Language of Measurable Spaces for Natural Language Semantics

Jean-Philippe Bernardy, Rasmus Blanck and Aleksandre Maskharashvili

Oct 2019

Outline

Motivation and Goals

Measurable Spaces

Linguistic applications

Conclusion

Bonuses

Motivation: Probabilistic Semantics

- Probabilistic reasoning has proven useful to model various linguistic phenomena (graded adjectives, pragmatics, etc.)
- Some believe it to occur in everyday life, events.
- Classical bayesian reasoning and vector models can be combined. Deep learning models have shown that individuals/situations and even predicates can be represented as points in a large-dimensional euclidean space (e.g. cosine distance). Hypothesis: Bayesian models can model such spaces.
- Intuitive probabilistic syllogisms can be accurately modeled.

Probabilistic Syllogisms

- Example 1
 - If you regularly eat humus, then you also enjoy tabouli.
 - Most people that enjoy tabouli insist on having mint tea with food.
 - If you eat humus, then you insist on having mint tea with food.
- Example 2
 - John is always as punctual as Mary.
 - Sam is usually more punctual than John.
 - Sam is more punctual than Mary.

Goal

- Solve a language-design problem
- Construct a (logic-style) language which is
 - sufficiently powerful to express probabilistic problems
 - convenient enough to support probabilistic syllogisms
 - has reasonable interpretations (models)
 - simpler than a full-fledged probabilistic programming language (which some authors advocate)

Example

- If you eat humus, then you also enjoy tabouli.
- Most people that enjoy tabouli insist on having mint tea with food.
- If you eat humus, then you insist on having mint tea with food.

Possible interpretation:

```
\begin{split} \Omega &= [\textit{eatHumus}: \textit{Predicate}; \\ &= \textit{enjoyTabouli}: \textit{Predicate}; \\ &\textit{haveMintTea}: \textit{Predicate}; \\ &\textit{p1}: \textit{Most}(z:[x:Ind;\textit{eatHumus}(x)]) \textit{enjoyTabouli}(z.x); \\ &\textit{p2}: \textit{Most}(z:[x:Ind;\textit{enjoyTabouli}(x)]) \textit{haveMintTea}(z.x)] \\ &\textit{X} = P_{\omega:\Omega}[\textit{Most}(z:[x:Ind;\omega.\textit{eatHumus}(x)])\omega.\textit{haveMintTea}(z.x)] \end{split}
```

Main Idea

- Combine:
 - Rich types (functions, Σ-types)
 - Probability distributions
- ► A (measurable) space A is a type (or set, written Set(A)) equipped with an *integrator*.
- ► The integrator generalises the notion of integral/sum: Integrate(x : A)t[x] Integrates the expression t[x] over the space A.

Base cases

Probability distributions can be interpreted as spaces.

- 1. Assume a discrete probability distribution P over a set S. We construct the space Discr(P) as follows:
 - ightharpoonup Set(Discr(P)) = S
 - ► Integrate(x : Discr(P))t = $\sum_{(x:S)} P(x) \cdot t$
- 2. Assume a continuous probability distribution over \mathbb{R} , with density function f. We construct the space Cont(f) with:
 - ightharpoonup Set(Cont(f)) = \mathbb{R}
 - ► Integrate(x : Cont(f))t = $\int_{(x:\mathbb{R})} f(x) \cdot t \cdot dx$

Note that in our integrators, the bound variable is not repeated in the form of dx.

Cartesian products and Σ spaces

- 1. If A and B are spaces, then $A \times B$ is a space.

