
Language of Measurable Spaces for Natural
Language Semantics

Jean-Philippe Bernardy, Rasmus Blanck and Aleksandre
Maskharashvili

Oct 2019

Outline

Motivation and Goals

Measurable Spaces

Linguistic applications

Conclusion

Bonuses

Motivation: Probabilistic Semantics

I Probabilistic reasoning has proven useful to model various
linguistic phenomena (graded adjectives, pragmatics, etc.)

I Some believe it to occur in everyday life, events.
I Classical bayesian reasoning and vector models can be

combined. Deep learning models have shown that
individuals/situations and even predicates can be represented
as points in a large-dimensional euclidean space (e.g. cosine
distance). Hypothesis: Bayesian models can model such
spaces.

I Intuitive probabilistic syllogisms can be accurately modeled.

Probabilistic Syllogisms

I Example 1
I If you regularly eat humus, then you also enjoy tabouli.
I Most people that enjoy tabouli insist on having mint tea with

food.
I If you eat humus, then you insist on having mint tea with food.

I Example 2
I John is always as punctual as Mary.
I Sam is usually more punctual than John.
I Sam is more punctual than Mary.

Goal

Abstract
syntax

result in
(0, 1)

Semantics Evaluation

I Solve a language-design problem
I Construct a (logic-style) language which is

I sufficiently powerful to express probabilistic problems
I convenient enough to support probabilistic syllogisms
I has reasonable interpretations (models)
I simpler than a full-fledged probabilistic programming language

(which some authors advocate)

Example

I If you eat humus, then you also enjoy tabouli.
I Most people that enjoy tabouli insist on having mint tea with

food.
I If you eat humus, then you insist on having mint tea with food.

Possible interpretation:

Ω = [eatHumus : Predicate;

enjoyTabouli : Predicate;

haveMintTea : Predicate;

p1 : Most(z : [x : Ind ; eatHumus(x)])enjoyTabouli(z .x);

p2 : Most(z : [x : Ind ; enjoyTabouli(x)])haveMintTea(z .x)]

X =Pω:Ω[Most(z : [x : Ind ;ω.eatHumus(x)])ω.haveMintTea(z .x)]

Main Idea

I Combine:
I Rich types (functions, Σ-types)
I Probability distributions

I A (measurable) space A is a type (or set, written Set(A))
equipped with an integrator.

I The integrator generalises the notion of integral/sum:
Integrate(x : A)t[x]
Integrates the expression t[x] over the space A.

Base cases

Probability distributions can be interpreted as spaces.
1. Assume a discrete probability distribution P over a set S. We

construct the space Discr(P) as follows:
I Set(Discr(P)) = S
I Integrate(x : Discr(P))t =

∑
(x :S) P(x) · t

2. Assume a continuous probability distribution over R, with
density function f. We construct the space Cont(f) with:
I Set(Cont(f)) = R
I Integrate(x : Cont(f))t =

∫
(x :R)

f (x) · t · dx

Note that in our integrators, the bound variable is not
repeated in the form of "dx".

Cartesian products and Σ spaces

1. If A and B are spaces, then A× B is a space.
I Set(A× B) = Set(A)× Set(B)
I Integrate(z : A× B)t =

I Integrate(x : A)Integrate(y : B)t[(x , y)/z]

2. If A is a space and B is a space, Σ(x:A)B is a space.
Additionally, the variable x can occur in B.
I Set(Σ(x : A)B[x]) = {(x , y) | x ∈ A, y ∈ B[x]}
I Integrate(z : Σ(x : A)B[x])t =

I Integrate(x : A)Integrate(y : B[x])t[(x , y)/z]

Example:
I A = Σ(α : Uniform(2, 5))Σ(β : Uniform(2, 5))Beta(α, β)

It is convenient to use record notation for Σ types. The space
below is isomorphic to the above example:
A = [α : Uniform(2, 5);β : Uniform(2, 5); x : Beta(α, β)]

Filtering: IsTrue(φ)

To represent evidence, we introduce the space IsTrue(φ), where φ
is a Boolean-valued expression. IsTrue(φ) has a single element,
which we will call �, by convention.
I Set(IsTrue(φ)) = �

The density depends on the truth of φ:
I Integrate(x : IsTrue(φ))t = 0 if φ is false
I Integrate(x : IsTrue(φ))t = t[�/x] if φ is true

Filtering: IsTrue(φ), cont’d
Example:
I A = Σ(lo : Uniform[0, 1])Σ(hi : Uniform[0, 1])IsTrue(lo <

hi)× Uniform[lo, hi]
We may sometimes omit IsTrue altogether and simply write the
following for the same space:
I A = Σ(lo : Uniform[0, 1])Σ(hi : Uniform[0, 1])(lo <

hi)× Uniform[lo, hi]
Or, In record notation:

A = [lo : Uniform[0, 1];

hi : Uniform[0, 1];

p1 : lo < hi ;
x : Uniform[lo, hi]]

Lemma: integrators are linear operators

Lemma:
I Integrate(x : A)(k · t) = k · Integrate(x : A)t
I Integrate(x : A)(t + u) = Integrate(x : A)t + Integrate(x : A)u

Proof: By induction on A, relying on the linearity of sums and
integrals for base cases.
[pedantic: the underlying vector space is that of functions over
Set(A) — the dimension of this space is #Set(A)]

Definitions: measure and expected value

The measure of a space (its total volume) is given by
I measure(A) = Integrate(x : A)1

The expected value of t[x] over x : A is given by:

I Ex :A[t[x]] = Integrate(x :A)t[x]
measure(A)

(One can say that x is a random variable sampled in A.)

