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Natural Language Inference

The goal of this project is to solve inference problems in natural
language such as the following:

entail, contradict or neural?

P: A flute is being played by a girl
H: There is no woman playing a flute

entail, contradict or neural?

P1: Most Europeans are resident in Europe
P2: All Europeans are people
P3: All people who are resident in Europe can travel freely within
Europe
H: Most Europeans can travel freely within Europe

Often referred to as Natural Language Inference (NLI)
and in the recent past as Recognizing Textual Entailment
(RTE).
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Goal

The goal is to build tools that can help with several
automatic inference tasks such as the
FraCas textual inference problem set.

fracas-013 answer: yes

P1 Both leading tenors are excellent.
P2 Leading tenors who are excellent are indispensable.
Q Are both leading tenors indispensable?
H Both leading tenors are indispensable.

fracas-014 answer: no

P1 Neither leading tenor comes cheap.
P2 One of the leading tenors is Pavarotti.
Q Is Pavarotti a leading tenor who comes cheap?
H Pavarotti is a leading tenor who comes cheap.
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The dominant approach: Machine Learning

system P R acc.

majority baseline – – 56.36

Natural-logic-based: MonaLog‡ (this work)

MonaLog + pass2act 89.42 72.18 80.25†

MonaLog + existential trans. 89.43 71.53 79.11†

MonaLog + all 83.75 70.66 77.19
MonaLog + all 89.91 74.23 81.66†

Hybrid: MonaLog + BERT 83.09 85.46 85.38
Hybrid: MonaLog + BERT 85.65 87.33 85.95†

ML/DL-based systems

BERT (base, uncased) 86.81 85.37 86.74
BERT (base, uncased) 84.62 84.27 85.00†

Yin and Schütze (2017) – – 87.1
Beltagy et al. (2016) – – 85.1

Logic-based systems

Bjerva et al. (2014) 93.6 60.6 81.6
Abzianidze (2015) 97.95 58.11 81.35

Mart́ınez-Gómez et al. (2017) 97.04 63.64 83.13
Yanaka et al. (2018) 84.2 77.3 84.3

Logic-based approaches

I Tableau (Abzianidze, following Muskens)

I Translation to a richer logical form,
then call a theorem prover
(Yanaka, also Bekki, Mineshima, etc.)

I Natural Logic: monotonicity calculus + special rules
(Hu, Icard, M, Tune)
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3 minute video on monotonicity

This is an entry for a United States
National Science Foundation contest
on mathematics outreach for the general public.
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Monotonicity: review from the video

An algebraic expression like

z − (v + w)

is increasing in z , and decreasing in v and w .

If we assume

I z1 ≤ z2
I v2 ≤ v1
I w2 ≤ w1

Then we are entitled to conclude

z1 − (v1 + w1) ≤ z2 − (v2 + w2)
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Monotonicity: review from the video

We had
z − (v + w)

We would write
v↓ w↓ z↑

(z − (v + w))↑ (1)

The responsible parties here are the facts that

+ : R× R→ R is increasing (monotone) in both arguments
− : R× R→ R is increasing in the first argument

and decreasing (antitone) in the second argument

Another way to say (1):
v ,w , z 7→ z − (v + w) is an increasing function

Rop × Rop × R→ R
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Adding absolute value

An algebraic expression like

z − (v + |w |)

is increasing in z , and decreasing in v , and
there’s nothing we can say about w .

If we assume

I z1 ≤ z2
I v2 ≤ v1
I w2=w1

Then we are entitled to conclude

z1 − (v1 + w1) ≤ z2 − (v2 + w2)
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Further

We had
z − (v + |w |)

We would write
v↓ w= z↑

(z − (v + w))↑ (2)

The responsible parties here are the facts that

+ : R× R→ R is increasing (monotone) in both arguments
− : R× R→ R is increasing in the first argument

and decreasing (antitone) in the second argument
| | : R→ R is neither

And we can write (2) as
v ,w , z 7→ z − (v + w) is an increasing function

Rop × R[ × R→ R
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Moving to language

(1) some↑ dog↑ hit↑ some↑ cat↑

(2) some↑ dog↑ kissed↓ no↑ cat↓

(3) most↑ dog= hit↓ no↑ cat↓

(4) no↑ dog↓ hit↑ no↓ cat↑

(5) at most two↑ dog↓ chased↑ at most three↓ cats↑

knowledge base for nouns, transitive verbs,
determiners, and numbers

dog ≤ animal
cat ≤ animal
poodle ≤ dog
siamese ≤ cat
bird ≤ scooter

kiss ≤ touch
hit ≤ touch
thrash ≤ hit
hit vigorously ≤ hit
hit lightly ≤ hit

every ≤ most
most ≤ some

one ≤ two
two ≤ three
three ≤ four
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The goals of our work

The project that Hai Hu and I are engaged in
aims to understand the polarizations ↑, ↓, and =
both in theoretical and practical ways.

Theoretical contribution

A system that can account for the polarization of many more
English sentences that previously.

A much more solid understanding of all the math.

Practical contribution

A system that accepts input from an off-the-shelf parser
for Combinatory Categorial Grammar (CCG)
and returns the polarization of the semantic function
determined by the parse.

An algorithm for inference that uses the “arrow information”.

