
Enhanced Universal Dependencies Introduction and WIP

Adam Ek

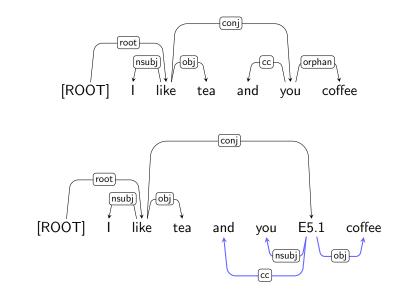
Centre for Linguistic Theory and Studies in Probability, Department of Philosophy, Linguistics and Theory of Science, University of Gothenburg, adam.ek@gu.se

Dependency Grammar

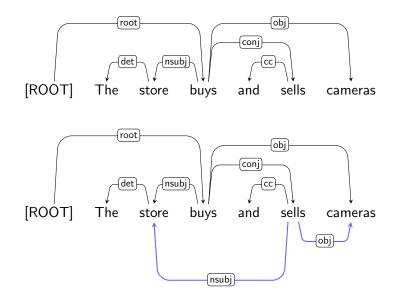
- Syntactic structures realized as dependency relations
- A dependency relation is a directed arc between two lexical items, the *head* and the *dependant*
- Each dependency arc is labeled with a grammatical function

Dependency Structures

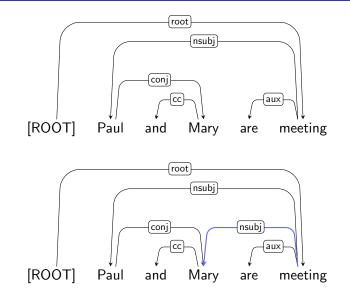
- Constraints of dependency structures:
 - Dependency structures are complete
 - Dependency structures are hierarchical
 - Every lexical item has at most one head
- Dependency structures are trees

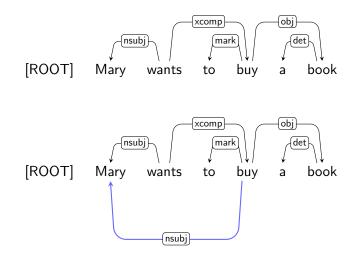

The cat saw a thingy.

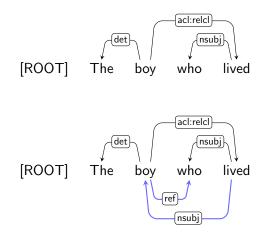
Some issues with dependency grammar in downstream tasks

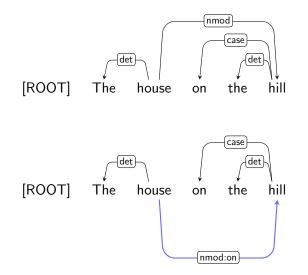

- Dependency structures are great, but...
- In practice they can be impractical to use:
- Some arguments are not directly connected to predicates
- Some dependency relations are uninformative (nmod/obl)
- In general: Can UD be extended to be more practical for semantic tasks?

- Enhanced Universal Dependencies (EUD) is an extension of the universal dependencies annotation schema
- EUD is aimed at providing easily accessible semantic interpretations of dependency structures:
 - Includes annotations of ellipsis
 - Propagation of conjuncts
 - Controlled/raised subjects
 - Coreference in relative clauses
 - Case-marking information




Propagation of conjuncts: verbs and phrases


Propagation of conjuncts: subjects


Controlled/raised subjects

Relative clauses

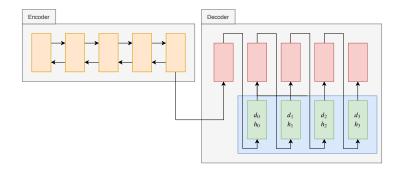
Case information

What types of changes have been introduced?

- Additional dummy nodes
- New arcs between lexical items
- Many new labels (in english, the number of arc labels is 389)

Parsing EUD (2)

- As a consequence of the additional arcs, we now deal with graphs
- Main problem for systems: a lexical item can now have two heads instead of one
- Transition models for UD assume one head and have trouble dealing with the new formalism
- Graph parsers should still work well with some modifications
- We develop a graph-based parsing model based on Pointer networks (Vinyals et al. 2017, Ma et al. 2018)

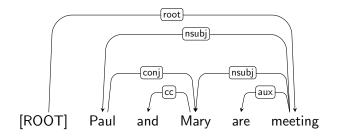

- We want to use syntactic information to derive semantic information
- More specifically: predicate-argument structures

Tasks:

- QA
- Inference

Model Outline

- "Standard" sequence2sequence architecture
- With a twist...