Expected truth value

The number that we will be mostly interested in is the expected
truth value of a formula φ[ω], where ω is a world ranging in a space
Ω. It is given by:
I Pω:Ω(φ) = Eω:Ω[Indicator(φ)]

If Ω is the space of possible worlds, then Pω:Ω(φ) is the probability
of φ. We have also:
I Pω:Ω(φ) = measure(Σ(ω:Ω)φ)

measure(Ω)

Back to example

Ω = [eatHumus : Predicate;

enjoyTabouli : Predicate;

haveMintTea : Predicate;

p1 : Most(z : [x : Ind ; eatHumus(x)])enjoyTabouli(z .x);

p2 : Most(z : [x : Ind ; enjoyTabouli(x)])haveMintTea(z .x)]

X =Pω:Ω[Most(z : [x : Ind ;ω.eatHumus(x)])ω.haveMintTea(z .x)]

What remains to do:
I define the space of Individuals and Predicates
I give a suitable definition for the "Most" quantifier

Individuals

Fortunately we have ways to interpret individuals as elements in a
space, borrowed from machine-learning methods. The idea is
simply to use a large dimensional vector space:
Ind = Normal(0, 1)n

With n sufficently big, depending on the complexity of the problem
at hand.

Space of predicates: example

If an individual is represented by a vector x and a vector p
represents a predicate, then x is said to satisfy the predicate if
p · x > 0. (Ie, both vector are oriented in the same direction in the
underlying euclidean space.)
I Predicate = {λx .p · x > 0 | p : Normal(0, 1)n}
I Note: Set(Predicate) = Ind → Bool

We deliberately restrict the space of possible predicates to make
ranging over it meaningful. (There are too many functions to pick
a meaningful "random" one).
If words can be represented by a vector, then so can predicates
(hopefully). Again this idea comes from machine-learning methods.

Most

Thanks to the probabilistic setting, we can interpret generalized
quantifiers. (Most, Few, etc.). We define:
I AtLeast θ(x : A).φ , measure(Σ(x : A)φ) > θmeasure(A)

Then we can interpret “Most cn vp” as AtLeast θ(x : JcnK)(JvpKx)
This is possible be cause measures are internalised in the language
of propositions.

Conclusion

I Supports many phenomena
I Probabilistic reasoning works
I Arguably more convenient than probabilistic programming

I Better match with logic/type theories
I More straightforward semantics
I Formally more powerful than probabilistic programming (by

internalising the notion of measure/expected value/probability)

For completeness: Morphing spaces

The idea is to map the space of vectors to a (sub)space of
predicates. How to do this? We need to extend our language of
spaces with the construction {e | x : A}, for any space A, with the
semantics:
1. Itegrate(z : {e[x] | x : A})t[z] = Integrate(x : A)(t[e[x]])

2. Set({e[x] | x : A}) = {e[x] | x : Set(A)}
Note that we do not change the density when integrating – there is
no need to compensate for a non-uniformity in e.

Universal Quantifiers

It is natural to add the construction ∀x : A.φ to propositions, with
the following definitions:
∀x : A.φ , AtLeast 1(x : A)φ , measure(A) ≤ measure(Σ(x : A)φ)

Pitfalls

Assume
I A = [−1..1] and
I φ = (x 6= 0)

We then have:

measure(A) = 2
measure(Σ(x : A)φ) = 2

And according to the above definition:
∀x : A.φ = true
(So this operator really means "for almost all" in probabilistic logic)

Dealing with this pitfall

I define a more precise measure that counts single elements
I not computable, because HOL is undecidable

I use "soft transitions" (continuous interpretations of
propositions)
I still does not make ∀x : A.φ coincide with the usual definition

(but can help with the approximation algorithms in many
cases.)

I do not use problematic domains
I this is what we do.
I (for example use dirac delta for equalities)

probability density/mass functions
We can define a generic notion of probability distribution over the
spaces defined as above.
Let’s first define G [A](x , y) with the idea that G [A](x , y) = 1 if
x = y , 0 otherwise.
By induction:

G [Distr(d)](x , y) = δ(x − y)

G [Distr(d)](x , y) = Indicator(x = y)

G [IsTrue(φ)](x , y) = 1
G [Σ(z : A)B]((x , y), (x ′, y ′)) = G [A](x , x ′) · G [B](y , y ′)

Then the Probability (mass) distribution over A is given by:
I PA(x) = Ey :AG [A](x , y)

Note that if A is continuous, the argument of G [A](x , y) is
integrated, so δ always occurs under an integral.

	Motivation and Goals
	Measurable Spaces
	Linguistic applications
	Conclusion
	Bonuses