Experience with machine learners.
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I assume that you have seen categorial grammar

Dana: np

praised: (s\np)/np Kim: np

praised Kim: s\np
Dana praised Kim: s

From our lexicon

(Dana, np)
(Kim, np)
(praised, (s\np)/np)

The leaves must match the categories in the lexicon,
and going down we use directed cancellation.

A key point is that CG reconstructs traditional categories
like verb phrase
as complex categories: s\np

12/76



Algebra as grammar

We take a single base type, R.

Another lexicon

plus : (R/R)/R minus : (R/R)/R
times : (R/R)/R div2 : (R/R)/R
v : R w : R
x : R y : R
z : R
1 : R 2 : R
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We get terms in Polish notation

minus : (R/R)/R z : R

minus z : R/R

plus : (R/R)/R v : R

plus v : R/R w : R

plus v w : R

minus z plus v w : R

We think of the tree as justifying the fact that

z − (v + w)

is a term of syntactic category R,
based on the assumptions at the leaves.
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Semantics

The semantics will use
higher-order (one-place) functions on the real numbers.

We take sets for our semantic domains,
using function sets for the two slashes:

DR = R
DX\Y = DX → DY

DY /X = DX → DY

Then automatically,
DR/R = R→ R.

And
D(R/R)/R = R→ (R→ R).
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Semantics

As one particular model, we take

[[v]] = 4
[[w]] = 2
[[x]] = 65
[[y]] = −3
[[z]] = 0

[[1]] = 1
[[2]] = 2
[[plus]](a)(b) = a + b
[[minus]](a)(b) = a− b
[[times]](a)(b) = a · b

[[div2]](a)(b) = 2a÷b

A lot of these choices are “standard”;
it would not be sensible to do it differently.
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The semantics works by function application

minus : (R/R)/R z : R

minus z : R/R

plus : (R/R)/R v : R

plus v : R/R w : R

plus v w : R

minus z plus v w : R

The semantics is

[[minus z plus v w]] = [[minus]]([[z]])([[plus]]([[v]])([[w]]))
= [[minus]]([[z]])([[v]] + [[w]])
= [[z]]− ([[v]] + [[w]])
= 0− (4 + 2)
= −6
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van Benthem’s algorithm

Consider

f (v↑,w↑, x↑, y↓, z↓) =
x − y

2z−(v+w)
.

To fit it all on the screen, let’s drop the types:

div2

minus x
minus x y

minus x y

div2 minus x y

minus z
minus z

plus v

plus v w

plus v w

minus z plus v w

div2 minus x y minus z plus v w

div2(t)(u) is supposed to mean 2t÷u.
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Can we determine
the polarities of the variables from the tree?

Go from the root to the leaves, marking

green for ↑ red for ↓

Flip colors on the right branches of nodes marked
div2 and minus.
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Can we determine
the polarities of the variables from the tree?

Go from the root to the leaves, marking

green for ↑ red for ↓

div2

minus x
minus x y

minus x y

div2 minus x y

minus z
minus z

plus v

plus v w

plus v w

minus z plus v w

div2 minus x y minus z plus v w

This agrees with what we saw before:

f (v↑,w↑, x↑, y↓, z↓) =
x − y

2z−(v+w)
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Historical influences on this project

CG

Husserl, Frege, Lesniewski (antecedents)
Ajdukiewicz, Bar Hillel (“vanilla” CG)
Lambek, Steedman (extra rules)
van Benthem (syntax-semantics interface)

NL semantics and proof theory, especially related to monotonicity

Leibniz, Sommers 1982 (antecedents)
Montague 1973 (semantics), Fitch 1973 (rules)
Keenan, van Benthem 1986, Sánchez Valencia 1991
Dowty 1994 (internalization)

Inference in computational linguistics

Nairn, Condoravdi, and Karttunen 2006
MacCartney and Manning 2009
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Historical influences on this project

I van Benthem 1986, 1991: combine vanilla CG with inference
I Nairn, Condoravdi, and Karttunen 2006:

something similar (!),
but not noticed as such,
not using CG, and not aimed at the same issues

I Steedman: CCG, a working system

I Dowty 1994: internalization of inferential features
in the type system

I MacCartney and Manning 2009: get something to work.
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The problem with Ajdukiewicz/Bar-Hillel CG

The problem is that this form of grammar cannot work out
in practice.

I was looking for a form of grammar which has

I a syntax-semantics interface using functions
I can parse a wider class of sentences
I can even work with real text

I settled on CCG.
The important thing is the new rules type raising and composition.
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Rules of CCG

general rules of CCG (a few missing)

Y X\Y
X

<
X/Y Y

X
>

Y
X/(X\Y )

t

X
Y \(Y /X )

t
X/Y Y /Z

X/Z
b

Y \Z X\Y
X\Z

b

A tiny lexicon

word category

every np/n
cat n
that (n\n)/(s/np)

word category

Fido np
chased (s\np)/np
ran s\np

every : np/n

cat : n

that : (n\n)/(s/np)

F : np
F : s/(s\np)

t
ch : (s\np)/np

Fido chased : s/np
b

that Fido chased : n\n
>

cat that Fido chased : n
<

every cat that Fido chased : np
>

ran : s\np
every cat that Fido chased ran : s

<
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General theory:
preorders and monotone functions

Definition

A preorder is a pair P = (P,≤) consisting of a set P together
with a relation ≤ which is
reflexive and transitive.