 - ▶ Integrate($z : A \times B$)t =
 - Integrate(x : A)Integrate(y : B)t[(x, y)/z]
- 2. If A is a space and B is a space, $\Sigma(x:A)B$ is a space. Additionally, the variable x can occur in B.
 - ► $Set(\Sigma(x : A)B[x]) = \{(x, y) | x \in A, y \in B[x]\}$
 - Integrate($z : \Sigma(x : A)B[x]$)t =
 - Integrate(x : A)Integrate(y : B[x])t[(x, y)/z]

Example:

 $ightharpoonup A = \Sigma(\alpha : Uniform(2,5))\Sigma(\beta : Uniform(2,5))Beta(\alpha,\beta)$

It is convenient to use record notation for Σ types. The space below is isomorphic to the above example:

$$A = [\alpha : Uniform(2,5); \beta : Uniform(2,5); x : Beta(\alpha, \beta)]$$

Filtering: IsTrue(ϕ)

To represent evidence, we introduce the space $IsTrue(\phi)$, where ϕ is a Boolean-valued expression. $IsTrue(\phi)$ has a single element, which we will call \diamond , by convention.

• $Set(IsTrue(\phi)) = \diamond$

The density depends on the truth of ϕ :

- ▶ Integrate($x : IsTrue(\phi)$)t = 0 if ϕ is false
- ▶ $Integrate(x : IsTrue(\phi))t = t[\diamondsuit/x]$ if ϕ is true

Filtering: IsTrue(ϕ), cont'd

Example:

 $A = \Sigma(lo : Uniform[0,1])\Sigma(hi : Uniform[0,1])lsTrue(lo < hi) × Uniform[lo, hi]$

We may sometimes omit *IsTrue* altogether and simply write the following for the same space:

 $A = \Sigma(lo: Uniform[0,1])\Sigma(hi: Uniform[0,1])(lo < hi) × Uniform[lo, hi]$

Or, In record notation:

```
A = [lo: Uniform[0, 1];

hi: Uniform[0, 1];

p_1: lo < hi;

x: Uniform[lo, hi]]
```

Lemma: integrators are linear operators

Lemma:

- ► Integrate(x : A)(k · t) = k · Integrate(x : A)t
- Integrate(x : A)(t + u) = Integrate(x : A)t + Integrate(<math>x : A)u

Proof: By induction on A, relying on the linearity of sums and integrals for base cases.

[pedantic: the underlying vector space is that of functions over

Set(A) — the dimension of this space is #Set(A)]

Definitions: measure and expected value

The measure of a space (its total volume) is given by

$$ightharpoonup$$
 measure(A) = Integrate(x : A)1

The expected value of t[x] over x : A is given by:

$$E_{x:A}[t[x]] = \frac{Integrate(x:A)t[x]}{measure(A)}$$

(One can say that x is a random variable sampled in A.)

Expected truth value

The number that we will be mostly interested in is the expected truth value of a formula $\phi[\omega]$, where ω is a world ranging in a space Ω . It is given by:

 $P_{\omega:\Omega}(\phi) = E_{\omega:\Omega}[Indicator(\phi)]$

If Ω is the space of possible worlds, then $P_{\omega:\Omega}(\phi)$ is the probability of ϕ . We have also:

$$P_{\omega:\Omega}(\phi) = \frac{\text{measure}(\Sigma(\omega:\Omega)\phi)}{\text{measure}(\Omega)}$$

Back to example

```
\begin{split} \Omega &= [\textit{eatHumus}: \textit{Predicate}; \\ &= \textit{enjoyTabouli}: \textit{Predicate}; \\ &\textit{haveMintTea}: \textit{Predicate}; \\ &\textit{p1}: \textit{Most}(z: [x: \textit{Ind}; \textit{eatHumus}(x)]) \textit{enjoyTabouli}(z.x); \\ &\textit{p2}: \textit{Most}(z: [x: \textit{Ind}; \textit{enjoyTabouli}(x)]) \textit{haveMintTea}(z.x)] \\ &\textit{X} &= P_{\omega:\Omega}[\textit{Most}(z: [x: \textit{Ind}; \omega.\textit{eatHumus}(x)]) \omega.\textit{haveMintTea}(z.x)] \end{split}
```

What remains to do:

- define the space of Individuals and Predicates
- give a suitable definition for the "Most" quantifier

Individuals

Fortunately we have ways to interpret individuals as elements in a space, borrowed from machine-learning methods. The idea is simply to use a large dimensional vector space:

 $Ind = Normal(0,1)^n$

With n sufficently big, depending on the complexity of the problem at hand.

