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The N400 component of the ERP

Modulating variables
* Semantic violations,
« Contextual fit,
* Frequency,...
» > 1000 studies
» Meaning processing

THE PIZZA WAS TOO HOT TO...

» Functional basis?
¢ Lexical access (Lau et al., 2008)
¢ Semantic inhibition? (Debruille, 2007)
* Semantic integration? B oo
(Baggio & Hagoort, 2011)

.+ Related Anomalies.
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» Relate to computational model mseo

Model based approaches

1) Models of brain processes
» Neurobiologically more plausible

» Modeling the ERP waveform
(Cheyette & Plaut, 2017; Laszlo & Armstrong, 2014; Laszlo & Plaut, 2012)

2) Functional-level models of cognitive processes
» Covariation between N400 amplitudes and model measures

» Leaving aside physiological details
(Brouwer, Crocker, Venhuizen, & Hoeks, 2017; Frank et al., 2015; Rabovsky, Hansen, &
McClelland, 2018; Rabovsky & McRae, 2014)
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The N400 component of the ERP

Our account: THE PIZZA WAS TOO HOT TO...

» Change of a representation of
meaning that implicitly and
probabilistically represents all
aspects of meaning of the event
described by a sentence

» Change in conditional probabilities
of semantic features +

——Best Completions
Unrelated Anomalies
Related Anomalies
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Previous functional level models of N400

amplitudes

» Network error in a model of word meaning (Rabovsky & McRae,
2014)

» conceptualized as implicit prediction error (McClelland, 1994)
model generated activation = implicit prediction
correct target activation = observation

» Network error in simple recurrent network model (SRN)
-> surprisal (Frank et al., 2015)

» Change of lexical activation in model assuming two steps
lexical retrieval = NA0OO

semantic integration = P600
(Brouwer, Crocker, Venhuizen, & Hoeks, 2017)




The Sentence Gestalt model

(based on McClelland, St. John, & Taraban, 1989; St. John & McClelland, 1990)

» Words as ,,cues to meaning” (Rumelhart, 1979) that change
the representation of sentence meaning

» Task of sentence processing:
* Process sequences of words

* Answer question concerning described event

» Learn representation to answer questions
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Question:
* Agent?
* Action?
ient?
Sentence (word by word) Patient? Event
¢ Agent: man
* Action: play

* Patient: chess
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* Goal of training: Activation of each feature unit corresponds
to the conditional probability of that feature in that situation
(Rumelhart et al., 1995)

» Inideally trained model, change in activation induced by each

incoming word would represent change in the probabilities of
semantic features induced by that word

» also —implicitly — at the Sentence Gestalt layer

» Trained model updates with each incoming word an internal
representation that probabilistically represents all aspects of
meaning of the described event
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The man plays chess.
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N400 correlate

High probability Model N400
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Model environment

(deper

Situations (8)

(results based on 10 runs, each trained on 800000 sentences)

Agents (4) -~ - ;
{chosen according to womar ar boy. girl

base rate probabilty)

Actions (12) - - .
{randomly chosen) ik o fosd ol water ™ - e v . ok
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Sentence structure: For actions with situation

For actions without stuation
[Agent,

10% passive: [Situation, 50%) (Patient] [Action] [Agent] [Location]

[Location, if any)

msgmd with all
36 objects equally often
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Experimental

Manipulation | nf

Categorical relation of
incongruent completion
Repetition

Associative priming

Semantic priming

Lexical frequency

Constraint (unexpected endings)
Reversal anomaly

Syntactic violation

Priming during chance
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Experimental “
Manipulation

N400
(empirical)

Semantic congruency Semantic congruency incongruent > congruent
Cloze probability Cloze probability low > high
Position in sentence Position in sentence early > late

Categorical relation of
incongruent completion
Repetition

Associative priming

Semantic priming

Lexical frequency

Constraint (unexpected endings)
Reversal anomaly

Syntactic violation

Priming during chance

performance performance
Development Development Very young < young > old
Semantic congruency x rep. Semantic congruency x rep. interaction

incongr. unrel > incongr. rel

first pres. > repetition
unrelated > related
related > related
high < low
no effect
Congruent = reversal < incongr.

