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Describing images with longer sequences1

People are standing on the grass behind a concrete patch that looks like it was
just set. There are two orange cones in front of the concrete and yellow tape
surrounding it. There are three people in yellow vests and white hard hats. There
are some people sitting on a bench next to them.
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Properties of image paragraphs

informativeness: descriptions consisting of multiple sentences
grounding: every word can be grounded in something in the image

!= visual storytelling
discourse: there is some type of an order to the sentences in the paragraph
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Why image paragraphs?
It has all started with visual dialogue...2

Visual Dialogue3 is a type of setting in which an artificial agent is required
to hold a meaningful dialogue with humans in natural language about visual
content
MeetUp! is a conversational game aimed at modelling natural
human-human interaction in a situated setting (e.g. environment is shared
between speakers)
Important properties of MeetUp!: collaborative nature of the task, symmetry
between speakers, visual grounding of words in the environment,
conversational grounding between speakers (e.g. the meaning is negotiated
and established rather than fixed and stated)
Very important: dialogue discourse is actively used to refer to previously
mentioned elements (not present in many other visual dialogue settings!)

CLASP Seminar 5 / 32



Visual Dialogue Examples
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What have we learned?
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Let’s simplify the task!

Moving on with image description sequences...4
image description sequences (IDS) are longer natural language texts
(paragraphs) with single images they are meant to describe

this setting is a challenging tested for state-of-the-art models in NLG, where
language and vision tasks need to be connected to core aspects of text
generation, e.g. content selection, text structuring, or aggregation.
IDS are aimed at partially resembling dialogical interaction

interface-wise: separate text input fields rather than one block
instruction-wise: talk to the imaginary partner who keeps asking to tell
him more

CLASP Seminar 14 / 32



Let’s simplify the task!

Moving on with image description sequences...5
image description sequences (IDS) are longer natural language texts
(paragraphs) with single images they are meant to describe
this setting is a challenging tested for state-of-the-art models in NLG, where
language and vision tasks need to be connected to core aspects of text
generation, e.g. content selection, text structuring, or aggregation.

IDS are aimed at partially resembling dialogical interaction
interface-wise: separate text input fields rather than one block
instruction-wise: talk to the imaginary partner who keeps asking to tell
him more

CLASP Seminar 14 / 32



Let’s simplify the task!

Moving on with image description sequences...6
image description sequences (IDS) are longer natural language texts
(paragraphs) with single images they are meant to describe
this setting is a challenging tested for state-of-the-art models in NLG, where
language and vision tasks need to be connected to core aspects of text
generation, e.g. content selection, text structuring, or aggregation.
IDS are aimed at partially resembling dialogical interaction

interface-wise: separate text input fields rather than one block
instruction-wise: talk to the imaginary partner who keeps asking to tell
him more

CLASP Seminar 14 / 32



CLASP Seminar 15 / 32



Two Sources of Important Information for IP

1 visual features of perceived
objects (what to refer to)

2 background knowledge and
communicative intent (when
and how to refer)

People are standing on the grass behind a concrete patch that looks like it was
just set. There are two orange cones in front of the concrete and yellow tape
surrounding it. There are three people in yellow vests and white hard hats.
There are some people sitting on a bench next to them.
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Our paper

How to improve both accuracy and diversity of generated image paragraphs?

Image Paragraph
Model

...

...

a	white	car
with	black	wheels

a	white	street	sign
with	red	lines	on	it	

a	man	wearing
white	shirt
and	standing

on	the	sidewalk	
...

model input:
unimodal (visual / textual)
vs. multimodal

information fusion:
max-pooling vs. attention
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Unimodal Features: Vision, Language

We use pre-trained DenseCap7 model to extract both visual (𝑉 ) and language
(𝐿) features for each image:

1 𝑉 ∈ ℝ𝑀×𝐷: the output of the recognition network (two fully connected
layers, within the red box)

Notations: 𝑀 = 50, 𝐷 = 4096, 𝐻 = 512.
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We use pre-trained DenseCap7model to extract both visual (𝑉 ) and language
(𝐿) features for each image:

1 𝑉 ∈ ℝ𝑀×𝐷: the output of the recognition network (two fully connected
layers, within the red box)

2 𝐿 ∈ ℝ𝑀×𝐻 : the sequence of hidden states used to generate the region
descriptions (within the blue box)

