
Types and probability
Implementing probabilistic TTR

Robin Cooper
University of Gothenburg

CLASP Seminar, 14th April 2021



Outline

TTR and probabilistic TTR

pyttr

Moving to probabilistic pyttr

Judging probabilities

Querying probabilities

Querying conditional probabilities

Non-specific querying

Meet types and join types

Record types



Outline

TTR and probabilistic TTR

pyttr

Moving to probabilistic pyttr

Judging probabilities

Querying probabilities

Querying conditional probabilities

Non-specific querying

Meet types and join types

Record types



Types and probability Implementing probabilistic TTR

TTR and probabilistic TTR

Probabilities associated with judgements

I TTR — a type theory with records (Cooper, 2012; Cooper
and Ginzburg, 2015; Cooper, in prep)

I a rich theory of types taking ideas from Per Martin-Löf and
others. Whereas Montague had types like Entity and
TruthValue we can have types like Dog and
BoyHugsDogSituation

I probabilistic TTR (Cooper et al., 2015)

4 / 58



Types and probability Implementing probabilistic TTR

TTR and probabilistic TTR

Two kinds of probabilities

I the probability that an object, a, if of type T — p(a : T )

I the probability that there is an object of type T — p(T )

I Given that types can be used to model propositions, the
second probability can be construed as the probability that T
is true (cf. the judgement T true in Martin-Löf type theory)

5 / 58



Outline

TTR and probabilistic TTR

pyttr

Moving to probabilistic pyttr

Judging probabilities

Querying probabilities

Querying conditional probabilities

Non-specific querying

Meet types and join types

Record types



Types and probability Implementing probabilistic TTR

pyttr

A Python implementation of TTR

I https://github.com/GU-CLASP/pyttr

I an attempt to implement something useful for agents making
judgements in a changing environment

I probabilistic TTR (as far as I have got with it) is presented in
the notebook https://github.com/GU-CLASP/pyttr/

blob/master/probttr.ipynb

7 / 58

https://github.com/GU-CLASP/pyttr
https://github.com/GU-CLASP/pyttr/blob/master/probttr.ipynb
https://github.com/GU-CLASP/pyttr/blob/master/probttr.ipynb


Types and probability Implementing probabilistic TTR

pyttr

Dynamic processing

I new types can be created on the fly — don’t have to be
declared at the beginning of the program

I if a : T , we call a a witness for T

I witnesses can be added to types on the fly

I intuition: useful for agents observing new objects and making
judgements about their types

I objects can be judged to be of a type because they meet a
witness condition associated with that type

I new witness conditions can be associated with a type on the
fly

I intuition: useful for agents engaging in a learning process and
refining the definition of a type

8 / 58



Types and probability Implementing probabilistic TTR

pyttr

Types as an interface to the world

I witness conditions in pyttr can call on arbitrary external
modules which need not be implemented in pyttr

I for example, the witness condition for a type may call a
classifier created by standard machine-learning techniques
(Matsson, 2018; Utescher, 2019)

9 / 58



Outline

TTR and probabilistic TTR

pyttr

Moving to probabilistic pyttr

Judging probabilities

Querying probabilities

Querying conditional probabilities

Non-specific querying

Meet types and join types

Record types



Types and probability Implementing probabilistic TTR

Moving to probabilistic pyttr

Witness caches

non-probabilistic pyttr

I objects judged to be witnesses for a type are
stored in a witness cache for that type

I leads to negation as failure (logic programming)

probabilistic pyttr

I objects stored in a witness cache for the type
together with a probability

I means that a negative judgement (zero
probability) can be stored in the witness cache

11 / 58



Types and probability Implementing probabilistic TTR

Moving to probabilistic pyttr

Probability intervals

I Actually, we use probability intervals rather than just
probabilities

I [n,m] where n is the minimum and m the maximum

I This means that we can represent three truth values:

True [1,1]
False [0,0]

Don’t know [0,1]

I . . . plus uncountably many more (actually in the
implementation a large finite number using floating point
numbers)

12 / 58



Types and probability Implementing probabilistic TTR

Moving to probabilistic pyttr

Methods

I much of the work is done by methods, in the sense of object
oriented programming

I means that methods with the same name can be defined
differently for different types (organized into Python classes)

I often we refer to these as a single method, defined differently
for different classes of objects

13 / 58



Types and probability Implementing probabilistic TTR

Moving to probabilistic pyttr

Judging and querying

I in pyttr (both probabilistic and non-probabilistic) there are
two methods associated with what is called judgement in a
type theory

I judge() is used to assert that an object is of a certain type
(with some probability) — cf. assertion in logic programming

I query() is used to query whether (or with what probability)
an object is of a certain type — cf. query in logic
programming

14 / 58



Outline

TTR and probabilistic TTR

pyttr

Moving to probabilistic pyttr

Judging probabilities

Querying probabilities

Querying conditional probabilities

Non-specific querying

Meet types and join types

Record types



Types and probability Implementing probabilistic TTR

Judging probabilities

Witness cache

We declare a new type, T , whose witness cache is initialized to be
empty — no judgements have been made.

