Learning Domain-Specific Grammars from
Examples

Herbert Lange

Computer Science and Engineering

University of Gothenburg and Chalmers University of Technology

CLASP Seminar
April 22rd, 2020

1/42

Use Case: Language Learning

ltalian «— ? x

it breaks every computer

i ragazzi non rompono ogni €asa
.- 0gni amico
.-~ Ogni computer
.- ogni libro
... ogni madre
.. ogni padre
... Ogni ragazza
... 0gni ragazzo
.- ogni ré

2/42

Use Case: Language Learning

> We have a grammar-based language learning application!

P The application uses a restricted grammar to automatically
generate exercises to teach a specific language construction

» We have large, wide-coverage (Resource) Grammars!
» How can we get the restricted exercise grammar?

Infer the grammar from the Resource Grammar and example
sentences

3/42

Example Grammar

-- Syntactic rules

UseN : N -> CN 5
UsePron : Pron -> NP 5
DetCN : Det -> CN -> NP ;
ComplSlash : VPSlash -> NP -> VP s
SlashV2a : V2 -> VPSlash ;
PredVP : NP -> VP -> C1 5

-- Lexical items

many_Det, every_Det, few_Det : Det ;

boy_N, girl N : N ;

friend_N, king_N, house_N, book_N, computer_ N : N ;
he_Pron, she_Pron, it_Pron, they_Pron : Pron ;
close_V2, break_V2, love_V2, read_V2, hit_V2 : V2 ;

4/42

Example Sentence
It breaks every computer

PredVP : Cl

/N

UsePron : NP ComplSlash : VP

N

it_Pron : Pron SlashV2a : VPSlash DetCN : NP

| N

break V2:V2 every_Det : Det UseN : CN

computer_N : N

5/42

Grammar Learning Chapter 1:
Simple Subgrammars

Inferring a grammar

51 T11 ... T1t1

extract

grammar

c

7/42

Constraint Satisfaction Problem: Logic Variables

Sentence S;

Sentence S

Tree T11 r3 ry

Tree T1o rn ra

—_—

Tree To1 r7 rs

Flattened:

{ro,r,r, 3,1}

{r07 rs, r3, r, r4}

{ro, 15,16, 17,18}

8/42

Constraint Satisfaction Problem: Logic Constraints

» All sentences have to be covered S; A Sy A ...

P At least one tree per sentence has to be covered:
5= T11V T2
S5 — Txn

» All rules in a tree have to be covered:
Tiir > AnARARAR
Tio > ArABARAR
Tor > AmsANrgArrArg

9/42

Constraint Satisfaction Problem: Logic Constraints

» All sentences have to be covered n < S; + S +...5,

P At least one tree per sentence has to be covered:

$1 < T+ Ti2
S < Ty

» All rules in a tree have to be covered:

5*T11
5*T12
5*T21

<

<
<

n+ntnrnt+rt+n
nt+r+mnt+tntn
rn+rr+re+r+rs

10/42

Constraint Optimization Problem: Objective Function

Minimize the variable assignment satisfying the constraints
according to:

Rules: Number of rules in the resulting grammar (i.e.,
Reducing the grammar size)
Trees: Number of all initial parse trees Ty; that are,
intended or not, valid in the resulting grammar (i.e.,
Reducing the ambiguity)
Rules+Trees: Sum of Rules and Trees
Weighted: Modification of Rules+Trees where each rule is

weighted by the number of occurrences, prefering
more common rules

11/42

Evaluation

12/42

Experiment 1: Rebuilding a Known Grammar

51 Learning
o component
Sn
generate
sentences J

compare
@ grammars @

13/42

Experiment 2: Comparing to a Treebank

(S1, T1) Sn Learning
: : component
(Sn, Tn) Sp
E compare T Ty parse
: trees : sentences
T T, .. T,’,t,7

14/42

Evaluation

» Rebuilding a Known Grammar

[RoNR Recall =

Precision = ——— = —
R| |Ro

Where Ry the rules of the original grammar and R the rules of
the inferred grammar
» Comparing to a Treebank
Accuracy percentage of sentences where the correct tree is
found
Ambiguity average number of parse trees per sentence

15/42

Results

16 /42

Results: Objective Function rules and Various Languages

100%

Recall
90%
80%
e Finnish
70% German
Spanish
60% e Swedish
——— English
50%
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
100% Precision A
[N N\
90% X 7
80%

70%
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of examples used for training