no effect

unrelated > related

44

) 2
Engrfl';’:l‘:t”lfr'] ‘@@f (Ne‘::;rica” Semantic congruity: incongruent > congruent
Semantic congruency incongruent > congruent ?
Cloze probability low > high ?
Position in sentence early > late ?
Categorical relation of incongr. unrel > incongr. rel > Semantic congruity
incongruent completion
Repetition first pres. > repetition ? 8 3-
Associative priming unrelated > related ? < ®
Semantic priming related > related ? E ‘
Lexical frequency high < low ? (0] 2
Constraint (unexpected endings) no effect ? -8
Reversal anomaly Congruent = reversal < incongr. ? E 11 *
Syntactic violation no effect ? | |
Zz:;:i::;ng chance unrelated > related ? Incong. cong.
Development Very young < young > old ? ”...plays email” "‘..plays chess”
Semantic congruency x rep. interaction ? - w
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Position in sentence: Early > late

Cloze probability: Lower > higher

“At breakfast, the boy eats eggs in the kitchen.”

Cloze probability Sentence position
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2 3 4 5
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N400 as word surprisal?

* Correlation between N400 and word suprisal measured by a
simple recurrent network (Frank et al., 2015)

However

“They wanted to make the hotel look more like a tropical resort.
So along the driveway they planted rows of...”

palms <P D

(Federmeier & Kutas, 1999)

N400 as the effort of semantic integration?
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« But: No sentence context needed
» N400 effects for single words and words pairs

» Use SG model to simulate N400 effects outside of a sentence
context

Semantic priming: Related (cat — dog) <
unrelated (butter — dog)
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Semantically related incongruities

Related incongruity
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Lexical frequency: Low > high
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-> reflects the encoding of base rate probabilities

Associative priming: Related (sleep — bed) <
unrelated (sing — bed)

Associative priming
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Repetition priming: Repeated (dog — dog) <

Word and sentence meaning

unrelated (butter — dog)

» Model accounts for both, N40O effects at the word and

Repetition priming sentence level

» No assumption of a separate semantic system for word
meanings, separate from overall meaning

» All stimuli produce change in activation state in the same
semantic system

@

o §8oo

Model N400
- ™

» Also important: Specificity
! . » Variables that do not influence the N400 should not
unrelated repeated influence the model’s N40O correlate
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. Reversal anomaly
Reversal anomalies

incong > rev. anom. >= cong.

N400 data:
“Every morning at breakfast, the eggs would eat...” =<

“Every morning at breakfast, the boys would eat...” < Semantic illusion

“Every morning at breakfast, the boys would plant...” o ‘

(Kuperberg et al., 2003) - 8 3 ‘
-> N400: word meaning, not sentence meaning? bd ‘

(Brouwer, Fitz, & Hoeks, 2012, Brouwer et al., 2017) —2 o

3 &8 °
Simulation: Q4 &
[e]

* “At breakfast, the egg eats...” = ‘
* “At breakfast, the boy eats... inC('Jng. illusion cohg.

* “At breakfast, the boy plants...”
10% passive sentences during training
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At breakfast, the egg eats..” Does the N40O reflect the update of a “good enough

representation of sentence meaning?

4 Action Agent Patient Situation
Rabovsky, Matsuki, & McRae (in preparation):
“The patient was treated by the doctor...” (plausible)
“The clinician was treated by the client...” (implausible)

0 S N X iddle -2uV

mi e —2u
?,'DQ\'S‘}Q@ o(\(b‘;(o%& Q,C%zg@%e \‘@”:;)\0:000 central
< ,O@Zé";(@} i 800 ms

- “Semantic illusion” (Kim & Osterhout, 2005)
-> Language processing can be just “good enough”
(Ferreira et al., 2002; Sanford & Stuart, 2002)

— Correct Plausible
—— Correct Implausible
= Incorrect Implausible

middle
. sterior
P600 increase Pe

-> Re-analysis of the sentence?

-> N400 in reversal anomalies is consistent with N400 as update of
representation of sentence meaning

59 60
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Does the N400 reflect the update of a “good enough”

representation of sentence meaning?

» Influence of “good enough” interpretation on N400
amplitudes is in line with our model

» Model linking the N400 to lexical access does not predict this
relationship (Brouwer et al., 2017)

Word surprisal is large in reversal anomalies

* Correlation between N400 and word suprisal measured by a
simple recurrent network (Frank et al., 2015)

* However, word surprisal is large in reversal anomalies (“Every
morning at breakfast, the eggs would eat...”)