T = Type()

print(T.witness_cache)

([], [])

16 / 58



Types and probability Implementing probabilistic TTR

Judging probabilities

Making a judgement

We judge a to be of type T with probability .5.

show(T.judge('a',.5))

'0.5'

show(T.witness_cache)

'([a], [0.5])'

17 / 58



Types and probability Implementing probabilistic TTR

Judging probabilities

Rejudging an object for a type

show(T.judge('a',.6))

'0.6'

show(T.witness_cache)

'([a], [0.6])'

Choicepoint: No history is kept for judgements of a particular
object for a particular type.

18 / 58



Types and probability Implementing probabilistic TTR

Judging probabilities

Probability intervals

Actually, what is stored is a probability interval.

show(T.judge('a',.6,1))

'>=0.6'

judge(a,n,n) is the same as judge(a,n)

judge(a) is the same as judge(a,1) (which is the same as
judge(a,1,1))

19 / 58



Types and probability Implementing probabilistic TTR

Judging probabilities

Non-specific judging

Making a judgement concerning the probability that there is
something of a given type.

T_new = Type()

T_new.judge_nonspec(.3,.4)

show(T_new.prob_nonspec)

'>=0.3&<=0.4'

20 / 58



Outline

TTR and probabilistic TTR

pyttr

Moving to probabilistic pyttr

Judging probabilities

Querying probabilities

Querying conditional probabilities

Non-specific querying

Meet types and join types

Record types



Types and probability Implementing probabilistic TTR

Querying probabilities

Querying unconditional probabilities

show(T.judge('a'))

'1.0'

show(T.query('a'))

'1.0'

'b' is not in the witness cache. [0,1] (“Don’t know”) is returned

show(T.query('b'))

'<=1.0'

Choicepoint: “Don’t know” results are not added to the witness
cache. 22 / 58



Types and probability Implementing probabilistic TTR

Querying probabilities

Witness conditions
Objects can be queried for their probability of belonging to a type
even if they are not represented in the witness cache by using a
witness condition. Witness conditions are functions which map an
object to a probability interval.

def RealClassifier(n):

if isinstance(n,float):

return PConstraint(1)

else:

return PConstraint(0)

Real = Type('Real')

Real.learn_witness_condition(RealClassifier)

show(Real.query(.6))

'1.0'
23 / 58



Types and probability Implementing probabilistic TTR

Querying probabilities

Querying can add to the witness cache

show(Real.query('a'))

'0.0'

show(Real.witness_cache)

'([0.6, a], [1.0, 0.0])'

cf. memoizing in logic programming

24 / 58



Types and probability Implementing probabilistic TTR

Querying probabilities

More than one witness condition for a type

I In non-probabilistic pyttr an object was a witness for a type
if one of the witness conditions returned True for the object

I Choicepoint: In probabilistic pyttr we return the maximum
of all the probability intervals returned by the witness
conditions

I Choicepoint: . . . where the maximum is defined as the
maximum of all the minima and the maximum of all the
maxima

I that is, the result may not be identical with what is returned
by any one of the witness conditions

25 / 58



Types and probability Implementing probabilistic TTR

Querying probabilities

T_at = Type('T_at')

def Classifier_a(s):

if 'a' in s:

return PConstraint(.8,.9)

else:

return PConstraint(.1,.3)

def Classifier_t(s):

if 't' in s:

return PConstraint(.2,.95)

else:

return PConstraint(.15,.7)

T_at.learn_witness_condition(Classifier_a)

T_at.learn_witness_condition(Classifier_t)

26 / 58



Types and probability Implementing probabilistic TTR

Querying probabilities

show(T_at.query('a'))

>=0.8&<=0.9'

show(T_at.query('t'))

'>=0.2&<=0.95'

show(T_at.query('at'))

'>=0.8&<=0.95'

show(T_at.query('b'))

'>=0.15&<=0.7'
27 / 58



Outline

TTR and probabilistic TTR

pyttr

Moving to probabilistic pyttr

Judging probabilities

Querying probabilities

Querying conditional probabilities

Non-specific querying

Meet types and join types

Record types



Types and probability Implementing probabilistic TTR

Querying conditional probabilities

Adding conditions to queries

I Conditions provided as second argument to query()

