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Describing images with longer sequences
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Describing images with longer sequences!

People are standing on the grass behind a concrete patch that looks like it was
just set. There are two orange cones in front of the concrete and yellow tape
surrounding it. There are three people in yellow vests and white hard hats. There
are some people sitting on a bench next to them.
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Properties of image paragraphs

@ informativeness: descriptions consisting of multiple sentences
@ grounding: every word can be grounded in something in the image
e != visual storytelling

@ discourse: there is some type of an order to the sentences in the paragraph
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Why image paragraphs?
It has all started with visual dialogue...?

@ Visual Dialogue® is a type of setting in which an artificial agent is required
to hold a meaningful dialogue with humans in natural language about visual
content

@ MeetUp! is a conversational game aimed at modelling natural
human-human interaction in a situated setting (e.g. environment is shared
between speakers)

@ Important properties of MeetUp!: collaborative nature of the task, symmetry
between speakers, visual grounding of words in the environment,
conversational grounding between speakers (e.g. the meaning is negotiated
and established rather than fixed and stated)

@ Very important: dialogue discourse is actively used to refer to previously
mentioned elements (not present in many other visual dialogue settings!)
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Visual Dialogue Examples

| Time | Privateto A | Public | Private to B
1| (00:00) -
bedroom(72] aprt_building/outdoor( 1]
2| (00:00) | Youcan go [/wlest
3| (00:01) You can go [/slouth
4 | (00:05) A: Hello
5 | (00:08) B: Hello
6 | (00:11) Al
7 | (00:14) B:fi
8 | (00:19) B:/l
9 | (0023) B:/l
10 | (00:23) You can go [/slouth
11 | (00:29) A: Lam in a bedroom with a black bed, my exits are
west.
12 | (00:34) A:Tam heading west.
13 | (00:37) | ¥ living room[49]
14 | (00:37) | You can go [/nlorth [/elast
[/slouth [/w]est
42 | (04:11) A: So, this kitchen, did it have red brick walls?
43 | (04:35) B: Yes, does yours have white cabinets and a wood-
topped center table thing?
44 | (04:48) ¥ Kitchen[39]
45 | (04:48) You can go [/north [feJast
[/slouth [/wlest
46 | (04:52) A: Yes. There are red cabinets attached to the wood
table?
47 | (05:07) B: Looks like it. Some sort of steel appliance?
48 | (05:09) A: Above the oven, is there a small blue-framed pic-
ture?
49 B: Yes.
50 A: Not oven, my mistake.
51 A: I think we're in the same space.
52 B: T agree. Done?
53 A: Yes.
54 /done
55 Idone
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What have we learned?

Game Master: You have to meet in a room of
type utility room.

A: Hi. I'm in a bedroom with pink walls.

B: Iseem to be in a kitchen.

A: Tl go look for a utility room.

A (privately): north

A (privately): west

B (privately): east

A: Found a room with a washing machine. Is
that a utility room?

i B: Was wondering as well. Probably that’s
what it is.

B: I'm in the pink bedroom now. I'll come to
you.

B (privately): north

B (privately): west

B: Poster above washing machine?

A: Mine has a mirror on the wall.

B: yeah, could be mirror. Plastic chair?

A: And laundry basket.

A: done

B: Same

B: done

®
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What have we learned?

=

Game Master: You have to meet in a room of - setting up
type utility room. the classification task
A: Hi. I'm in a bedroom with pink walls.

B: I seem to be in a kitchen.
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A: Found a room with a washing machine. Is
that a utility room?

i B: Was wondering as well. Probably that’s
what it is.

B: I'm in the pink bedroom now. I’ll come to
you.

B (privately): north
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B: Poster above washing machine?

A: Mine has a mirror on the wall.
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A: And laundry basket.
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What have we learned?

B

Game Master: You have to meet in a room of - setting up
type utility room. the classification task
A: Hi. I'm in a bedroom with pink walls. - synchronize
B: I seem to be in a kitchen. mutual state representations
A:T'1l go look for a utility room.

A (privately): north

A (privately): west

B (privately): east

A: Found a room with a washing machine. Is

that a utility room?

i. B: Was wondering as well. Probably that’s

what it is.

B: I'm in the pink bedroom now. I’ll come to

you.

B (privately): north

B (privately): west

B: Poster above washing machine?

A: Mine has a mirror on the wall.

B: yeah, could be mirror. Plastic chair?

A: And laundry basket.

