Modeling the N400 brain potential as change in a probabilistic representation of meaning

Milena Rabovsky

May 28, 2020

1

3

Model based approaches

1) Models of brain processes

- > Neurobiologically more plausible
- Modeling the ERP waveform (Cheyette & Plaut, 2017; Laszlo & Armstrong, 2014; Laszlo & Plaut, 2012)
- 2) Functional-level models of cognitive processes
 - > Covariation between N400 amplitudes and model measures
 - Leaving aside physiological details (Brouwer, Crocker, Venhuizen, & Hoeks, 2017; Frank et al., 2015; Rabovsky, Hansen, & McClelland, 2018; Rabovsky & McRae, 2014)

2

The N400 component of the ERP

Our account:

- Change of a representation of meaning that implicitly and probabilistically represents all aspects of meaning of the event described by a sentence
- Change in conditional probabilities of semantic features

4

Previous functional level models of N400 amplitudes

- Network error in a model of word meaning (Rabovsky & McRae, 2014)
 - Conceptualized as implicit prediction error (McClelland, 1994) model generated activation = implicit prediction correct target activation = observation
- Network error in simple recurrent network model (SRN)
 surprisal (Frank et al., 2015)
- Change of lexical activation in model assuming two steps lexical retrieval = N400 semantic integration = P600 (Brouwer, Crocker, Venhuizen, & Hoeks, 2017)

7

Sentence Gestalt (100)

> Probe (176)

Question: • Agent? • Action?

• Patient?

Hidden 2 (100) auery network

Output (176)

Event • Agent: man

Action: play

Patient: chess

•

.

Target (176)

10

Learning

- Goal of training: Activation of each feature unit corresponds to the conditional probability of that feature in that situation (Rumelhart et al., 1995)
 - In ideally trained model, change in activation induced by each incoming word would represent change in the probabilities of semantic features induced by that word
 - > also implicitly at the Sentence Gestalt layer
- Trained model updates with each incoming word an internal representation that probabilistically represents all aspects of meaning of the described event

update network

Input (74) Hidden 1 (100)

Sentence (word by word)

Experimental Manipulation	N400 (empirical)	
Semantic congruency	incongruent > congruent	?
Cloze probability	low > high	?
Position in sentence	early > late	?
Categorical relation of incongruent completion	incongr. unrel > incongr. rel	?
Repetition	first pres. > repetition	?
Associative priming	unrelated > related	?
Semantic priming	related > related	?
Lexical frequency	high < low	?
Constraint (unexpected endings)	no effect	?
Reversal anomaly	Congruent = reversal < incongr.	?
Syntactic violation	no effect	?
Priming during chance performance	unrelated > related	?
Development	Very young < young > old	?
Semantic congruency x rep.	interaction	? 45
	4	77

Experimental Manipulation	N400 (empirical)
Semantic congruency	incongruent > congruent
Cloze probability	low > high
Position in sentence	early > late
Categorical relation of incongruent completion	incongr. unrel > incongr. rel
Repetition	first pres. > repetition
Associative priming	unrelated > related
Semantic priming	related > related
Lexical frequency	high < low
Constraint (unexpected endings)	no effect
Reversal anomaly	Congruent = reversal < incongr.
Syntactic violation	no effect
Priming during chance performance	unrelated > related
Development	Very young < young > old
Semantic congruency x rep.	interaction

N400 as word surprisal?

Correlation between N400 and word suprisal measured by a simple recurrent network (Frank et al., 2015)

However

"They wanted to make the hotel look more like a tropical resort. So along the driveway they planted rows of..." palms < pines < tulips

(Federmeier & Kutas, 1999)

49

N400 as the effort of semantic integration?

- But: No sentence context needed
- \succ N400 effects for single words and words pairs
- Use SG model to simulate N400 effects outside of a sentence context

50

63

N400 data:

- Increase with comprehension skills in babies (Friedrich et al., 2009)
- Later: decrease with age from childhood through adulthood (Atchley et al., 2006; Kutas & Iragui, 1998)

Simulation:

Influences of semantic congruity at different points in training

Word surprisal is large in reversal anomalies

Correlation between N400 and word suprisal measured by a

However, word surprisal is large in reversal anomalies ("Every

2

cong

 \rightarrow unlike N400

simple recurrent network (Frank et al., 2015)

morning at breakfast, the eggs would eat...")

2.10 2.05 2.00 1.95

1.90

1.85

62

incong.

Reversal anomaly

reversa

N400 effects during chance performance

N400 data:

• Learners of new language showed N400 effects of semantic relatedness while performance in lexical decision task was still near chance (McLaughlin et a., 2004)

Simulation:

Interrupt training after 10000 sentences.

67

Semantic congruity X repetition

Experiment (Besson et al., 1992):

- Congruent ("...plays chess") and incongruent ("...plays email") sentences
- All sentences presented twice (in two blocks)

N400 data:

- incongruent > congruent sentence completions
- 1st presentation > (delayed) repetition
- Incongruent (1st repeated) > congruent (1st repeated)

69

71

68

Semantic congruity X repetition

- Repetition effects as consequences of connection weight adaptations (McClelland & Rumelhart, 1985)
 - ightarrow Learning operative during first presentation

N400 and adaptation?

- Larger N400-like negativity to single words during study predict enhanced implicit memory (stem completion in absence of explicit memory) during test (Schott et al., 2002)
- Words presented as incongruent sentence completions during study later elicit smaller N400 when presented in isolation (Meyer et al., 2007)

Experimental Manipulation	N400 (empirical)	
Semantic congruency	incongruent > congruent	\checkmark
Cloze probability	low > high	\checkmark
Position in sentence	early > late	✓
Categorical relation of incongruent completion	incongr. unrel > incongr. rel	✓
Repetition	first pres. > repetition	\checkmark
Associative priming	unrelated > related	✓
Semantic priming	related > related	✓
Lexical frequency	high < low	✓
Constraint (unexpected endings)	no effect	✓
Reversal anomaly	Congruent = reversal < incongr.	✓
Syntactic violation	no effect	✓
Priming during chance performance	unrelated > related	✓
Development	Very young < young > old	✓
Semantic congruency x rep.	interaction	✓ 74

74

Conclusion

- N400 reflects stimulus-driven change in an implicit and probabilistic representation of meaning
- Discrepancy between probabilistically anticipated and encountered features
- Corresponds to learning signal driving adaptation in semantic memory

Rabovsky, Hansen, & McClelland, 2018, Nature Human Behaviour

76

73

Outlook

Large-scale training of the SG model based on large-scale semantic role corpus (Sayeed et al., 2018; new improved version by Asad Sayeed and Yuval Marton)