17/42

Results: Finnish and Various Objective Functions

100%

Recall

90%
80%

e 1ules
70% / trees

ules + trees

60%

e weighted

50% £
12 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20

100% Precision

20% m

w0 /—\’_\,\—’;

70%
1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20

Number of examples used for training

18/42

Results: Comparing to a Treebank

Monolingual

Rules+Trees Weighted
Size | Accuracy Ambiguity | Accuracy Ambiguity
Finnish 22 5% 1.0 91% 115
German 16 75% 1.1 100% 2.0
Swedish 10 100% 1.1 100% 2.8
Spanish 13 100% 1.2 92% 3.7

19/42

Finnish Treebank

laula laulu

sing a song

PhrUtt NoPConj (UttImpSg PPos (ImpVP (ComplSlash (SlashV2a sing_V2)
(DetCN (DetQuant IndefArt NumSg) (UseN song_N))))) NoVoc

laulakaa laulu

sing a song

PhrUtt NoPConj (UttImpPl PPos (ImpVP (ComplSlash (SlashV2a sing_V2)
(DetCN (DetQuant IndefArt NumSg) (UseN song_N))))) NoVoc

mind haluan laulaa laulun suihkussa

I want to sing a song in the shower

PhrUtt NoPConj (UttS (UseCl (TTAnt TPres ASimul) PPos (PredVP
(UsePron i_Pron) (ComplVV want_2_VV (AdvVP (ComplSlash
(SlashV2a sing_V2) (DetCN (DetQuant IndefArt NumSg) (UseN song_N)))
(PrepNP in_Prep (DetCN (DetQuant DefArt NumSg) (UseN shower_N))))))))

20/42

Bilingual Learning

(51751)

(Sn: Sh)

51

T11 R T1t1
s
Tn]_ [P Tnt,,
! !
1100 "1y
/ !
nl- " "nt

n

... T!
inter- 1 1y’
>
sect :
>
1! i
Tl Thy

|

extract grammar

I

21/42

Results: Bilingual Treebank

Bilingual
Rules+Trees Weighted
Size | Accuracy Ambiguity | Accuracy Ambiguity
Finnish 22 86% 4.9 96% 8.7
German 16 94% 1.1 100% 1.5
Swedish 10 100% 1.1 100% 1.2
Spanish 13 100% 1.2 100% 2.3

Using English as a second language

22/42

Conclusion so far:

> We can learn relevant sub-grammars from very few sentences

» Using language pairs boosts the process

23/42

Future Work

Negative cxamples inelude-examples-that shotld net-be-covered
by-the-grammar
Multilingual learning: Explore influence of bi-/multilingual learning

Problem Size: Move from trees to parse chart

Other Grammar Formalisms: Try e.g. with TAG or HPSG

24 /42

Grammar Learning Chapter 2:
Beyond Simple Subgrammars

Negative Examples

Idea:
“Include A, B and C but not X, Y and Z"
To exclude a tree, not all rules can be included:

(AN ANr)=-rV-ornV---V-on

As linear constraint:

n+n+--+r<n

26/42

Example: Dyck Language

concrete Dyck of DyckAbs {
lincat S = Str ;

lin
-- empty, leftp, rightp, lefts, rights : S ;
empty = "" ;
leftp = "(" ;
rightp = ")" ;
lefts = "["
rights = "]"
-- bothp, boths : S -> S ;
bothp s = "(" ++ s ++ ")"
boths s = "[" ++ s ++ "]"
-- combine : S -> S -> S ;
combine s1 s2 = s1 ++ s2 ;

27 /42

DyckAbs> p "[() 1"
boths (bothp empty)
boths (combine leftp rightp)

combine
combine
combine
combine
combine
combine
combine

lefts (combine leftp (combine rightp rights))
lefts (combine (bothp empty) rights)

lefts (combine (combine leftp rightp) rights)
(combine lefts leftp) (combine rightp rights)
(combine lefts (bothp empty)) rights

(combine lefts (combine leftp rightp)) rights
(combine (combine lefts leftp) rightp) rights

28/42

Positive examples:

L]
)
))

Negative examples:

(1
()
(

29/42

Demo

30/42

Example: Adverbials

AdvNP : NP -> Adv -> NP ; -- e.g. Paris today
AdvVP : VP -> Adv -> VP ; -- e.g. sleep here

a [N
A N
] \ \
\ [N
7 \

the boy reads a book today vs. *a book today comes

31/42

Iterative Grammar Learning

1. The starts with a set of positive examples, same as previously
2. Repeat until satisfied:

2a. The system infers a grammar from the example sentences

2b. The system randomly generates new example sentences

2c. The user can mark sentences as acceptable or not and also add
additional sentences