Space of predicates: example

If an individual is represented by a vector x and a vector p represents a predicate, then x is said to satisfy the predicate if $p \cdot x > 0$. (le, both vector are oriented in the same direction in the underlying euclidean space.)

- Predicate = $\{\lambda x.p \cdot x > 0 \mid p : Normal(0,1)^n\}$
- ▶ Note: $Set(Predicate) = Ind \rightarrow Bool$

We deliberately restrict the space of possible predicates to make ranging over it meaningful. (There are too many functions to pick a meaningful "random" one).

If words can be represented by a vector, then so can predicates (hopefully). Again this idea comes from machine-learning methods.

Most

Thanks to the probabilistic setting, we can interpret generalized quantifiers. (Most, Few, etc.). We define:

► AtLeast $\theta(x : A).\phi \triangleq \text{measure}(\Sigma(x : A)\phi) > \theta \text{ measure}(A)$

Then we can interpret "Most cn vp" as $AtLeast \theta(x : [cn])([vp]x)$ This is possible be cause measures are internalised in the language of propositions.

Conclusion

- Supports many phenomena
- Probabilistic reasoning works
- Arguably more convenient than probabilistic programming
 - Better match with logic/type theories
 - More straightforward semantics
 - Formally more powerful than probabilistic programming (by internalising the notion of measure/expected value/probability)

For completeness: Morphing spaces

The idea is to map the space of vectors to a (sub)space of predicates. How to do this? We need to extend our language of spaces with the construction $\{e \mid x : A\}$, for any space A, with the semantics:

- 1. $Itegrate(z : \{e[x] | x : A\})t[z] = Integrate(x : A)(t[e[x]])$
- 2. $Set({e[x] | x : A}) = {e[x] | x : Set(A)}$

Note that we do not change the density when integrating – there is no need to compensate for a non-uniformity in e.

Universal Quantifiers

It is natural to add the construction $\forall x: A.\phi$ to propositions, with the following definitions:

 $\forall x : A.\phi \triangleq AtLeast \ 1(x : A)\phi \triangleq measure(A) \leq measure(\Sigma(x : A)\phi)$

Pitfalls

Assume

- ightharpoonup A = [-1..1] and
- $\phi = (x \neq 0)$

We then have:

$$measure(A) = 2$$

$$\mathsf{measure}(\Sigma(x:A)\phi) = 2$$

And according to the above definition:

$$\forall x : A.\phi = true$$

(So this operator really means "for almost all" in probabilistic logic)

Dealing with this pitfall

- define a more precise measure that counts single elements
 - not computable, because HOL is undecidable
- use "soft transitions" (continuous interpretations of propositions)
 - still does not make $\forall x: A.\phi$ coincide with the usual definition (but can help with the approximation algorithms in many cases.)
- do not use problematic domains
 - this is what we do.
 - (for example use dirac delta for equalities)

probability density/mass functions

We can define a generic notion of probability distribution over the spaces defined as above.

Let's first define G[A](x,y) with the idea that G[A](x,y)=1 if x=y, 0 otherwise.

By induction:

$$G[\mathsf{Distr}(d)](x,y) = \delta(x-y)$$

$$G[\mathsf{Distr}(d)](x,y) = \mathit{Indicator}(x=y)$$

$$G[\mathsf{IsTrue}(\phi)](x,y) = 1$$

$$G[\Sigma(z:A)B]((x,y),(x',y')) = G[A](x,x') \cdot G[B](y,y')$$

Then the Probability (mass) distribution over A is given by:

$$\triangleright$$
 $P_A(x) = E_{y:A}G[A](x,y)$

Note that if A is continuous, the argument of G[A](x,y) is integrated, so δ always occurs under an integral.