This means that the following hold:

I p ≤ p for all p ∈ P.
I If p ≤ q and q ≤ r , then p ≤ r .
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Examples of preorders

The set of truth values 2 = {T,F} is a preorder, with F ≤ T.

The set of real numbers R is a preorder, with the usual ≤.

Definition

For any preorder P and any set X ,
we have a new preorder called X → P.

The domain of this preorder is the function set

X → P

The order on PX is the pointwise order:

f ≤ g iff for all x ∈ X , fx ≤P gx .
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Three more constructions of preorders

Definition

For any preorder P, there is an opposite preorder Pop.
Its domain set is P, the same domain set as for P.

p ≤ q in Pop iff q ≤ p in P

Definition

For any preorder P, there is an flattened version P[.
Its domain set is P, the same domain set as for P.

p ≤ q in P[ iff p = q

Definition

For any preorders P and Q, there is a product preorder P× Q.
Its domain set is the cartesian product P × Q.

(p, q) ≤ (p′, q′) in P× Q iff p ≤ p′ in P, and q ≤ q′ in Q
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Examples

Example

FT

F

T

T

F

2[2op2
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Examples

Example

(T ,F ) (F ,T )

(F ,F )

(T ,T )

2× 2

(T ,F ) (F ,T )

(T ,T )

(F ,T )

(2× 2)op

Example

(F ,F ) (T ,T )

(T ,F )

(F ,T )

2op × 2

(F ,F ) (T ,T )

(F ,T )

(T ,F )

2× 2op
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Monotone and Antitone functions

Monotone f : P→ Q

If p ≤ q in P, then f (p) ≤ f (q) in Q.

We write f : P
+→ Q.

Antitone f : P→ Q

If p ≤ q in P, then f (q) ≤ f (p) in Q.

We write f : P
−→ Q.
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Monotone and Antitone functions

Monotone f : P→ Q

If p ≤ q in P, then f (p) ≤ f (q) in Q.

We write f : P
+→ Q.

Antitone f : P→ Q

If p ≤ q in P, then f (q) ≤ f (p) in Q.

We write f : P
−→ Q.

f : P
·→ Q

For a “random” function f ,
we write f : P

·→ Q.

So this means “in general, neither monotone nor antitone.”
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Preorder enrichment of grammar

To derive the ↑ and ↓ polarities, we need to change the entire
architecture of CG,
and indeed to change everything about the semantics,
going from sets to preorders.

For example, standard CG has function types X → Y .

In the preorder enrichment, we have

I X
+→ Y (monotone functions)

I X
−→ Y (antitone functions)

I X
·→ Y (all functions)

We start with

Pe = the flat order on some set
Pt = 2
Pnum = N
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A lexicon
By flatness, e → t is the same as e

+→ t and e
−→ t

item category type

Fido, Felix np e

cat, dog n pr = (e → t)

swim, run iv = s\np pr

chase, see, hit, kiss tv = iv/np e → pr

every det = np/n pr
−→ np+

some np/n pr
+→ np+

no np/n pr
−→ np−

most np/n pr
·→ np+

didn’t iv/iv pr
−→ pr

tv/tv (e → pr)
−→ (e → pr)

and x/(x\x) x
+→ (x

+→ x)

one, two, three num num

more than det/num num
−→ (pr

+→ np+)

less than det/num num
+→ (pr

−→ np−)

if . . . then . . . (s\s)/s t
−→ (t

+→ t)
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The CCG rules have many different
polarized and marked versions

function application in all flavors of CG

a : X/Y b : Y

ab : X
>

This splits into many versions

a↑ : x
+→ y b : x↑

(ab)↑ : y
>

a↓ : x
−→ y b : x↑

(ab)↓ : y
>

a↓ : x
+→ y b : x↓

(ab)↓ : y
>

a↑ : x
−→ y b : x↓

(ab)↑ : y
>

There are yet more versions when we use the polarity =.
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Notation to summarize these facts

Pattern

f d : x
m→ y g : xmd

f (g)d : y
>

We combine markings and polarities as in the table below:

md + − ·
↑ ↑ ↓ =

↓ ↓ ↑ =

= = = =
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Algebra as grammar

We take a single base type r , and
as our lexicon we take

plus : (r/r)/r minus : (r/r)/r
times : (r/r)/r div2 : (r/r)/r
v : r w : r
x : r y : r
z : r
1 : r 2 : r
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Polish notation for z − (v + w)

minus : (r/r)/r z : r

minus z : r/r

plus : (r/r)/r v : r

plus v : r/r w : r

plus v w : r

minus z plus v w : r

Note that we have polarity facts:

z↑ − (v↓ + w↓).

