others in these situations presupposes some form of
reasoning

about individual sentences
whole paragraphs of legal documents
small or bigger pieces of dialogue
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Different domains, different reasoning

The variety of reasoning is difficult to be explained by a single
coherent system of reasoning. Why?

because reasoning is performed in different ways in each one of
them

Consider the following example:

(1) Three representatives are needed.
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Different domains, different reasoning

(2) Three representatives are needed.

Assume a human reasoner with expert knowledge in a legal
context:

s/he will most probably judge that a situation where more
than three representatives are provided could be compatible
with the semantics of the utterance

The same reasoner interpreting the utterance as part of a
casual, everyday conversation:

three would most likely be interpreted as exactly three
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Incremental Reasoning in Interaction

Reasoning can get very complicated as soon as we move to a
dialogue setting:

A. Mont Blanc is higher than
B. Mt. Ararat?
A. Yes.
B. No, this is not correct. It is the other way around.
A. Are you...
B. Sure? Yes, I am.
A. Ok, then.

Stergios Chatzikyriakidis Docent Lecture 7/45



Inference can be Incremental and Interactive

The listener reasons based on:
utterances that are split between two participants

thus having to dynamically keep track of them.

Furthermore, the listener must be able to compute:
global inferences, i.e. inferences that are based on
statements/facts that are shared (agreed upon) by the
dialogue participants

local inferences that are based on facts that are not shared by
all dialogue participants.
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Can machines take it?

The grand picture, the mother of all tasks: create
computational semantics systems that will reflect this wealth
of reasoning patterns

Start small: systems that perform reasoning on well-defined
(well...) subsets of what NLI is

Define the task
Provide the system
Evaluate the system
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The Three Eras of NLI

The Symbolic Era
What we need is a solid formal system and good rules
formalized in that system
We just have to find these good rules

It should be possible, no?
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The Symbolic Era: the Datasets

The FraCas test suite Cooper et al. (1996)

a collection of mostly logical entailments. Categorization is
done according to semantic category
Three way classification of 346 inference problems: YES (the
conclusion follows), NO (the negation of the conclusion
follows) and UNK (none of the two follow)
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The Symbolic Era: the Datasets

(3) A Swede won the Nobel Prize.

Every Swede is Scandinavian.

Did a Scandinavian win the Nobel prize? [Yes, FraCas 049]

(4) No delegate finished the report on time..

Did any Scandinavian delegate finish the report on time?
[No, FraCaS 070]
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The Symbolic Era: the Datasets

(5) A Scandinavian won the Nobel Prize.

Every Swede is Scandinavian.

Did a Swede win the Nobel prize? [UNK, FraCaS 065]

Other typical examples

(6) Either Smith, Jones or Anderson signed the contract.

Did John sign the contract? [UNK] (plurals, FraCaS
083)

(7) Dumbo is a large animal. Is Dumbo a small animal?
[NO] (adjectives, FraCaS 205)

(8) Smith believed that ITEL had won the contract in
1992. Did ITEL win the contract in 1992? [UNK]
(Attitudes, FraCaS 334)
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The Symbolic Era: The General Approach

Pair a symbolic syntactic parser with logical semantics

Define a correspondence between abstract syntax (usually
abstract syntactic trees) and semantics in some logical
language

Stergios Chatzikyriakidis Docent Lecture 15/45



The Symbolic Era

Does extremely well in controlled domains

Very precise and fine-grained
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The Symbolic Era

Breaks down when thrown into open text or non-controlled
text
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The Symbolic Era

Common problem with symbolic approaches

This is the reason they have been largely abandoned in modern
day AI or even dubbed totally useless by some contemporary
AI researchers
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The Symbolic Era: The State of the Art

Bernardy and Chatzikyriakidis (2019)

Building on earlier work Bernardy and Chatzikyriakidis (2017)

In a nutchell:

A converter from syntax trees to types.

GF syntax trees to Coq types via a Haskell Program, using
Monadic Dynamic Semantics

Type-theoretical combinators for the treatment of various
linguistic phenomena (e.g. adjectives)
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The Symbolic Era: The State of the Art

DFraCoq’s architecture

text AST Probabilistic program result in (0, 1)
GF

Haskell
interpreter Coq

Syntax
Dynamic Semantics

Additional Semantics
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The Symbolic Era: The State of the Art

Covers more of the FraCaS than any previous account (around
80%)

First run on the ellipsis and anaphora section
Overall accuracy of around 89.2%
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The Symbolic Era: The State of the Art