I T.query(a,[(b,T1),T2]) — queries the probability that a
is of type T given that b is of type T1 and there is some
witness for T2

I if the probability that a is of type T does not depend on any
of the conditions, then T.query(a) is returned

I default assumption that probabilities are independent

29 / 58



Types and probability Implementing probabilistic TTR

Querying conditional probabilities

Example with no dependence on conditions

T1 = Type()

T2 = Type()

T1.judge('a',.6)

show(T1.query('a',[('b',T2)]))

'0.6'

30 / 58



Types and probability Implementing probabilistic TTR

Querying conditional probabilities

Probabilistic dependence created by subtyping

I Suppose T2 v T1

I Then p(a : T1 | a : T2) = 1

I Identity is a case of subtyping: p(a : T | a : T ) = 1

31 / 58



Types and probability Implementing probabilistic TTR

Querying conditional probabilities

Example: identity case

show(T1.query('a',[('a',T1)]))

'1.0'

32 / 58



Types and probability Implementing probabilistic TTR

Querying conditional probabilities

Example: other subtyping

T3 = Type()

T1.learn_witness_condition(lambda x: T3.query(x))

T3.subtype_of(T1)

True

show(T1.query('b',[('b',T3)]))

'1.0'

33 / 58



Types and probability Implementing probabilistic TTR

Querying conditional probabilities

Dependent probabilities and oracles

I dependent probabilities not related to subtyping provided by
an oracle

I . . . given as a third argument to query()

I oracle — a Python function which takes an object, a type and
a list of conditions and returns either a probability interval or
None

I an oracle may call on arbitrary resources external to pyttr,
e.g. conditional probability tables, Bayesian networks

I Choicepoint: T.query(a,c,o) returns
I T.query(a,c) if the subtyping condition is met
I else: o(a,T,c) if this returns a probability interval
I else: T.query(a), i.e. the unconditional probability

34 / 58



Types and probability Implementing probabilistic TTR

Querying conditional probabilities

A silly oracle

def SillyOracle(a,T,c):

if a is 'a'and T is T1 and ('b',T2) in c:

return PConstraint(.7,.8)

else:

return

Using the oracle

show(T1.query('a',[('b',T2)],SillyOracle))

'>=0.7&<=0.8'

35 / 58



Types and probability Implementing probabilistic TTR

Querying conditional probabilities

The oracle is not defined and the result is the unconditional
probability

show(T1.query('a',[T2],SillyOracle))

'0.6'

The oracle is defined but is ignored because of the subtyping
condition

show(T1.query('a',[('b',T2),('a',T3)],SillyOracle))

'1.0'

36 / 58



Outline

TTR and probabilistic TTR

pyttr

Moving to probabilistic pyttr

Judging probabilities

Querying probabilities

Querying conditional probabilities

Non-specific querying

Meet types and join types

Record types



Types and probability Implementing probabilistic TTR

Non-specific querying

Computing non-specific probability estimates
I T.query nonspec() asks for the probability that there is

something of type T, i.e. p(T ). The computation of this is a
Choicepoint.

I if something has been judged to be of type T with probability
1, then the non-specific probability is 1.

I if there is nothing in the witness cache, but a judgement has
been made with judge nonspec(), then the result of that
judgement is returned

I if no non-specific judgement has been made, then the
disjunctive probability of the probabilities in the witness cache
is returned

I if a non-specific judgement has been made and there is a
non-empty witness cache, then the maximum of the
non-specific judgement and the disjunctive probability of the
probabilities in the witness cache is returned

38 / 58



Outline

TTR and probabilistic TTR

pyttr

Moving to probabilistic pyttr

Judging probabilities

Querying probabilities

Querying conditional probabilities

Non-specific querying

Meet types and join types

Record types



Types and probability Implementing probabilistic TTR

Meet types and join types

Judging something to be of a meet type with probability 1

If we judge that the probability of a being of type
MeetType(T1,T2) is 1, then we also judge the probability of a
being of T1 and the probability of a being of T2 to be 1.

Tleft = Type()

Tright = Type()

Tm = MeetType(Tleft,Tright)

Tm.judge('a')

print(show(Tleft.query('a')))

print(show(Tright.query('a')))

1.0

1.0

40 / 58



Types and probability Implementing probabilistic TTR

Meet types and join types

Judging something to be of a meet type with probability
other than 1

Choicepoint: Otherwise, we do not currently draw any
conclusions about the probabilities for the component types.