What we want to do is to illustrate our algorithm on this relatively
simple example.
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What we need to do
in order to polarize the tree

We want to use

f d : x
m→ y g : xmd

f (g)d : y
>

md + − ·
↑ ↑ ↓ =

↓ ↓ ↑ =

= = = =

Input

minus : r → (r → r) z : r

minus z : r → r

plus : r → (r → r) v : r

plus v : r → r w : r

plus v w : r

minus z plus v w : r

plus↓ : r
+→ (r

+→ r)

minus↑ : r
+→ (r

−→ r)

Expected output

minus↑ : r
+→ (r

−→ r) z↑ : r

minus z↑ : r
−→ r

plus↓ : r
+→ (r

+→ r) v↓ : r

plus v↓ : r
+→ r w↓ : r

plus v w↓ : r

minus z plus v w↑ : r
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More on how it’s done

We want to use

f d : x
m→ y g : xmd

fgd : y
>

md + − ·
↑ ↑ ↓ =

↓ ↓ ↑ =

= = = =

Input

minus : r → (r → r) z : r

minus z : r → r

plus : r → (r → r) v : r

plus v : r → r w : r

plus v w : r

minus z plus v w : r

plus↓ : r
+→ (r

+→ r)

minus↑ : r
+→ (r

−→ r)
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More on how it’s done

We want to use

f d : x
m→ y g : xmd

fgd : y
>

md + − ·
↑ ↑ ↓ =

↓ ↓ ↑ =

= = = =

Input

minus : r → (r → r) z : r

minus z : r → r

plus : r → (r → r) v : r

plus v : r → r w : r

plus v w : r

minus z plus v w : r

plus↓ : r
+→ (r

+→ r)

minus↑ : r
+→ (r

−→ r)

Extra requirement

The bottom of the tree should get ↑
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More on how it’s done

We want to use

f d : x
m→ y g : xmd

fgd : y
>

md + − ·
↑ ↑ ↓ =

↓ ↓ ↑ =

= = = =

Starting

minus : r
+→ (r

−→ r) z : r

minus z : r → r

plus : r
+→ (r

+→ r) v : r

plus v : r → r w : r

plus v w : r

minus z plus v w↑ : r
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More on how it’s done

We want to use

f d : x
m→ y g : xmd

fgd : y
>

md + − ·
↑ ↑ ↓ =

↓ ↓ ↑ =

= = = =

Let’s use variables for the missing polarities

minusd : r
+→ (r

−→ r) z : r

minus z : r → r

pluse : r
+→ (r

+→ r) v : r

plus v : r → r w : r

plus v w : r

minus z plus v w↑ : r
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More on how it’s done

We want to use

f d : x
m→ y g : xmd

fgd : y
>

md + − ·
↑ ↑ ↓ =

↓ ↓ ↑ =

= = = =

Then we fill in the rest based on this and the overall pattern

minusd : r
+→ (r

−→ r) z+d : r

minus zd : r
−→ r

pluse : r
+→ (r

+→ r) v+e : r

plus ve : r
+→ r w : r

plus v we : r

minus z plus v w↑ : r

We have constraints at the bottom: ↑ = d , and −d = e.
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+→ (r
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minus zd : r
−→ r

pluse : r
+→ (r

+→ r) v+e : r

plus ve : r
+→ r w : r

plus v we : r

minus z plus v w↑ : r

We have constraints at the bottom: ↑ = d , and −d = e.

So we solve this to get the desired output

d = ↑ e = ↓ v↓ w↓ z↑
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The CCG rules again

general rules of CCG (a few missing)

Y X\Y
X

<
X/Y Y

X
>

Y
X/(X\Y )

t

X
Y \(Y /X )

t
X/Y Y /Z

X/Z
b

Y \Z X\Y
X\Z

b

We next want to see the preordered version of (b).
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Compositions

If f : P→ Q is monotone and g : Q→ R is monotone,
then g ◦ f is monotone.

If f : P→ Q is monotone and g : Q→ R is antitone,
then g ◦ f is antitone.

If f : P→ Q is antitone and g : Q→ R is monotone,
then g ◦ f is antitone.

If f : P→ Q is antitone and g : Q→ R is antitone,
then g ◦ f is monotone.
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Compositions: again

If f : P
+→ Q and g : Q

+→ R, then g ◦ f : P
+→ R.

If f : P
+→ Q and g : Q

−→ R, then g ◦ f : P
−→ R.

If f : P
−→ Q and g : Q

+→ R, then g ◦ f : P
−→ R.

If f : P
−→ Q and g : Q

−→ R, then g ◦ f : P
+→ R.

If either was
·→, the composition would also be

·→.

Interim summary

f : P
m→ Q g : Q

n→ R

g ◦ f : P
mn−→ R

We introduce a “multiplication” operation on the markings

m, n 7→ mn

given in the chart:

mn + − ·
+ + − ·
− − + ·
· · · ·
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Facts about function application

For all preorders P and Q, and f1, f2 : P → Q, and all p1, p2 ∈ P:

1 If f1, f2 : P
+→ Q, and f1 ≤ f2, and p1 ≤ p2, then f1(p1) ≤ f2(p2).

2 If f1, f2 : P
−→ Q, and f1 ≤ f2, and p2 ≤ p1, then f1(p1) ≤ f2(p2).

3 If f1, f2 : P
·→ Q, and f1 ≤ f2, and p2 = p1, then f1(p1) ≤ f2(p2).

4 If f1, f2 : P
+→ Q, and f2 ≤ f1, and p2 ≤ p1, then f2(p2) ≤ f1(p1).

5 If f1, f2 : P
−→ Q, and f2 ≤ f1, and p1 ≤ p2, then f2(p2) ≤ f1(p1).

6 If f1, f2 : P
·→ Q, and f2 ≤ f1, and p2 = p1, then f2(p2) ≤ f1(p1).

7-9. If f1, f2 : P
·→ Q, and f1 = f2, and p1 = p2, then f1(p1) = f2(p2).
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The polarized composition rule

the (b) rule

f d : x
m→ y gmd : y

n→ z

(g ◦ f )d : x
mn−→ z

b
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Polarized type raising

the (t) rule

f md : x

(λg .g(f ))d : (x
m→ y)

+→ y
t

Note that the last marking is +.
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From the language of monotonicity
to the monotonicty of language

The syntactic types start with s, n, and np,
just as in CG.
(To handle numbers, we also add num.)
For the semantic types, we start with base types, e, t, and num.