Reversal anomaly

210+
5 2.05 T
2 4 S
s 2.00 -3 Y 2
=] 4 ' °
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4 L] ° e .
190 1 ° e -> unlike N400
1.85 T T T
incong.  reversal cong.
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Syntactic violations
Changes in word order: No effect
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Constraint: No effect

“The girl was very satisfied with the ironed neatly linen.”

“The man likes the email.”
“The man eats the email.”

Word order b) Word order
5 2104 T
o 4
3 —  205-
g, ; i !
3. ] ! S 200 I
T 21 5 i
2] o ofo @ 195
1.90 -
0 T T 1.85 T T
change  control changed control
- unlike N400
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Development
N400 data:

* Increase with comprehension skills in babies (rriedrich et al., 2009)

* Later: decrease with age from childhood through adulthood
(Atchley et al., 2006; Kutas & Iragui, 1998)

Simulation:

* Influences of semantic congruity at different points in training

Constraint

51 -> Amount of unexpected
o 4+ semantic information,
S .4 3 not violation signal
3, & Z
<}
= 14 o8

0

T T T
highc. lowec. exp.
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Development: Very young < young > old

More efficient connections

-> small changes at SG

sufficient to produce big

changes in output activation

104 O cong. o )
F.3 (~ decreased activation with

51 ? L ® incong increased practice)

%ﬁ LI e

10,000 100,000 200,000 400,000 800,000 2
Number of sentences for training

154 -

e
10 = *

2) Sentence Gestalt layer

Congruity

Activation update

N400 does not directly
reflect change in explicit

w wcong.  estimates of feature
probabilities but the change
of an internal
representation that
implicitly represents these
probabilities such that they
can be made explicit when

Activ

- [P -
v

T
10,000 100,000 200,000 400,000 800,000

Number of sentences for training
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queried.

66
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N400 effects during chance performance

N400 data:

 Learners of new language showed N400 effects of semantic
relatedness while performance in lexical decision task was still
near chance (McLaughlin et a., 2004)

Simulation:
* Interrupt training after 10000 sentences.
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Semantic congruity X repetition

Experiment (Besson et al., 1992):

» Congruent (“...plays chess”) and incongruent (“...plays email”)
sentences

» All sentences presented twice (in two blocks)

N400 data:

* incongruent > congruent sentence completions

 1st presentation > (delayed) repetition

* Incongruent (1st — repeated) > congruent (1st — repeated)
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Semantic congruity X repetition

* Repetition effects as consequences of connection weight
adaptations (McClelland & Rumelhart, 1985)

-> Learning operative during first presentation

70

Simulation results

20
o
Q15 )
= presentation
5 o o first
® rep.
'8 1.0 oo P.
= 8

8 oofog

4
=)

cong. incong.

“...plays chess ..plays email”

In general: Larger N40O should trigger stronger adaptation
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N400 and adaptation? i = ﬂ 400 : . ©e®

Manipulation (empirical)
Semantic congruency incongruent > congruent
. L. . X Cloze probability low > high
 Larger N400-like negativity to single words during study Position in sentence early > late

predict enhanced implicit memory (stem completion in Categorical relation of ) )
incongr. unrel > incongr. rel

absence of explicit memory) during test (schott et al, 2002) incongruent completion
« Words presented as incongruent sentence completions during Repetition first pres. > repetition
study later elicit smaller N40O when presented in isolation Associative priming unrelated > related
(Meyer et al., 2007) Semantic priming related > related
Lexical frequency high < low
Constraint (unexpected endings) no effect
Reversal anomaly Congruent = reversal < incongr.
Syntactic violation no effect

Priming during chance unrelated > related

performance
Development Very young < young > old
Semantic congruency x rep. interaction e
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Conclusion Outlook
» N400 reflects stimulus-driven change in an implicit and Large-scale training of the SG model based on large-scale
probabilistic representation of meaning semantic role corpus (Sayeed et al., 2018; new improved version
> Discrepancy between probabilistically anticipated and by Asad Sayeed and Yuval Marton)
encountered features
» Corresponds to learning signal driving adaptation in semantic
memory
Rabovsky, Hansen, & McClelland, 2018, Nature Human Behaviour
76 77
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Thank you very much!
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