Tleft1 = Type()

Tright1 = Type()

Tm1 = MeetType(Tleft1,Tright1)

Tm1.judge('a',.6,.8)

print(show(Tleft1.query('a')))

print(show(Tright1.query('a')))

print(show(Tm1.query('a')))

<=1.0

<=1.0

>=0.6&<=0.8
41 / 58



Types and probability Implementing probabilistic TTR

Meet types and join types

Non-specific judgements for meet types

Tleft2 = Type()

Tright2 = Type()

Tm2 = MeetType(Tleft2,Tright2)

Tm2.judge_nonspec()

print(show(Tleft2.query_nonspec()))

print(show(Tright2.query_nonspec()))

1.0

1.0

42 / 58



Types and probability Implementing probabilistic TTR

Meet types and join types

Tleft3 = Type()

Tright3 = Type()

Tm3 = MeetType(Tleft3,Tright3)

Tm3.judge_nonspec(.6,.8)

print(show(Tleft3.query_nonspec()))

print(show(Tright3.query_nonspec()))

print(show(Tm3.query_nonspec()))

<=1.0

<=1.0

>=0.6&<=0.8

43 / 58



Types and probability Implementing probabilistic TTR

Meet types and join types

Querying a meet type with an empty witness cache

If an object is not in the witness cache of a meet type then the
conjunctive probability of the values returned for the two
components is returned by the query() method.

Tleft3.judge('a',.6)

print(show(Tright3.query('a')))

show(Tm3.query('a'))

<=1.0

'<=0.6'

44 / 58



Types and probability Implementing probabilistic TTR

Meet types and join types

Forgetting

If an object is in the witness cache then the probability stored
there will be returned, even though there may be conflicting
evidence in the two components. In order to get the new value we
need to forget() (cf. retract in logic programming).

Tright3.judge('a',.3)

print(show(Tm3.query('a')))

Tm3.forget('a')

print(show(Tm3.query('a')))

<=0.6

0.18

45 / 58



Types and probability Implementing probabilistic TTR

Meet types and join types

Meet types and oracles

The computation of conjunctive probability uses an adaptation of
the Kolmogorov formula for conjunction:
p(a : T1 ∧ T2) = p(a : T1)p(a : T2 | a : T1) following Cooper et al.
(2015). Therefore an oracle can make a difference when querying a
meet type.

46 / 58



Types and probability Implementing probabilistic TTR

Meet types and join types

def Oracle1(a,T,c):

if a is'a'and T is Tright3 and ('a',Tleft3) in c:

return PConstraint(.7,.8)

def Oracle2(a,T,c):

if a is'a'and T is Tright3 and ('a',Tleft3) in c:

return PConstraint(0)

Tm3.forget('a')

print(show(Tm3.query('a',oracle=Oracle1)))

Tm3.forget('a')

print(show(Tm3.query('a',oracle=Oracle2)))

>=0.42&<=0.48

0.0

47 / 58



Types and probability Implementing probabilistic TTR

Meet types and join types

Conditional probabilities for meet types

print(show(Tm3.query('a',[('a',Tleft3),('a',Tright3)])))

1.0

48 / 58



Types and probability Implementing probabilistic TTR

Meet types and join types

Passing arguments into witness conditions

I witness condition for meet types (schematically):
lambda a,c,oracle: ConjProb([(a,<left>),(a,<right>)],c,oracle)

I meet type (like other “logical types”) cannot learn witness
conditions

I witness conditions in probttr have 1–3 arguments
I object queried
I object queried, conditions
I object queried, conditions, oracle

49 / 58



Types and probability Implementing probabilistic TTR

Meet types and join types

Join types

Treated similarly to meet types.

Tleftd = Type()

Trightd = Type()

Tmd = JoinType(Tleftd,Trightd)

Tmd.judge('a',0)

print(show(Tleftd.query('a')))

print(show(Trightd.query('a')))

0.0

0.0

50 / 58



Outline

TTR and probabilistic TTR

pyttr

Moving to probabilistic pyttr

Judging probabilities

Querying probabilities

Querying conditional probabilities

Non-specific querying

Meet types and join types

Record types



Types and probability Implementing probabilistic TTR

Record types

Record types: basic strategy

I p(r : T ) where r is a record and T a record type, is the
conjunctive probability that the objects in the fields or r are of
the types in the correspondingly labelled types of T (Cooper
et al., 2015)

I if there is a label in T which is not in r , then p(r : T ) = 0

I if r is not a record then p(r : T ) = 0

52 / 58



Types and probability Implementing probabilistic TTR

Record types

A non-dependent record type

Tf1 = Type()

Tf2 = Type()

Tr1 = RecType({'l1':Tf1,'l2':Tf2})

Tf1.judge('a',.3)

