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Introduction



Probabilistic semantics

In the last decade, lots of e�ort to connect formal semantics to
mathematically explicit models of pragmatic reasoning. . .

• Rational Speech Act (RSA) models to formalize Gricean
pragmatics (Goodman and Stuhlmüller, 2013; Lassiter and
Goodman, 2013; Goodman and Frank, 2016; Lassiter and
Goodman, 2017)

. . . generally, by dropping typed 𝜆-calculus and encoding meanings
in terms of probabilistic programming languages.

• Church (Goodman et al., 2008)

Such programming languages are o�en impure: they allow for
probabilistic e�ects, like sampling and marginalization, to occur at
any point in a program.
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Today’s talk

Goal: show how a probabilistic semantics for natural language can
be presented using only the simply typed 𝜆-calculus (with products).

• Achieve a seamless integration with approaches to meaning
based on higher-order logic.

End up with a characterization of meanings as probabilistic
programs, which are, nevertheless, pure (i.e., no real probabilistic
e�ects).

Such programs describe probability distributions over logical
meanings.
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Formal semantics



Logics and sets

Two strategies to formally interpret natural language, inherited
from Montague:

• direct: right into set theory

• denotations (entities, functions, etc.) are elements of sets

• indirect: into a formal logic, e.g., the simply-typed
𝜆-calculus/higher-order logic

4



Logics and sets

Two strategies to formally interpret natural language, inherited
from Montague:

• direct: right into set theory

• denotations (entities, functions, etc.) are elements of sets

• indirect: into a formal logic, e.g., the simply-typed
𝜆-calculus/higher-order logic

4



Logics and sets

Two strategies to formally interpret natural language, inherited
from Montague:

• direct: right into set theory
• denotations (entities, functions, etc.) are elements of sets

• indirect: into a formal logic, e.g., the simply-typed
𝜆-calculus/higher-order logic

4



Logics and sets

Two strategies to formally interpret natural language, inherited
from Montague:

• direct: right into set theory
• denotations (entities, functions, etc.) are elements of sets

• indirect: into a formal logic, e.g., the simply-typed
𝜆-calculus/higher-order logic

4



Indirect interpretation

(1) Someone is tall.

JsomeoneK = 𝜆k .∃x : human(x) ∧ k (x)
JisK = 𝜆x .x

JtallK = 𝜆x .height(x) ≥ 𝜃tall

Functional application and 𝛽-reduction:

• JsomeoneK(JisK(JtallK)) →𝛽 ∃x : human(x)∧height(x) ≥ 𝜃tall
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The traditional interpretation



A 𝜆-homomorphism

We call on a 𝜆-homomorphism to interpret this logical language into
a model. . .

LxM = x (variables)

L𝜆x .MM = 𝜆x .LMM (abstractions)

LMNM = LMMLNM (applications)

L〈M,N〉M = 〈LMM, LNM〉 (pairing)

LMiM = LMMi (projection)

L𝜃tallM = d (some real number)

LheightM = height (some function)

LhumanM = human (some property)

L(≥)M = (≥) (“less than or equal to”)

Etc. (�, logical constants)
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Composing L·M with J·K

If we compose the logical interpretation with the 𝜆-homomorphism:

• LJsomeone is tallKM = ∃x : human(x) ∧ height (x) ≥ d

• A truth value.
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The probabilistic interpretation



Contexts

Let us assume that the non-logical constants of the logical language
are finite in number and are ordered.

• (1) height : e → dtall (2) human : e → t
(3) (≥) : r → r → t (4) 𝜃tall : dtall

• A context (𝜅) is a tuple of type 𝛼1 × ... × 𝛼n, where 𝛼i is the type
of the ith constant.