32/42

Subtrees

PredVP : Cl1

/ N\

DetCN : NP UseV : VP

7 |

theSg_Det : Det UseN : CN sleep_V:V

man_N : N

33/42

Split into subtrees (of maximum size 2)

{ PredVP, DetCN, UseV, UseN, theSg_Det, man_N,sleep_V }

PredVP, theSg_Det, UseN, UseV
{ Deté\l\? man_N sleep_V }
O
PredVP, DetCN, UseN, sleep_V
{ '.?/EevstheSgé)}? man_N }

Py P

34/42

Merging rules

DetCN,

theSg_ Det?

DetCN : Det -> CN -> NP ;
theSg_Det : Det ;

-- Compose to new rule:
DetCN_theSg_Det : CN -> NP ;

35/42

Example: Dyck Language (again)

concrete Dyck2 of Dyck2Abs = {
lincat Dyck, Open, Close = Str
empty = "" ; -- empty : Dyck

b

-- wrap : Open -> Dyck -> Close -> Dyck

wrap o d ¢ = o ++ d ++ c ;

-- combine : Dyck -> Dyck -> Dyck

combine d1 d2 = d1 ++ d2 ;
-- leftp, lefts : Open

leftp = "(" ;

lefts = "[" ;

-- rightp, rights : Close
rightp = "I" ;

rights = ")"

36/42

Example: Dyck Language (again)

Positive examples: [()]and [] ()
maximum subtree size 3 and at most 2 subtrees in each split

Empty : Dyck

Wrap#LeftP#7#RightP : Dyck -> Dyck
Wrap#LeftS#7#RightS : Dyck -> Dyck
Combine : Dyck -> Dyck -> Dyck

37/42

Problems

» Combinatorial Explosion: For a tree of size 7
Maximum subtree size No. splits No. subtrees
2 45 306
3 128 756

» Computational Effort: NP-completeness

38/42

Solutions

» Limit the number of subtrees per split
» Explore CSP instead of COP

39/42

Results

» We can learn both formal and natural language fragments
using positive examples

> We can learn more challenging fragments using subtrees and
by merging rules

40/ 42

Conclusion

» We can learn precise grammars using very few positive and
negative examples

> We can create a human-centric, iterative learning process

» Merging rules allows us to create even more specific grammars

41/42

Future Work

by-the-grammar
Multilingual learning: Explore influence of bi-/multilingual learning
Problem Size: Move from trees to parse chart
Other Grammar Formalisms: Try e.g. with TAG or HPSG
Other CSP methods: Explore use of SAT instead if 0/1 integer
programming
Iterative Process: Implement and test the iterative learning process

Language Learning: Include grammar learning in the language
learning application

42/42

Bonus

43/42

Bonus: Grammar Statistics

Resource Grammar Given Grammar
Syntactic Rules 284 24
Lexical Rules 501 47

44/42

Bonus: Treebank Statistics

Sentences Min Words Max Words Average Words

Finnish 22 2 6 3.9
German 16 2 5 4.4
Swedish 10 3 8 45
Spanish 13 3 6 45

45/42

Bonus: Adverbials (again)

The positive examples we use for training are:
» | eat pizza with pineapple
» pizza with pineapple is delicious
» [run today
» [sleep now
> [run
And the only negative example is:
> * | eat pizza with scissors

46 /42

AdvNP#PrepNP : NP -> Prep -> NP -> NP
AdvVP#7?#now_Adv : VP -> VP
AdvVP#7#today_Adv : VP -> VP
ComplSlash#SlashV2a : V2 -> NP -> VP
MassNP : CN -> NP

PositA#delicious_A : AP

PredVP : NP -> VP -> C1
UseComp#CompAP : AP -> VP

UseN : N -> CN

UsePron#I_Pron : NP

UseV#run_V, UseV#sleep_V : VP

eat_V2 : V2

pineapple_N, pizza_N : N

with_Prep : Prep

47/42

Maximum subtree size No. splits No. subtrees
2 45 306
3 128 756

For subtrees with maximum size 2:
Maximum number subtrees No. splits No. subtrees

1 9 73

2 28 206
3 43 299
4 45 306

48 /42

	Simple Subgrammars
	Beyond Simple Subgrammars
	Appendix