Notations: 𝑀 = 50, 𝐷 = 4096, 𝐻 = 512.
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Multimodal Features: Vision and Language

Mapping Visual Features

Mapping Language Features

Mapping Sentence LSTM
last hidden state
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Multimodal Features: Vision and Language

Mapping Visual Features

Mapping Language Features

Mapping Sentence LSTM
last hidden state

Note: passing multimodal features through a linear layer 𝐹𝐶(𝑚𝑢𝑙𝑡𝑡) did
not affect the automatic metric scores.
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Information Fusion: Max-Pooling

For uni-modal experiments, we use max-pooling on either mapped visual
features 𝑥 = 𝑊 𝑉

𝑚𝑉𝑡 or mapped language features 𝑥 = 𝑊 𝐿
𝑚𝐿𝑡:

𝑥𝜍
𝑠 = 𝑚𝑎𝑥𝑀

𝑖=1(𝑥) (1)

For multimodal experiments, we concatenate max-pooled vectors of both
modalities:

𝑥𝜍
𝑠 = [𝑚𝑎𝑥𝑀

𝑖=1(𝑊 𝐿
𝑚𝐿𝑡) ⊕ 𝑚𝑎𝑥𝑀

𝑖=1(𝑊 𝑉
𝑚𝑉𝑡)] (2)
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Information Fusion: Late Attention

We apply additive\concat attention on either unimodal or multimodal
features (𝐹𝑡):

𝛼𝑚𝑢𝑙𝑡
𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊 𝐴

𝑎 𝑡𝑎𝑛ℎ(𝐹𝑡⊕𝑊ℎℎ𝛿
𝑡−1) (3)

𝑓𝑡 = [𝛼𝑚𝑢𝑙𝑡
𝑡 ⊙ 𝐹𝑡] (4)
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Information Fusion: Late Attention

We apply additive\concat attention on either unimodal or multimodal features
(𝐹𝑡):

𝛼𝑚𝑢𝑙𝑡
𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊 𝐴

𝑎 𝑡𝑎𝑛ℎ(𝐹𝑡⊕𝑊ℎℎ𝛿
𝑡−1) (5)

𝑓𝑡 = [𝛼𝑚𝑢𝑙𝑡
𝑡 ⊙ 𝐹𝑡] (6)

Note: Although some work on multimodal machine translation has shown that
early attention improves quality of text generations 8,9 , using
modality-dependent / early attention (unique 𝑊 𝐴

𝑎 and, therefore, unique 𝛼𝑚𝑢𝑙𝑡
𝑡

for each modality) provided us with worse automatic metric scores.
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Image Paragraph Model

Discourse LSTM

Sentence LSTM

IN

OUT

N

M

IN: visual / language / multimodal
features

Discourse LSTM produces topics
for each sentence 𝑛𝑡 ∈ 𝑁
Sentence LSTM uses each topic
to generate the corresponding
sentence
The model is trained on pairs of
images and paragraphs from the
Stanford Image Paragraph Dataset
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Results: automatic metrics, accuracy

1 using multimodal features seems to improve the quality of generated
paragraphs

2 max-pooling performs overall better for multimodal features
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Results: automatic metrics, diversity

1 multimodal features along with attention improve the overall diversity of
generated paragraphs

2 the best performing model is still quite far from the scores for ground-truth
paragraphs
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Results: human evaluation

1 IMG+LNG+MAX might be a beneficial choice in terms of word choice
(WC) and object salience (OS): categories which are directly connected to
the accuracy and diversity of paragraphs

2 models with attention have higher mean scores across all criteria compared
to the ones of models with max-pooling

3 LNG+ATT performs much better than IMG+ATT for sentence structure
(SS) and paragraph coherence (PC): categories where semantic information
would matter the most

4 attention seems to affect semantic information more than visual features
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Results: paragraph examples
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Conclusion and Future Work

Multimodal features improve the quality of paragraphs generated by image
paragraph models in various ways as judged by both automatic and human
evaluation

We need more control over human evaluation, more plausible automatic
metrics for diversity
We plan to investigate more the effects of early vs. late information fusion
How would using different decoding strategies (sampling, Nucleus sampling,
etc.) affect the quality of paragraphs?
Our goal is to investigate the generation of task-dependent paragraphs
(more structured and ordered)
Ultimately, we want to return to more interactive and dialogue settings as
we initially thought about
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Thank you for your attention!
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