Why the pond is not outside the frog? Grounding in contextual representations by neural language models

Mehdi Ghanimifard

Assessor: Desmond Elliott, University of Copenhagen University of Gothenburg February 21 2020

Locative Expressions

Bring me the big red book on the table.

Photo: Adam C (CC-BY-2.0)

- Framework: < Target, Relation, Landmark>
- Also known as referent / relatum (*Miller and Johnson-Laird*, 1976); figure / ground (*Talmy* 1983); located object / reference object (*Herskovits* 1986, Gapp 1994, Dobnik 2009)

Geometric Expressions of Meaning

<frog, next to, pond>

- The frog next to the pond.
- The **frog** is *next to* the **pond**.
- There is a **frog** *next to* the **pond**.
- The **frog** *next to* the **pond** is watching us.

Figure: Ghanimifard 2020

Usage in Context

• Core issue in the usage of the functional / geometric form:

"functional sense of relationships refers to the object-specific relationship between entities that is *not dependent* on the location or spatial configuration" Ghanimifard, 2020

RQ1: What spatial knowledge is learned in generative neural language models?

Exploring the Functional and Geometric Bias of Spatial Relations Using Neural Language Models

Simon Dobnik*Mehdi Ghanimifard*John D. Kelleher[†]

- Hypothesis: it is possible to distinguish between functionally biased and geometrically biased spatial relations by examining the diversity of the contexts in which they occur.
- Estimate using a neural language model (*Hochreiter and Schmidhuber, 1997*) trained at the word level:

$$P(w_{1:T}) = \sum_{t=1}^{T} P(w_{t+1}|w_{1:t})$$

 Train the model with the Visual Genome Dataset (Krishna et al. 2017) of <target, relation, landmark> sequences

Figure: Krishna et al. 2017

• Measure the perplexity of held-out sequences

$$Perplexity(S,P) = 2^{E_S[-log_2(P(w_{1:T}))]}$$

 The perplexity of functionally-biased relations is substantially affected by balancing the relations by downsampling the dataset.

Functionally biased Geometrically biased

(a) test-set

What a neural language model tells us about spatial relations

Mehdi Ghanimifard Simon Dobnik

- Investigate the knowledge about spatial relations learned from textual features in neural language models
- Estimate model perplexity on sentences in which the original relation *i* is replaced with an alternate relation *j*

Relation (rel_i)	Context bin (c_{rel_i})	
above	scissors the pen	
	tall building the bridge	
below	pen is scissors	
	bench the green trees	
	•••	
next to	a ball-pen the scissors	
	car the water	

 $PP(S_{i\to j}) = PP_{i,j} = P(rel_i, c_{rel_j})^{\frac{1}{-N'}}$

Intuitive k-means clusters arise from the P-vectors

1. to

5. into

6. from

9. through

10. alongside

11. along side

12. underneath

13. in; against

14. in front of

16. to the side

15. above; over

17. onto; toward

- 18. up; down; off
- 2. on 19. with; without
- 3. away 20. together; out 4. here
 - 21. outside; inside
 - 22. near; beside; by
 - 23. top; front; bottom
- 24. in between; between 7. during
- 8. back of 25. along; at; across; around
 - 26. beneath; below; under; behind
 - 27. right; back; left; side; there
 - 28. to the left of; to the right of; next to
 - 29. in back of; in the back of; on the back of; at the top of
 - 30. on the top of; on side of; on the bottom of; on left side of; on top of; on the front of; on back of; on the side of; on front of; on bottom of
- Evidence that language models and the derived P-vectors capture spatial knowledge from only textual features.

RQ2: How is spatial knowledge learned in generative language models?

Knowing When to Look For What and Where: Evaluating Generation of Spatial Descriptions with Adaptive Attention

Mehdi Ghanimifard^[0000-0002-2598-5091] and Simon Dobnik^[0000-0002-4019-7966]

• To what degree does an adaptive attention model attend to visual information when generating spatial relations?

$$\hat{\boldsymbol{c}}_t = \beta_t \boldsymbol{s}_t + (1 - \beta_t) \boldsymbol{c}_t$$

Figure: Lu et al. 2017

 Generate descriptions for 40K images in the MS COCO test set. Part-of-speech tag the generated sentences and determine the visual attention per type of word:

POS	Count	$Mean \pm std$	
NUM	1882	0.81 ± 0.08	
NOUN	134332	0.78 ± 0.12	
ADJ	23670	0.77 ± 0.14	
DET	96641	0.73 ± 0.12	
VERB	38381	0.70 ± 0.11	
CONJ	6755	0.70 ± 0.13	
ADV	184	0.69 ± 0.12	
ADP	64332	0.62 ± 0.15	Spatial relations
PRON	2347	0.53 ± 0.14	
PRT	6462	0.52 ± 0.21	

Average visual attention $(1 - \beta_t)$

 Hypothesis: "When generating spatial relations, the visual attention is more spread over possible regions instead of focused on a specific object"

Descriptions	Average $(1 - \beta_t)$
Spatial Relations	TRG, REL, LND
under	0.84, 0.73 , 0.79
front	0.83, 0.70 , 0.82
next	0.82, 0.68 , 0.78
back	0.85, 0.68 , 0.84
lin	0.82, 0.68 , 0.77
on	0.81, 0.68 , 0.75
near	0.80, 0.67 , 0.76
over	0.77, 0.62 , 0.75
above	0.73, 0.64 , 0.77

• Overall, adaptive attention focuses on visual objects

What Goes Into A Word: Generating Image Descriptions With Top-Down Spatial Knowledge

Mehdi Ghanimifard Simon Dobnik

 How much spatial information is needed to generate accurate descriptions of images?