• A context for this language would be of type
(e → dtall) × (e → t) × (r → r → t) × dtall .
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A 𝜆-homomorphism in a context

Given some context 𝜅:

LxM𝜅 = x (variables)

L𝜆x .MM𝜅 = 𝜆x .LMM𝜅 (abstractions)

LMNM𝜅 = LMM𝜅LNM𝜅 (applications)

L〈M,N〉M𝜅 = 〈LMM𝜅, LNM𝜅〉 (pairing)

LMiM𝜅 = LMM𝜅i (projection)

LciM𝜅 = 𝜅i (ci is the ith constant)

Etc. (�, logical constants)
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LciM𝜅 = 𝜅i (ci is the ith constant)

Etc. (�, logical constants)
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Composing L·M𝜅 with J·K

If we compose the logical interpretation with the 𝜆-homomorphism
in some context 𝜅:

• LJsomeone is tallKM𝜅 = ∃x : 𝜅2(x) ∧ 𝜅3(𝜅1(x)) (𝜅4)
• A truth value.

For example, say 𝜅 = 〈height, human, (≥), d〉:

• LJsomeone is tallKM𝜅 = ∃x : human(x) ∧ height (x) ≥ d

Goal: allow the context to be a random variable.
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Probabilistic programs



Definition

For any type 𝛼 , a function of type (𝛼 → r) → r returns values of
type 𝛼 .

• Consumes a projection function: some f of type 𝛼 → r .

• Results in an r , by summing/integrating f over the possible
values x of type 𝛼 , weighting each f (x) by the probability of x .

• E.g., N(𝜇, 𝜎) : (dtall → r) → r

• Represents a normal distribution with mean 𝜇 and standard
deviation 𝜎 .

• N(𝜇, 𝜎) (f ) =
∫ ∞
−∞ PDFN(𝜇,𝜎) (x) ∗ f (x)dx
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Some nice things about probabilistic programs (pt. 1)

You can turn any value (of any type 𝛼) into a trivial probabilistic
program that returns just that value:

𝜂 : 𝛼 → (𝛼 → r) → r (‘return’)

𝜂 (a) = 𝜆f .f (a)

E.g., 𝜂 (jp) = 𝜆f .f (jp):

• The probabilistic program that returns Jean-Philippe with a
probability of 1.
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Some nice things about probabilistic programs (pt. 2)

You can pass the value returned by a probabilistic program m to a
function k from values to probabilistic programs, in order to make a
bigger, sequenced probabilistic program.

(★) : ((𝛼 → r) → r) (‘bind’)

→ (𝛼 → (𝛽 → r) → r)
→ (𝛽 → r) → r

m★ k = 𝜆f .m(𝜆x .k (x) (f ))

“Run m, computing x . Then feed x to k."

13
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What this all means

Probabilistic programs form a monad.

14



Monads

Operators

𝜂 : 𝛼 → M𝛼

(★) : M𝛼 → (𝛼 → M𝛽) → M𝛽

Laws on terms

𝜂 (v) ★ k = k (v) (Le� Identity)

m★𝜂 = m (Right Identity)

(m★ n) ★ o = m★ (𝜆x .n(x) ★ o) (Associativity)
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The continuation monad

The monad formed by probabilistic programs is a version of the
continuation monad, i.e., where the result of the continuation is an r :

𝜂 : 𝛼 → (𝛼 → r) → r

𝜂 (a) = 𝜆f .f (a)

(★) : ((𝛼 → r) → r)
→ (𝛼 → (𝛽 → r) → r)
→ (𝛽 → r) → r

m★ k = 𝜆c.m(𝜆x .k (x) (c))

The continuations are just projection functions.
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Building probabilistic programs

We may now build probabilistic programs that return contexts.

• If a context is of type 𝛼1 × ... × 𝛼n, then we seek a probabilistic
program K of type (𝛼1 × ... × 𝛼n → r) → r .

• Then, for a sentence 𝜙 in the logical language, we may do:

K ★ 𝜆𝜅.𝜂 (L𝜙M𝜅) : (t → r) → r

17



Building probabilistic programs

We may now build probabilistic programs that return contexts.