A: done

B: Same

B: done
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What have we learned?

a. Game Master: You have to meet in a room of - setting up
type utility room. the classification task
b. A: Hi. I'm in a bedroom with pink walls. - synchronize
@ B: I seem to be in a kitchen. mutual state representations
d.  A:T1l go look for a utility room.
e. A (privately): north
f. A (privately): west
g. B (privately): east
h. A: Found a room with a washing machine. Is - coordination of strategy

that a utility room?
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what it is.
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What have we learned?

a. Game Master: You have to meet in a room of - setting up
type utility room. the classification task
b. A: Hi. I'm in a bedroom with pink walls. - synchronize
@ B: I seem to be in a kitchen. mutual state representations
d.  A:Tll go look for a utility room.
) - private actions
(epistemic vs. pragmatic)
- coordination of strategy
0B B: I'm in the pink bedroom now. I’ll come to

you.
B (privately): north

B (privately): west

B: Poster above washing machine?

A: Mine has a mirror on the wall. - meta-semantic interaction
B: yeah, could be mirror. Plastic chair?

A: And laundry basket.

A: done

B: Same

B: done
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What have we learned?

=

Game Master: You have to meet in a room of
type utility room.

B 50|80 o
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A: Hi. 'm in a bedroom with pink walls.

B: I seem to be in a kitchen.

A: T'1l go look for a utility room.

A (privately): north

A (privately): west

B (privately): east

A: Found a room with a washing machine. Is
that a utility room?

B: Was wondering as well. Probably that’s
what it is.

B (privately): north

B (privately): west

B: Poster above washing machine?
A: Mine has a mirror on the wall.

A: done
B: Same
B: done

- setting up
the classification task

- synchronize
mutual state representations

- private actions
(epistemic vs. pragmatic)

- coordination of strategy

- discourse memory

- meta-semantic interaction

- perfoming dialogue acts indirectly




Let's simplify the task!

Moving on with image description sequences...*
@ image description sequences (IDS) are longer natural language texts
(paragraphs) with single images they are meant to describe
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Let's simplify the task!

Moving on with image description sequences...®
@ image description sequences (IDS) are longer natural language texts
(paragraphs) with single images they are meant to describe

@ this setting is a challenging tested for state-of-the-art models in NLG, where
language and vision tasks need to be connected to core aspects of text
generation, e.g. content selection, text structuring, or aggregation.

@ IDS are aimed at partially resembling dialogical interaction

o interface-wise: separate text input fields rather than one block

e instruction-wise: talk to the imaginary partner who keeps asking to tell
him more

CLASP Seminar 14 / 32



Y
| 1 -

5. winious [wrdowsLndows]

B e

<%

1: It is a very fancy bathroom.
2: There are twin sinks" > across from each
other.

3: There is a deep soaking fub® in front of
3 domed windows™>®.

4: There is a very fancy chandelier’ over
the bathtub® and everything is done in
brown woods and granite.

5: There is a step’ up to the bathtub'.
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Two Sources of Important Information for IP

@ visual features of perceived
objects (what to refer to)

@ background knowledge and
communicative intent (when
and how to refer)

are standing on the behind that llooks like it was
just set. Thefe are in front of
surrounding it. There are three people in yellow vests and white hard hats.
There are some people sitting on a bench next to m.
-
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Our paper

How to improve both accuracy and diversity of generated image paragraphs?

a white car
with black wheels

a white street sign
with red lines on it

hice shire @ model input:
and standin . .
on’the’sigewaix unimodal (visual / textual)

vs. multimodal

Image Paragraph
Model
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Our paper

How to improve both accuracy and diversity of generated image paragraphs?

o !

Image Paragraph

Image Paragraph
Model NN

with

a white car o
with black wheels

a white street sign

on the sidewalk

red lines on it

a man wearing
white shirt
and standing

@)
f

Word Choice
Object Salience
Sentence Structure

Paragraph Coherence
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@ model input:
unimodal (visual / language)
vs. multimodal

@ information fusion:
max-pooling vs. attention

@ paragraph evaluation:
automatic vs. human
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model input:
unimodal (visual / language)
vs. multimodal

information fusion:
max-pooling vs. attention

paragraph evaluation:
automatic vs. human

human evaluation:
accuracy and diversity of
generated paragraphs
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Unimodal Features: Vision, Language

We use pre-trained DenseCap’ model to extract both visual (V) and language
(L) features for each image:

Q V € RM*D: the output of the recognition network (two fully connected
layers, within the red box)

Image: Region features:
3xWxH Conv features: BxCxXxY  Region Codes:

CxW xH ﬂ BxD
o .
: : | |LsTm
ks

Notations: M = 50, D = 4096, H = 512.
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Unimodal Features: Vision, Language

We use pre-trained DenseCap’model to extract both visual (V) and language
(L) features for each image:

Q V € RM*D: the output of the recognition network (two fully connected
layers, within the red box)

@ L c RM*H: the sequence of hidden states used to generate the region
descriptions (within the blue box)

Image: Region features:
3xWxH Conv features: BxCxXxY  Region Codes:
CxW xH BxD
p— v :
: . ¥ 2
: s ||/Ls™™
— Striped gray cat

Network Cats watching TV

Notations: M = 50, D = 4096, H = 512.
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Multimodal Features: Vision and Language

Mapping Visual Features

Mapping Sentence LSTM
last hidden state

mult, = |

WaVi

S

WL,

D

Mapping Language Features
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Multimodal Features: Vision and Language

Mapping Sentence LSTM

last hidqen state

Mapping Visual Features

Mapping Language Features

Note: passing multimodal features through a linear layer FC(mult,) did
not affect the automatic metric scores.
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Information Fusion: Max-Pooling

For uni-modal experiments, we use max-pooling on either mapped visual
features x = WYV, or mapped language features x = WEL,:

x§ = maz;!, (x) (1)
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Information Fusion: Max-Pooling

For uni-modal experiments, we use max-pooling on either mapped visual
features x = WYV, or mapped language features x = WEL,

x§ = maz;!, (x) (1)

For multimodal experiments, we concatenate max-pooled vectors of both
modalities:

x5 = [mazM,(WEL,) ® maz, (WY V,)] (2)
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Information Fusion: Late Attention

We apply additive\concat attention on either unimodal or multimodal
features (F)):

a;nult — Softmax<Wftanh(Ft@‘,,f‘fhh,?il) (3)
ft — [a;nult o) Ft] (4)
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Information Fusion: Late Attention

We apply additive\ concat attention on either unimodal or multimodal features
(F3):
"t = so ftmax (W Atanh(E,oW, b)) (5)
fe=la"" O F] (6)
Note: Although some work on multimodal machine translation has shown that
early attention improves quality of text generations &9 |, using

modality-dependent / early attention (unique W and, therefore, unique a}*"!!
for each modality) provided us with worse automatic metric scores.
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Image Paragraph Model

Discourse LSTM

Sentence LSTM

=

ouT

=

CLASP Seminar

@ IN: visual / language / multimodal

features
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to generate the corresponding
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Image Paragraph Model

Discourse LSTM <>
N

Sentence LSTM

=
\

ouT

IN: visual / language / multimodal
features

Discourse LSTM produces topics
for each sentence n, € N

Sentence LSTM uses each topic
to generate the corresponding
sentence

The model is trained on pairs of
images and paragraphs from the
Stanford Image Paragraph Dataset

26 / 32
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Results: automatic metrics, accuracy

Model Input | Type WMD | CIDEr | METEOR | BLEU-1 | BLEU-2 | BLEU-3 | BLEU-4
MG +MAX | 748 25.66 11.20 24.51 13.67 7.96 4.51
LNG +MAX | 7.19 22.27 10.81 23.20 12.69 7.34 4.19
IMG+LNG +MAX | 7.61 26.38 11.30 25.10 13.88 8.11 4.61
MG +ATT 7.47 26.01 11.26 24.88 13.99 8.13 4.67
LNG +ATT 7.20 22.11 10.82 23.20 12.55 7.16 397
IMG+LNG +ATT 7.54 26.04 11.28 24.96 13.82 8.04 4.60

@ using multimodal features seems to improve the quality of generated
paragraphs
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Results: automatic metrics, accuracy

Model Input | Type WMD | CIDEr | METEOR | BLEU-1 | BLEU-2 | BLEU-3 | BLEU-4
MG +MAX | 748 25.66 11.20 24.51 13.67 7.96 4.51
LNG +MAX | 7.19 22.27 10.81 23.20 12.69 7.34 4.19
IMG+LNG +MAX | 7.61 26.38 11.30 25.10 13.88 8.11 4.61
MG +ATT 7.47 26.01 11.26 24.88 13.99 8.13 4.67
LNG +ATT 7.20 22.11 10.82 23.20 12.55 7.16 397
IMG+LNG +ATT 7.54 26.04 11.28 24.96 13.82 8.04 4.60

@ using multimodal features seems to improve the quality of generated
paragraphs

@ max-pooling performs overall better for multimodal features
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Results: automatic metrics, diversity

Model Input | Type mBLEU | self-CIDEr
MG +MAX 50.63 76.43
LNG +MAX 52.24 75.59
IMG+LNG +MAX 52.09 76.46
IMG +ATT 51.82 75.51
LNG +ATT 50.93 76.41
IMG+LNG +ATT 47.42 78.39
| GT - | 1884 [ 9651 |