We then form complex types:

I If x and y are types, so are x
+→ y , x

−→ y , and x
·→ y .

Abbreviations

(et) abbreviates e
·→ t.

np+ abbreviates et
+→ t.

np− abbreviates et
−→ t.

np abbreviates et
·→ t.
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For the determiners, our lexicon
uses order-enriched types

word type

every n
−→ np+

some n
+→ np+

word type

no n
−→ np−

most n
·→ np+

These are basically the internalized types first considered by Dowty.
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Lexicon

item category semantic type

Fido, Felix np e

cat, dog n n = pr

swim, run iv = s\np pr

chase, see, hit, kiss tv = iv/np e → pr

every det = np/n pr
−→ np+

some np/n pr
+→ np+

no np/n pr
−→ np−

most np/n pr
·→ np+

who (n\n)/(s/np) (np+
+→ t)

+→ (pr
+→ pr)

didn’t iv/iv pr
−→ pr

tv/tv (e → pr)
−→ (e → pr)

and x/(x\x) x
+→ (x

+→ x)

one, two, three num num

more than det/num num
−→ (pr

+→ np+)

less than det/num num
+→ (pr

−→ np−)

if . . . then . . . (s\s)/s t
−→ (t

+→ t)
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Example

The syntax tree is given to us by the parser:

every : np/n

cat : n

that : (n\n)/(s/np)

F : np
F : s/(s\np)

t
ch : (s\np)/np

Fido chased : s/np
b

that Fido chased : n\n
>

cat that Fido chased : n
<

every cat that Fido chased : np
>

ran : s\np
every cat that Fido chased ran : s

<

This tree has a semantics which is suggested below:

every : n→ np
cat : n

that : (np→ s)→ (n→ n)

F : np
F : (np→ s)→ s

t
ch : np→ (np→ s)

Fido ch : np→ s
b

that Fido chased : n→ n
>

cat that Fido chased : n
<

every cat that Fido chased : np
>

ran : np→ s

every cat that Fido chased ran : s
<
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“The structure of every sentence
is a lesson in logic.”

John Stuart Mill (1867)

Saving on notation by writing W for np+
+→ t:

every↑ : n
−→ np+

cat↓ : n

that↓ : W
+→ (n

+→ n)

F↓ : e

F↓ : np+
j

F↓ : W
+→ t

t ch↓ : e
+→W

ch↓ : np+
+→W

j

Fido ch↓ : W
b

that Fido chased↓ : n
+→ n

>

cat that Fido chased↓ : n
<

every cat that Fido chased↑ : np+
>

ran↑ : e
+→ t

ran↑ : W
j

every cat that Fido chased ran↑ : t
<

The arrows could be determined just by parsing from our rules,
but since we want to use the parse given to us by a parser,
we aim for an algorithm that polarizes an upolarized CCG tree.

I am omitting discussion of our actual algorithm.
You could take it to be constraint satisfaction,
but it’s possible to be much more direct.
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Dowty’s armadillos

F↑ : e

ch= : e
+→ pr

ch= : np
+→ pr

k

ch↑ : np
+→ pr

w

some cat↑ : np+

some cat↑ : np
m

and : np
+→ (np

+→ np)

no arm↓ : np−

no arm↓ : np
m

and no arm : np
+→ np

>

some cat and no armadillo↑ : np
<

chased some cat and no armadillo↑ : pr
>

Fido chased some cat and no armadillo↑ : t
<

We use (m) twice in order conjoin some cat and no armadillo.

48/76



Review: our semantic spaces

We start with preorders for the base types:

Pe = the flat preorder
on an arbitrary set X

Pt = 2
Pnum = N

Each type x gives us a preorder Px using the following rules

P
x

+→y
= Px

+→ Py

P
x

−→y
= Px

−→ Py

P
x

·→y
= Px

·→ Py
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A lexicon

item category semantic type

Fido, Felix np e

cat, dog n n = pr

swim, run iv = s\np pr

chase, see, hit, kiss tv = iv/np e → pr

every det = np/n pr
−→ np+

some np/n pr
+→ np+

no np/n pr
−→ np−

most np/n pr
·→ np+

who (n\n)/(s/np) (np+
+→ t)

+→ (pr
+→ pr)

didn’t iv/iv pr
−→ pr

tv/tv (e → pr)
−→ (e → pr)

and x/(x\x) x
+→ (x

+→ x)

one, two, three num num

more than det/num num
−→ (pr

+→ np+)

less than det/num num
+→ (pr

−→ np−)

if . . . then . . . (s\s)/s t
−→ (t

+→ t)
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A lexicon

item category type

Fido, Felix np e

cat, dog n n = pr

swim, run iv = s\np pr

chase, see, hit, kiss tv = iv/np e → pr

For these content words, a model has an interpretation that can be
any element of the listed semantic type:

[[Fido]], [[Felix]], . . . ∈ Pe

[[cat]], [[dog]],. . . ∈ Ppr

[[swim]], [[run]],. . . ∈ Ppr

[[chase]], [[see]],. . . ∈ Pe→et
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Models: the function words have standard values
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Three new facts, for x a Boolean category

f = : e → x

(f?)= : np
+→ x

i f d : e → x

(f +? )d : np+
+→ x

j f d : e → x

(f −? )flip d : np−
+→ x

k

The last is the most subtle rule of the system.

It is related to the our type for transitive verbs:

e → (e → t)

This is a departure from what one would expect from CG:

np+ +→ (np+ +→ t)

or perhaps

np
+→ (np

+→ t)
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Rules again, but with an explanation

Rules

ud : x
m→ y vmd : x

(uv)d : y
>

umd : x

(tu)d : (x
m→ y)

+→ y
t

umd : x
n→ y vmd : y

n→ z

(buv)d : (x
mn−→ z)

b

umd : e → b

(rmu)d : npm
+→ b

k
ud : x

m→ y

ud : x
·→ y

m
u= : x

m→ y

ud : x
m→ y

w

The > in the application rule is function application.

The t in the type-raising rule is the Montague lift.

The b in the type-raising rule is function composition, backwards.

The rm in the K rule is from our refinement of the Justification Theorem.

In the m rule, we have a trivial inclusion.

The w rule is trivial.
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What our polarized trees mean,
on a semantic level

Example (a polarized syntax tree)

some↑ : pr
+→ np+ dog↑ : pr

some dog↑ : pr
+→ t

>

chased↓ : e
+→ pr

chased↑ : np−
+→ pr

k no↑ : pr
−→ np− cat↓ : pr

no cat↑ : np−
>

chased no cat↑ : pr
>

some dog chased no cat↑ : t
>

Example (Abstract the words and move from syntax to semantics)

v↑ : pr
+→ np+ w↑ : pr

vw↑ : pr
+→ t

>

x↓ : e
+→ pr

r−x
↑ : np−

+→ pr
k y↑ : pr

−→ np− z↓ : pr

yz↑ : np−
>

(r−x)(yz)↑ : pr
>

τ = (vw)((r−x)(yz))↑ : t
>

Note that the semantic term τ on the bottom is a combinator term.

The polarity arrows on the leaves mean that in every model,

[[τ ]] : P
pr

+→np+
× Ppr × (P

e
+→pr

)op × P
pr

−→np−
× (Ppr )op

+→ Pt
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What we are given

We are given syntax trees like the following:

Example

some : np/n dog : n

some dog : np
>

chased : (s\np)/np
no : np/n cat : n

no cat : np
>

chased no cat : s\np
>

some dog chased no cat : s
<

The standard semantics is given by a translation to (unmarked) (e, t)-types:

n 7→ et
np 7→ (et → t)
det = np/n 7→ (et)→ ((et)→ t)

x/Y 7→ Ytr → xtr

Y\x 7→ Ytr → xtr
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What we are given

Again, we are given syntax trees like the following:

Example

some : np/n dog : n

some dog : np
>

chased : (s\np)/np
no : np/n cat : n

no cat : np
>

chased no cat : s\np
>

some dog chased no cat : s
<

But the word order information plays no role in the semantics, so we rather think of it as

Example (Now think of functions)

some : n→ np dog : n

some dog : np
>

chased : np→ (np→ s)
no : n→ np cat : n

no cat : np
>

chased no cat : np→ s
>

some dog chased no cat : s
<

Example (Desired output)

some↑ : n
+→ np+ dog↑ : n

some dog↑ : np+
>

ch↑ : np−
+→ (np+

+→ s)

no↑ : n
−→ np− cat↓ : n

no cat↑ : np−
>

chased no cat↑ : np+
+→ s

>

some dog chased no cat↑ : s
<

We want to make choices on all of the verb types,
markings, and polarities
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What it means

Example (Now think of functions)

some : n→ np dog : n

some dog : np
>

chased : np→ (np→ s)
no : n→ np cat : n

no cat : np
>

chased no cat : np→ s
>

some dog chased no cat : s
<

Example (Desired output)

some↑ : n
+→ np+ dog↑ : n

some dog↑ : np+
>

ch↑ : np−
+→ (np+

+→ s)

no↑ : n
−→ np− cat↓ : n

no cat↑ : np−
>

chased no cat↑ : np+
+→ s

>

some dog chased no cat↑ : s
<

Our same Soundness Theorem before would tell us that

I If the leaves of the tree belong to the semantic spaces
associated with their categories

I and If the tree matches our rule set at every non-leaf node
I and if the root of the tree has category s and polarization ↑

Then the polarity arrows on the leaves are correct semantic statements in every model.
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Examples of polarized sentences from our system

No↑ man↓ walks↓

Every↑ man↓ and↑ some↑ woman↑ sleeps↑

Every↑ man↓ and↑ no↑ woman↓ sleeps=

If↑ some↓ man↓ walks↓, then↑ no↑ woman↓ runs↓

Every↑ man↓ does↓ n’t↑ hit↓ every↓ dog↑

No↑ man↓ that↓ likes↓ every↓ dog↑ sleeps↓

Most↑ men= that= every= woman= hits= cried↑

Every↑ young↓ man↓ that↑ no↑ young↓ woman↓ hits↑ cried↑

A↑ special↑ report↑ found↓ no↑ incriminating↓ evidence↓
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Monotonicity + Natural Logic at work:
the FRaCaS dataset

entail, contradict or neural?