- We initialize word and part-of-speech embeddings randomly
- The input to the LSTM is the word and part-of-speech embeddings concatenated
- The LSTM is bidirectional and use 3 layers

Decoder

Dependent attention

- A_d selects the dependent and operate as a "step-function", traversing the sentence from right to left
- A_d is a "pointer", it selects an index from the source sequence and returns that hidden state
- **0**, 1, 2, 3, 3, 4, 5

Dependent attention (local monotonic-ish additive attention)

•
$$v_a = Imat(K_d, V)$$

• $e = V_{p:p+3}W_0 + K_dW_1 + b$
• $a = softmax(eW_2 \in \mathbb{R}^1)$
• $att_d = V_{argsmax(a)}$
Head attention (multiplicative attention)
• $v_a = ma(att_d, V)$
• $e = att_dW_0V_{0:n}$
• $a = softmax(eW_1 \in \mathbb{R}^1)$
• $att_h = V_{argsmax(a)}$
LSTM input = $[att_d; att_h]$

We are optimizing 3 objectives:

- Selecting a dependent
- Selecting a head for the dependent
- Assigning a label to the dependent and the head

•
$$\mathcal{L} = \mathcal{L}_{dep} + \mathcal{L}_{head} + \mathcal{L}_{label}$$

IWPT shared task

Data from 16 languages (20 treebanks from UD)

Treebank	Language	Train	Dev	Treebank	Language	Train	Dev
ar_padt	arabic	6076	909	nl_alpino	dutch	12265	718
bg_btb	bulgarian	8909	1115	nl_lassysmall	dutch	5788	676
cs_cac	czech	23479	603	pl_lfg	polish	13775	1745
cs_fictree	czech	10161	1309	pl_pdb	polish	17723	2215
cs_pdt	czech	68496	9270	ru_syntagrus	russian	48815	6584
en_ewt	english	12544	2002	sk_snk	slovak	8484	1060
fi_tdt	finnish	12218	1364	sv_talbanken	swedish	4304	504
fr_sequoia	french	2232	412	ta_ttb	tamil	401	81
it_isdt	italian	13122	564	uk₋iu	ukranian	5497	672
lt_alksnis	lithuanian	2342	618	lv_lvtb	latvian	10157	1664

Table: Sentences in the training and development set from 20 treebanks.

Training setup

Word embedding	224
POS embedding	32
Batch size	16
Encoder LSTM features	256
Decoder features	1024
Loss	Cross Entropy
Optimizer	Adam
Learning rate	0.002
Weight decay	0.1

Dropout: 25% dropout before each prediction module (dependent, head, and label)

Preliminary results (latest)

Treebank	GA	LGA b-GA		b-LGA	
ar₋padt	.650	.588	.225	.114	
bg_btb	.813	.764	.675	.578	
cs_cac	.668	.601	.788	.716	
cs_fictree	.781	.717	.799	.674	
cs_pdt	.759	.695	.821	.662	
en_ewt	.798	.751	.830	.721	
fi_tdt	.640	.562	.796	.643	
fr_sequoia	.625	.575	.780	.692	
it₋isdt	.769	.722	.456	.372	
lt_alksnis	.503	.420	-	-	
lv_lvtb	.657	.599	.799	.651	

Table: Results on 20 treebanks on the development set. GA is the graph accuracy. LGA is the labeled graph accuracy. b-* is the baseline (Stanford Dependency Parser) score for the treebank.

Updated (super latest)

Treebank	GA	LGA	b-GA	b-LGA	Treebank	GA	LGA	b-GA	b-LGA
ar_padt	.650	.588	.225	.114	nl_alpino	.798	.738	.797	.657
bg_btb	.813	.764	.675	.578	nl_lassysmall	.752	.698	.740	.600
cs_cac	.668	.601	.788	.716	pl_lfg	.902	.861	.936	.853
cs_fictree	.781	.717	.799	.674	pl_pdb	.740	.661	.649	.485
cs_pdt	.759	.695	.821	.662	ru_syntagrus	.787	.731	.819	.666
en_ewt	.798	.751	.830	.721	sk_snk	.755	.668	.840	.670
fi_tdt	.640	.562	.796	.643	sv_talbanken	.631	.583	.817	.685
fr_sequoia	.625	.575	.780	.692	ta_ttb	.551	.361	-	-
it_isdt	.769	.722	.456	.372	uk_iu	.648	.561	.817	.653
lt_alksnis	.503	.419	-	-	lv₋lvtb	.657	.599	.799	.651

Table: Results on 20 treebanks on the development set. GA is the graph accuracy. LGA is the labeled graph accuracy. b-* is the baseline (Stanford Dependency Parser) score for the treebank.