• If a context is of type 𝛼1 × ... × 𝛼n, then we seek a probabilistic
program K of type (𝛼1 × ... × 𝛼n → r) → r .

• Then, for a sentence 𝜙 in the logical language, we may do:

K ★ 𝜆𝜅.𝜂 (L𝜙M𝜅) : (t → r) → r

17



Building probabilistic programs

We may now build probabilistic programs that return contexts.

• If a context is of type 𝛼1 × ... × 𝛼n, then we seek a probabilistic
program K of type (𝛼1 × ... × 𝛼n → r) → r .

• Then, for a sentence 𝜙 in the logical language, we may do:

K ★ 𝜆𝜅.𝜂 (L𝜙M𝜅) : (t → r) → r

17



Computing probabilities

Once we have a probabilistic program of type (t → r) → r , we may
compute a probability from it:

P : ((t → r) → r) → r

P (p) = p(1)
p(𝜆b.1)

• 1 : t → r is an indicator function:

• 1(>) = 1
• 1(⊥) = 0

• In the above, it picks out the mass assigned to >.
• 𝜆b.1 picks out the total mass (assigned to > and ⊥).
• So, P (p) is the probability that p returns >.

18
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An example

(1) Someone is tall.

Say our constants are:

1. height : e → dtall

2. human : e → t

3. (≥) : r → r → t

4. 𝜃tall : dtall

Define K as:

K = N(72, 3) ★ 𝜆d .𝜂 (height, human, (≥), d)
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An example (cont’d)

K ★ 𝜆𝜅.𝜂 (L∃x : human(x) ∧ height(x) ≥ 𝜃tallM𝜅)

= K ★ 𝜆𝜅.𝜂 (∃x : LhumanM𝜅 (x) ∧ L(≥)M𝜅 (LheightM𝜅 (x)) (L𝜃tallM𝜅))
= N(72, 3) ★ 𝜆d .𝜂 (∃x : human(x) ∧ height (x) ≥ d)
= 𝜆f .N(72, 3) (𝜆d .f (∃x : human(x) ∧ height (x) ≥ d))

Computing a probability:

N(72, 3) (𝜆d .1(∃x : human(x) ∧ height (x) ≥ d))
N (72, 3) (𝜆d .1)

= N(72, 3) (𝜆d .1(∃x : human(x) ∧ height (x) ≥ d))

Probability is the mass of N(72, 3) less than or equal to the height
of the tallest human.
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Bayesian inference



Observing a premise

observe : t → (� → r) → r

observe(𝜙) (f ) = 1(𝜙) ∗ f (�)

21



Semantic learning

Semantic learning is a ma�er of updating distributions over
contexts (i.e., probabilistic programs returning contexts).

• Given some initial distribution K0:

K1 = K0 ★ 𝜆𝜅.observe(𝜙1) ★ 𝜆�. ... observe(𝜙n) ★ 𝜆�.𝜂 (𝜅)
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Semantic learning: an example

Say we have the constants:

• c,m, a, v : e

• height : e → dtall
• (≥) : r → r → t

• 𝜃tall

Say we start out with the initial context:

K0 = N(68, 3) ★ 𝜆d .𝜂 (c,m, a, v, height, (≥), d)

Say we know:

height (c) = 65 height (m) = 67 height (a) = 72

Someone u�ers, “Camilla isn’t tall. Ma� isn’t tall. Anna is tall.”
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Semantic learning

K1 = K0

★ 𝜆𝜅.observe(L¬height(c) ≥ 𝜃tallM𝜅)
★ 𝜆�.observe(L¬height(m) ≥ 𝜃tallM𝜅)
★ 𝜆�.observe(Lheight(a) ≥ 𝜃tallM𝜅)
★ 𝜆�.𝜂 (𝜅)

= N(68, 3) (by Associativity and Le� Identity)

★ 𝜆d .observe(¬65 ≥ d)
★ 𝜆�.observe(¬67 ≥ d)
★ 𝜆�.observe(72 ≥ d)
★ 𝜆�.𝜂 (c,m, a, v, height, (≥), d)

We’ve pared down the distribution to the interval (67, 72].