P: A schoolgirl with a black bag is on a crowded train
H: No schoolgirl is on a crowded train

entail, contradict or neural?

P: A schoolgirl with a black bag is on a crowded train
H: A girl is on a train
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Monotonicity + Natural Logic at work:
the FRaCaS dataset

system MM08 AM14 LS13 T14 D14 M15 A16 ours

multi-premise? N N Y Y Y Y Y Y
# problems 44 44 74 74 74 74 74 74
Acc. (%) 97.73 95 62 80 95 77 93 88

MM08: MacCartney and Manning (2008).
AM14: Angeli and Manning (2014).
LS13: Lewis and Steedman (2013).
T14: Tian et al. (2014). D14: Dong et al. (2014).
M15: Mineshima et al. (2015).
A16: Abzianidze (2016).
ours: Joint work with Hai Hu and Qi Chen (2019)
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Monotonicity + Natural Logic at work:
the FRaCaS dataset

Truth / Pred E U C

Entail 29 7 0
Unknown 0 33 0
Contradict 0 2 3

Confusion matrix of our system.
Our system achieves 100% precision and comparable accuracy with
others.
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How the algorithm works, roughly

P: A↑ schoolgirl↑ with↑ a↑ black↑ bag↑

is↑ on↑ a↑ crowded↑ train↑

A↑ girl↑ with↑ a↑ black↑ bag↑

is↑ on↑ a↑ crowded↑ train↑

A girl
is on a crowded train

A girl is on a train

A↑ schoolgirl↑ with↑ a↑ bag↑

is↑ on↑ a↑ crowded↑ train↑

......

A↑ schoolgirl↑ is↑

on↑ a↑ crowded↑ train↑

......

No schoolgirl is

on a crowded train

A schoolgirl with a bag

is not on a crowded train

...

co
nt
ra
di
ct
ion

co
nt
ra
di
ct
ion

co
nt
ra
di
ct
ion
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The MonaLog Inference algorithm

Input: sentence pair: every man walks ?? every young man walks

Step 1: get polarized sentences

Step 2: extract all adjs, nouns, adverbs, verbs, RC,
and add to knowledge base K the following:

adj n ≤ n,
n pp ≤ n,
n RC ≤ n.

E.g., small dog ≤ dog, dog from France ≤ dog, dog that barks ≤
dog.
v a ≤ v . E.g., walk fast ≤ walk.

Help yourself to WordNet information:
poodle ≤ dog, dog | cat, big ⊥ small

Use substitution by the arrows
to generate inferences and contradictions

Output: Entailment!
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Predication

If we say

Tricia isa doctor

then we would add to our knowledge base

every doctor ≤ Tricia

and also

Tricia ≤ some doctor

64/76



Experiment on FraCaS

I FraCaS: 346 problems

I See our paper at IWCS (Hu et al., 2019)

An example where monotonicity is not enough

P1: Most Europeans are resident in Europe
P2: All Europeans are people
P3: All people who are resident in Europe can travel freely within
Europe

H: Most Europeans can travel freely within Europe

Det x y All x z

Det x (y ∧ z)
DET
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Monotonicity + Natural Logic at work:
how it works on the SICK dataset

- SICK (Sentences Involving Compositional Knowledge)
- 10,000 English sentence pairs, generated from image, video
descriptions, annotated by Turkers.

id premise hypothesis orig.
label

corr.
label

219 There is no girl in white dancing A girl in white is dancing C C
294 Two girls are lying on the

ground
Two girls are sitting on the
ground

N C

743 A couple who have just got
married are walking down the
isle

The bride and the groom are
leaving after the wedding

E N

1645 A girl is on a jumping car One girl is jumping on the car E N
1981 A truck is quickly going down a

hill
A truck is quickly going up a
hill

N C

8399 A man is playing guitar next to
a drummer

A guitar is being played by a
man next to a drummer

E n.a.

Table: Examples from SICK Marelli et al. (2014) and corrected SICK
Kalouli et al. (2018) w/ their syntactic variations.
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Experimental set-up

Experiment 1: Solve SICK, using MonaLog (+ BERT)

• MonaLog:
1. Syntactic transformations:
a) pass2act; b) there be no N doing sth. → No N is doing sth.
2. Generate entailments and contradictions from premise.
3. If hypothesis in E/C, then return E/C, else return Neutral.