("bat", "over", "shoulder")

simple	player
<i>bu</i> 49	man wearing shirt
td	bat in hand
td order	bat in hand
td order + VisKE	bat in hand

- Top-down features for TARGET-LANDMARK pairs is the most useful source of visual supervision.
- Geometric features do not have a significant effect

• Overall, top-down localisation is crucially important to generating accurate region descriptions.

RQ3: Are neural language models capable of systematic generalisation?

Learning to Compose Spatial Relations with Grounded Neural Language Models

- To what extent is the language model grounded in spatial representations?
- Work with spatial templates over 7 x 7 grids (Logan and Sandler, 1997)

	Simple phrases	With distractors	Untrained
AND-phrases	0.87	0.85	-0.00
NEG-phrases	0.72	0.82	0.03
OR-phrases	0.79	0.80	-0.03
SINGLE-word	0.92	0.91	-0.05
All previous	0.83	0.83	-0.01
All previous + distractors	NaN	0.84	-0.03

Models are sensitive to the amount of training data

Proportions of 90 combinations	10%	20%	30%	40%	50%
AND-phrases	0.84	0.8	0.78	0.76	0.71
OR-phrases	0.74	0.73	0.69	0.67	0.56

"Deep" Learning: Detecting Metaphoricity in Adjective-Noun Pairs*

• Predicting the metaphoricity of adjective-noun pairs in 8,592 pairs in the Gutiérrez et al. (2016) dataset.

Bright painting / bright idea

 Model with a sigmoidal function of the dot product between the adjective-noun phrase vector p and a learned metaphoricity vector q

$$\hat{y} = \sigma(\mathbf{p} \cdot \mathbf{q} + b_1) = \frac{1}{1 + e^{-\mathbf{p} \cdot \mathbf{q} + b_1}}$$

- Main ideas:
 - transfer learning from pre-trained embeddings
 - learned composition with neural networks

Models

Concatenate

$$\mathbf{p} = f_{\theta}(\mathbf{u}, \mathbf{v}) = W^T \begin{bmatrix} \mathbf{u} \\ \mathbf{v} \end{bmatrix} + b$$

• Additive with shared projection matrix

$$\mathbf{p} = f_{\theta}(\mathbf{u}, \mathbf{v}) = W^T \mathbf{u} + W^T \mathbf{v} + b$$

• Element-wise multiplicative interaction

$$\mathbf{p} = f_{\theta}(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \times \mathbf{v})W + b$$

	Random W	Trained W
cat-linear	0.8973	0.9153
cat-relu	0.8763	0.9228
sum-linear	0.8815	0.9068
sum-relu	0.8597	0.9150
mul-linear	0.7858	0.8066
mul-relu	0.7795	0.8186

More abstract

Top ten	reluctance, reprisal, resignation, response, rivalry, satisfaction, storytelling, supporter, surveil- lance, vigilance
Bottom ten	saucepan, flour, skillet, chimney, jar, tub, fuselage, pellet, pouch, cupboard

Summary

- This thesis offers a comprehensive study of the representation of spatial language in neural network language models.
- The experiments on the role of visual context are illuminating and demonstrate the utility of bounding box object representations.
- Raises important questions about what is needed from the visual component of a vision and language model.

Questions

- So, why is the pond not outside the frog? What evidence do the studies in this thesis bring to this question?
- What do distributional representations of language tell us about the substitutability of TARGETS and LANDMARKS?
- Do you think the results from your experiments would hold for different languages?
 - How would you go about testing this?

More Questions

- Study 1: why do distractors improve the correlation with the original spatial templates for NEG-phrases? (Table 1)
- Study 2: what exactly is **q**? How would we understand the learning process that generates a *metaphoricity* vector?
- Study 4: would you expect to find similar results if you worked with pre-trained language models? (Fewer tokens would fall below the 100 token threshold.)
- Study 5: do attention-based captioning models attend to objects "just-in-time" or in order to generate a sequence of tokens?
- Study 6, what would be the performance of the Top-down localisation approach if you did not have annotated bounding boxes?

top (0.89) elephant (0.88) a (0.87) man (0.91) riding (0.78) on (0.86) of (0.35) an (0.84) an (0.79) elephant (0.87) standing (0.67) in (0.78) a (0.75) fenced (0.74) in (0.83) area (0.77) clock (0.73) city (0.82) a (0.76) towering (0.72) over (0.79) a (0.68)

tall (0.83)

tower (0.77)

Figure: Lu et al. 2017