© multimodal features along with attention improve the overall diversity of
generated paragraphs
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Results: automatic metrics, diversity

Model Input | Type mBLEU | self-CIDEr
MG +MAX 50.63 76.43
LNG +MAX 52.24 75.59
IMG+LNG +MAX 52.09 76.46
IMG +ATT 51.82 75.51
LNG +ATT 50.93 76.41
IMG+LNG +ATT 47.42 78.39
| GT - | 1884 [ 9651 |

© multimodal features along with attention improve the overall diversity of
generated paragraphs

@ the best performing model is still quite far from the scores for ground-truth
paragraphs
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Results: human evaluation

Input Type wWC oS SS PC Mean
IMG +MAX | 31.58 | 3824 | 59.57 | 37.87 | 41.81
LNG +MAX | 29.64 | 3643 | 56.43 | 36.95 | 39.86
IMG+LNG | +MAX | 3420 | 38.72 | 57.85 | 37.06 | 41.95
Mean +MAX | 3180 | 37.79 | 57.95 | 37.29 -

IMG +ATT 3691 | 45.10 | 69.34 | 3227 | 45.90
LNG +ATT 37.06 | 46.78 | 72.95 | 40.88 | 49.41
IMG+LNG | +ATT 33.81 37.67 | 45.37 | 34.71 37.89
Mean +ATT 3592 | 43.18 | 62.55 | 3595 -

GT - 89.83 | 87.36 | 83.07 | 84.78 -
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Input Type wWC oS SS PC Mean
IMG +MAX | 31.58 | 3824 | 59.57 | 37.87 | 41.81
LNG +MAX | 29.64 | 3643 | 56.43 | 36.95 | 39.86
IMG+LNG | +MAX | 3420 | 38.72 | 57.85 | 37.06 | 41.95
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GT - 89.83 | 87.36 | 83.07 | 84.78 -

@ IMGH+LNG+MAX might be a beneficial choice in terms of word choice
(WC) and object salience (OS): categories which are directly connected to
the accuracy and diversity of paragraphs

@ models with attention have higher mean scores across all criteria compared
to the ones of models with max-pooling

© LNGHATT performs much better than IMG+ATT for sentence structure
(SS) and paragraph coherence (PC): categories where semantic information
would matter the most

@ attention seems to affect semantic information more than visual features
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Results: paragraph examples

(a) HUMAN: There are several cars parked along a street.
There are many trees in a field in front of the street. There
are small blue parking meters on the sidewalk next to the
street.

IMG+MAX : There are several cars parked on the road.
There are cars parked on the street. There are trees behind
the street.

LNG+MAX : There are several cars on the street. There
are trees on the street. There are trees on the street.
IMG+LNG+MAX : There are several cars on the street.
There are two cars on the street. There are cars parked on
the sidewalk.

IMG+ATT : There are several cars parked on the street.
There are two cars parked on the road. There are two cars
parked on the road.

LNG+ATT : There are several signs on the street. There are
signs on the street. The pole is white.

IMG+LNG+ATT : There is a parking meter on a sidewalk.
There are cars next to the street. There is a parking lot next
to the street.

(b) HUMAN: A large splash is in front of a wave in the water.
There is a large white and black surf board in the water. There
is a black dog that is riding on top of the surf board.
IMG+MAX : A man is riding a wave. He is holding a surf-
board. The man is wearing a black wet suit.

LNG+MAX : A person is surfing in the water. The surfboard
is black and white. The surfboard is black and white.
IMG+LNG+MAX : A man is standing on a surfboard. The
surfboard is black. The man is wearing black shorts.
IMG+ATT : A man is standing on a surfboard. The surf-
board is black and white. The man has black hair.
LNG+ATT : A person is standing in the water. The person is
wearing a black suit. The person is holding a black surfboard.
IMG+LNGHATT : A person is surfing in the ocean. She is
wearing a black wet suit. She is holding a white surfboard.




Conclusion and Future Work

@ Multimodal features improve the quality of paragraphs generated by image
paragraph models in various ways as judged by both automatic and human
evaluation
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Conclusion and Future Work

@ Multimodal features improve the quality of paragraphs generated by image
paragraph models in various ways as judged by both automatic and human
evaluation

@ We need more control over human evaluation, more plausible automatic
metrics for diversity

@ We plan to investigate more the effects of early vs. late information fusion

@ How would using different decoding strategies (sampling, Nucleus sampling,
etc.) affect the quality of paragraphs?

@ Our goal is to investigate the generation of task-dependent paragraphs
(more structured and ordered)

@ Ultimately, we want to return to more interactive and dialogue settings as
we initially thought about
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Thank you for your attention!
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