• MonaLog + BERT:
If MonaLog returns E/C, then use MonaLog, else use BERT.
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Results: Experiment 1
system P R acc.

majority baseline – – 56.36

Natural-logic-based: MonaLog‡ (this work)

MonaLog + pass2act 89.42 72.18 80.25†

MonaLog + existential trans. 89.43 71.53 79.11†

MonaLog + all 83.75 70.66 77.19
MonaLog + all 89.91 74.23 81.66†

Hybrid: MonaLog + BERT 83.09 85.46 85.38
Hybrid: MonaLog + BERT 85.65 87.33 85.95†

ML/DL-based systems

BERT (base, uncased) 86.81 85.37 86.74
BERT (base, uncased) 84.62 84.27 85.00†

Yin and Schütze (2017) – – 87.1
Beltagy et al. (2016) – – 85.1

Logic-based systems

Bjerva et al. (2014) 93.6 60.6 81.6
Abzianidze (2015) 97.95 58.11 81.35

Mart́ınez-Gómez et al. (2017) 97.04 63.64 83.13
Yanaka et al. (2018) 84.2 77.3 84.3

Performance on the SICK test set.
† = corrected SICK.
‡ = P / R for MonaLog averaged across three labels.
Results involving BERT are averaged across six runs; same for later experiments.
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Results: SICK Error Analysis
id premise hypothesis SICK corrected SICK MonaLog

359 There is no dog chasing
another or holding a stick
in its mouth

Two dogs are running
and carrying an object in
their mouths

N n.a. C

912 A woman is being kissed
by a man

A lady is being kissed by
a man

E N E

1402 A man is crying A man is screaming N n.a. E
1760 A flute is being played by

a girl
There is no woman play-
ing a flute

N n.a. C

2897 The man is lifting
weights

The man is lowering bar-
bells

N n.a. E

2922 A herd of caribous is not
crossing a road

A herd of deer is crossing
a street

N n.a. C

3403 A man is folding a tortilla A man is unfolding a tor-
tilla

N n.a. C

4333 A woman is picking a can A woman is taking a can E N E
5138 A man is doing a card

trick
A man is doing a magic
trick

N n.a. E

5268 Somebody is folding a
piece of paper

A person is folding a
piece of paper

E C E

5793 A man is cutting a fish A woman is slicing a fish N n.a. C

Examples of incorrect answers by MonaLog;
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SICK: Experiment 2

Experiment 2: generate new pairs, add to training data.
Then repeat Experiment 1

1. Pair the generated entailments/contradictions with the input
premise.
2. Add newly generated pairs to SICK.train.
Repeat Experixment 1.

training data # E # N # C acc.

SICK.train: baseline 1.2k 2.5k 0.7k 85.00

1/4 gen. + SICK.train 8k 2.5k 4k 85.30
1/2 gen. + SICK.train 15k 2.5k 7k 85.81
all gen. + SICK.train 30k 2.5k 14k 86.51
E, C prob. threshold = 0.95 30k 2.5k 14k 86.71

Hybrid baseline 1.2k 2.5k 0.7k 85.95
Hybrid + all gen. 30k 2.5k 14k 87.16
Hybrid + all gen. + threshold 30k 2.5k 14k 87.49

Table: Results of BERT trained on MonaLog-generated entailments and
contradictions plus SICK.train (using the corrected SICK set).

Observation: BERT is insensitive to skewed dataset. The more
data the better?

70/76



Results: Exp 2 generated sentence pairs

label premise hypothesis comm.

E A woman be not cooking something A person be not cooking something correct
E A man be talk to a woman who be seat

beside he and be drive a car
A man be talk correct

E A south African plane be not fly in a blue
sky

A south African plane be not fly in a very
blue sky in a blue sky

unnat.

C No panda be climb Some panda be climb correct
C A man on stage be sing into a micro-

phone
A man be not sing into a microphone correct

C No man rapidly be chop some mushroom
with a knife

Some man rapidly be chop some mush-
room with a knife with a knife

unnat.

E Few↑ people↓ be↓ eat↓ at↓ red↓ table↓ in↓

a↓ restaurant↓ without↓ light↑
Few↑ large↓ people↓ be↓ eat↓ at↓ red↓

table↓ in↓ a↓ Asian↓ restaurant↓ without↓

light↑

correct

Table: Sentence pairs generated by MonaLog, lemmatized.
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Let’s stump BERT: work in progress

11 all black mammals saw exactly 5 stallions who danced
a black dogs saw exactly 6 stallions who danced
CONTRADICTION

67 every brown mammal did not touch some but not all stallions
without faint odor
a brown or black mammal did touched some but not all stallions
without faint odor
CONTRADICTION

93 at least 6 old poodles who were not sad did not stare at the
table
at most 3 old dogs who were not sad did not stare at the table
CONTRADICTION

19 some bulldog who touched every object was sad
a bulldog who touched each mailbox was sad
ENTAILMENT
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Lots of results so far but no clear conclusions
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A parting point on the three logic-based approaches to NLI

pros cons

Machine Learning-based wide coverage no idea what is going on
Logic-based high precision translation to logic form: hard!
NatLog-based high precision cannot handle much syntactic variation

And ours generates training data for free.
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Summary

I We entended monotonicity from vanilla CG to CCG.

I We have a running system that can polarize input
sentences.

I We built a Natural-Logic-based system that can solve
a large NLI dataset.

I Our system can generate high-quality sentence pairs,
helpful to a ML model.

I Remaining problems:
- string-comparison still too brittle;
- it is hard to generate neutral pairs;
- contradiction is sometimes hard to define.
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