Tf2.judge('b',.2)

r1 = Rec({'l1':'a','l2':'b'})

print(show(Tr1.query(r1)))

0.06

53 / 58



Types and probability Implementing probabilistic TTR

Record types

A dependent record type

dog = Pred('dog',[Ind])

a_dog = RecType({'x':Ind,

'e':(Fun('v', Ind, PType(dog,['v'])),['x'])})

show_latex(a_dog)[
x : Ind
e : 〈λv : Ind . dog(v), 〈x〉〉

]
Ind.judge('d')

PType(dog,['d']).judge('s1',.7)

r2 = Rec({'x':'d','e':'s1','z':'other_stuff'})

show(a_dog.query(r2))

'0.7'

54 / 58



Types and probability Implementing probabilistic TTR

Record types

A slightly more complex record type

bark = Pred('bark',[Ind])

a_dog_bark = RecType({'x':a_dog,

'e':(Fun('v',Ind,PType(bark,['v'])),

['x.x'])})

show_latex(a_dog_bark) x :

[
x : Ind
e : 〈λv : Ind . dog(v), 〈x〉〉

]
e : 〈λv : Ind . bark(v), 〈x.x〉〉



55 / 58



Types and probability Implementing probabilistic TTR

Record types

PType(bark,['d']).judge('s2',.3)

r4 = Rec({'x':r2,'e':'s2'})

show_latex(r4) x =

 x = d
e = s1

z = otherstuff


e = s2


show(a_dog_bark.query(r4))

'0.21'

56 / 58



Types and probability Implementing probabilistic TTR

Record types

Conditional probabilites for record types

show(a_dog_bark.query(r4,[('s2',PType(bark,['d']))]))

'0.7'

show(a_dog_bark.query(r4,[('s1',PType(dog,['d'])),

('s2',PType(bark,['d']))]))

'1.0'

57 / 58



Types and probability Implementing probabilistic TTR

Conclusion

Conclusion

I a language for talking about probabilistic type judgements
I in a dynamic setting where

I new types can be created
I witness conditions can be learned
I probability estimates can change over time

I the type theoretical apparatus can interact with external
modules
I for the definition of witness conditions
I for the association of oracles with conditional probability

judgements

I in the hope that this might at some point contribute to the
integration of rule-based and statistical approaches to
computational linguistics

58 / 58



Types and probability Implementing probabilistic TTR

Bibliography

Bibliography I

References to work on TTR are available on
https://sites.google.com/site/typetheorywithrecords

Cooper, Robin (2012) Type Theory and Semantics in Flux, in R.
Kempson, N. Asher and T. Fernando (eds.), Handbook of the
Philosophy of Science, Vol. 14: Philosophy of Linguistics, pp.
271–323, Elsevier BV. General editors: Dov M. Gabbay, Paul
Thagard and John Woods.

Cooper, Robin (in prep) From perception to communication: An
analysis of meaning and action using a theory of types with
records (TTR). Draft available from https://sites.google.

com/site/typetheorywithrecords/drafts.

1 / 3

https://sites.google.com/site/typetheorywithrecords
https://sites.google.com/site/typetheorywithrecords/drafts
https://sites.google.com/site/typetheorywithrecords/drafts


Types and probability Implementing probabilistic TTR

Bibliography

Bibliography II

Cooper, Robin, Simon Dobnik, Shalom Lappin and Staffan Larsson
(2015) Probabilistic Type Theory and Natural Language
Semantics, Linguistic Issues in Language Technology, Vol. 10,
No. 4, pp. 1–45.

Cooper, Robin and Jonathan Ginzburg (2015) Type Theory with
Records for Natural Language Semantics, in S. Lappin and C.
Fox (eds.), The Handbook of Contemporary Semantic Theory,
second edition, pp. 375–407, Wiley-Blackwell.

Matsson, Arild (2018) Implementing perceptual semantics in Type
Theory with Records (TTR). Master’s thesis, University of
Gothenburg. Masters in Language Technology.

2 / 3



Types and probability Implementing probabilistic TTR

Bibliography

Bibliography III

Utescher, Ronja (2019) Visual TTR - Modelling Visual Question
Answering in Type Theory with Records, in Proceedings of the
13th International Conference on Computational Semantics -
Student Papers, pp. 9–14, Association for Computational
Linguistics, Gothenburg, Sweden.

3 / 3


	TTR and probabilistic TTR
	pyttr
	Moving to probabilistic pyttr
	Judging probabilities
	Querying probabilities
	Querying conditional probabilities
	Non-specific querying
	Meet types and join types
	Record types
	Conclusion
	Appendix
	Bibliography
	References