Comparison of DFraCoq with previous logical approaches

Section #cases Ours FC MINE Nut Langpro
Quantifiers 75 .96 .96 .77 .53 .93

(74) (44)
Plurals 33 .82 .76 .67 .52 .73

(24)
Anaphora 28 .86 - - - -
Ellipsis 52 .87 - - - -
Adjectives 22 .95 .95 .68 .32 .73

(20) (12)
Comparatives 31 .87 .56 .48 .45 -
Temporal 75 - - - - -
Verbs 8 .75 - - - -
Attitudes 13 .92 .85 .77 .46 .92

(9)
Total 337 .89 .83 .69 .50 .85

(259) (174) (174) (174) (89)
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The Symbolic Era: The State of the Art

High precision, but low recall when thrown into open text

Brittle systems
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The Classic Machine Learning Era

Late 90s, all the way to approximately 2013-2014

Supervised Machine Learning: using hand-crafted features to
train the models

Bag-of-Words, similarity metric based models, Maximum
Entropy Classifiers, SVMs, Naive Bayes... the usual suspects
Enough with Logic, this will definitely work
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The Classic Machine Learning Era: Datasets

The PASCAL Recognizing Textual Entailment Challenges
(RTE)
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The RTE datasets

Platform appeared in 2005 Dagan et al. (2006)
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Some RTE examples

P Budapest again became the focus of national political drama
in the late 1980s, when Hungary led the reform movement in
eastern Europe that broke the communist monopoly on
political power and ushered in the possibility of multiparty
politics.

H In the late 1980s Budapest became the center of the reform
movement. [follows, RTE702]
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Some RTE examples

P Budapest again became the focus of national political drama
in the late 1980s, when Hungary led the reform movement in
eastern Europe that broke the communist monopoly on
political power and ushered in the possibility of multiparty
politics.

H In the late 1980s Budapest became the center of the reform
movement. [follows, RTE702]

P Like the United States, U.N. officials are also dismayed that
Aristide killed a conference called by Prime Minister Robert
Malval in Port-au-Prince in hopes of bringing all the feuding
parties together.

H U.N. officials take part in a conference called by Prime
Minister Robert Malval. (does not follow, RTE1933)
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The RTE datasets

Performance on the RTE datasets has been in general poor

Around 60% accuracy for many years and thoughout the
challenges
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The Deep Learning Era

The dominant (almost the only one) nowadays

Some sort of Artificial Neural Network model is used to deal
with NLI
ANNs are great learners, they can approximate any function
given enough data (oversimplified, for a precise definition,
check Universal Approximation Theorem)
But enough is most of the times a lot!

And quality might not be great
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The Deep Learning Era

New datasets are needed

Both FraCaS and the RTE datasets (also SICK) are not
suitable on datasize alone
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The SNLI platform

Developed at Stanford by Bowman et al. (2015)
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The SNLI platform

Instructions used on Mechanical Turk
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Impressive results

The State of the Art at this moment on the SNLI dataset is
above 90% accuracy

Actually, the State of the Art has been surpassed tenths of
times, since the first paper using NNs for SNLI (Bowman
et al., 2015)
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The original approach

Simple architecture

three 200d tanh layers plus a bottom layer

input: concatenated sentence representations
output: softmax classifier (3-way)
Achieves an accuracy close to 78%
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The BERT subera

Tenths of systems since then, slowly advancing the SoA by
proposing different NN architectures and network tweaks

Where we are now: the BERT era (Bidirectional Encoder
Representations from Transformers)

What it does?

Transfer learning: transfer knowledge obtained from one task
to another (e.g. semantic similarity to NLI)
Pre-training: pre-train the model on two prediction tasks (one
is e.g. predict the next sentence)
Fine-tuning for other tasks: no training from scratch is
needed, just fine-tuning of parameters
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The BERT subera

Impressive in a wide variety of tasks (basically all of the GLUE
benchmarks)

Current SoTA: BERT + Semantic Role Labelling information
(Zhang et al., 2019)
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Brittleness through the back door?

At first sight, NN systems do not seem to be suffering from
the brittleness problem

Only to some extent correct
Recent studies seem to propose that NN systems are also
brittle, but in another sense

They fail to generalize outside individual datasets and are,
furthermore, unable to capture certain NLI patterns, at all

Stergios Chatzikyriakidis Docent Lecture 38/45



Brittleness through the back door?

NLI systems have limited generalization ability outside the
datasets that they are trained and tested on Glockner et al.
(2018)

NLI systems break easily when, instead of being tested on the
original SNLI test set, they are tested on a test set which
contain sentences that differ by at most one word from
sentences in the training set

Significant drop in accuracy, e.g. between 22 and 33 points
when trained on SNLI and tested on the new dataset, is
reported for three out of four state-of-the-art systems tested.
The system less prone to breaking is Kim et al. (2018) (5
points drop when trained on SNLI and tested on the new
dataset), which utilizes external knowledge taken from
WordNet Miller (1995).
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Brittleness through the back door?

NLI systems have limited generalization ability outside the
datasets that they are trained and tested on (Talman and
Chatzikyriakidis, 2018)

Train and test six state-of-the-art NN models using train and
test sets drawn from a different corpus

E.g. the train set is drawn from the SNLI but the test from
the MultiNLI, vice versa and other similar combinations

The results shows an average drop of 24.9 points in accuracy
for all systems, including the system by Kim et al. (2018)
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How our NLI systems are doing: brittleness through the

backdoor

Train Dev Test Test Accuracy Delta Model

SNLI SNLI SNLI 86.1 600D BiLSTM-max
SNLI SNLI SNLI 86.6 600D HBMP Talman et al. (2018)
SNLI SNLI SNLI 88.0 600D ESIM Chen et al. (2017)
SNLI SNLI SNLI 88.6 300D KIM Kim et al. (2018)

SNLI SNLI MultiNLI-m 55.7* -30.4 600D BiLSTM-max

SNLI SNLI MultiNLI-m 56.3* -30.3 600D HBMP

SNLI SNLI MultiNLI-m 59.2* -28.8 600D ESIM

SNLI SNLI MultiNLI-m 61.7* -26.9 300D KIM

SNLI SNLI SICK 54.5 -31.6 600D BiLSTM-max
SNLI SNLI SICK 53.1 -33.5 600D HBMP
SNLI SNLI SICK 54.3 -33.7 600D ESIM
SNLI SNLI SICK 55.8 -32.8 300D KIM

MultiNLI MultiNLI-m MultiNLI-m 73.1* 600D BiLSTM-max

MultiNLI MultiNLI-m MultiNLI-m 73.2* 600D HBMP

MultiNLI MultiNLI-m MultiNLI-m 76.8* 600D ESIM

MultiNLI MultiNLI-m MultiNLI-m 77.3* 300D KIM
MultiNLI MultiNLI-m SNLI 63.8 -9.3 600D BiLSTM-max
MultiNLI MultiNLI-m SNLI 65.3 -7.9 600D HBMP
MultiNLI MultiNLI-m SNLI 66.4 -10.4 600D ESIM
MultiNLI MultiNLI-m SNLI 68.5 -8.8 300D KIM

MultiNLI MultiNLI-m SICK 54.1 -19.0 600D BiLSTM-max
MultiNLI MultiNLI-m SICK 54.1 -19.1 600D HBMP
MultiNLI MultiNLI-m SICK 47.9 -28.9 600D ESIM
MultiNLI MultiNLI-m SICK 50.9 -26.4 300D KIM

SNLI+MultiNLI SNLI SNLI 86.1 600D BiLSTM-max
SNLI+MultiNLI SNLI SNLI 86.1 600D HBMP
SNLI+MultiNLI SNLI SNLI 87.5 600D ESIM
SNLI+MultiNLI SNLI SNLI 86.2 300D KIM

SNLI+MultiNLI SNLI SICK 54.5 -31.6 600D BiLSTM-max
SNLI+MultiNLI SNLI SICK 55.0 -31.1 600D HBMP
SNLI+MultiNLI SNLI SICK 54.5 -33.0 600D ESIM
SNLI+MultiNLI SNLI SICK 54.6 -31.6 300D KIM

Test accuracies (%). For results highlighted in bold the training data include examples from the same

corpus as the test data. For the other cases, the training and test data involve separate corpora.
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The issue of generalizability

BERT seems to be doing much better than the other models
in our examples

Did not exist when the other negative results papers appeared

Still when moved from more similar to less similar datasets
(this is to be expected, of course, though the drop is huge)
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Where do we go from here?

Keep all research directions open

There seems to be still use for research directions that were
deemed useless in the field

Attempt integration

Hybrid approaches

Symbolic + DL: On what level, what are the gains if at all

Get a clear idea of what approach works well with what, but
most importantly, what approach DOES NOT work well with
what
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Where do we go from here? Better datasets

Reflect in a more accurate way the range of inference patterns
found in human reasoning with NL

Most importantly: we need datasets that can test NLP
systems on reasoning with dialogue

Probabilistic datasets?

NLI datasets that give probability scores for an inference
instead of a three way classification
Needed in order to test probabilistic semantics systems like the
ones currently developed at CLASP (e.g. Cooper et al. (2015);
Bernardy et al. (2018)
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