24



Semantic learning

K1 = K0

★ 𝜆𝜅.observe(L¬height(c) ≥ 𝜃tallM𝜅)
★ 𝜆�.observe(L¬height(m) ≥ 𝜃tallM𝜅)
★ 𝜆�.observe(Lheight(a) ≥ 𝜃tallM𝜅)
★ 𝜆�.𝜂 (𝜅)

= N(68, 3) (by Associativity and Le� Identity)

★ 𝜆d .observe(¬65 ≥ d)
★ 𝜆�.observe(¬67 ≥ d)
★ 𝜆�.observe(72 ≥ d)
★ 𝜆�.𝜂 (c,m, a, v, height, (≥), d)

We’ve pared down the distribution to the interval (67, 72].

24



Semantic learning

K1 = K0

★ 𝜆𝜅.observe(L¬height(c) ≥ 𝜃tallM𝜅)
★ 𝜆�.observe(L¬height(m) ≥ 𝜃tallM𝜅)
★ 𝜆�.observe(Lheight(a) ≥ 𝜃tallM𝜅)
★ 𝜆�.𝜂 (𝜅)

= N(68, 3) (by Associativity and Le� Identity)

★ 𝜆d .observe(¬65 ≥ d)
★ 𝜆�.observe(¬67 ≥ d)
★ 𝜆�.observe(72 ≥ d)
★ 𝜆�.𝜂 (c,m, a, v, height, (≥), d)

We’ve pared down the distribution to the interval (67, 72].

24



Semantic learning

K1 = K0

★ 𝜆𝜅.observe(L¬height(c) ≥ 𝜃tallM𝜅)
★ 𝜆�.observe(L¬height(m) ≥ 𝜃tallM𝜅)
★ 𝜆�.observe(Lheight(a) ≥ 𝜃tallM𝜅)
★ 𝜆�.𝜂 (𝜅)

= N(68, 3) (by Associativity and Le� Identity)

★ 𝜆d .observe(¬65 ≥ d)
★ 𝜆�.observe(¬67 ≥ d)
★ 𝜆�.observe(72 ≥ d)
★ 𝜆�.𝜂 (c,m, a, v, height, (≥), d)

We’ve pared down the distribution to the interval (67, 72]. 24



Comparing K0 and K1

(2) Vlad is tall.

Say height (v) = 68.

Then:

K0(𝜆𝜅.1(Lheight(v) ≥ 𝜃tallM𝜅))
K0(𝜆𝜅.1)

= 0.5

K1(𝜆𝜅.1(Lheight(v) ≥ 𝜃tallM𝜅))
K1(𝜆𝜅.1)

≈ 0.24
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RSA

RSA models: a popular application of probabilistic semantics.

The
basic idea:

• The RSA framework models a pragmatic listener, L1. . .

• . . .who infers a distribution over meanings m from an u�erance
u, based on the probability that a pragmatic speaker, S1, would
make the u�erance u to convey m.

• Given a meaning m, the probability that S1 would make the
u�erance u to convey m is related to the probability that a
literal listener, L0, would infer m, given a literal interpretation
of u.
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RSA: Lassiter and Goodman (2013)

PL1 (h, dtall | ‘Vlad is tall’) ∝ PS1 (‘Vlad is tall’ | h, dtall) ∗ PL1 (h) (L1)

PS1 (u | h, dtall) ∝ (PL0 (h | u, dtall) ∗ e−C (u) )𝛼

(S1)

PL0 (h | u, dtall) = PL0 (h | JuKdtall = >)

(L0)
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RSA: more generally

PL1 (w, 𝜃 | u0) =
PS1 (u0 | w, 𝜃 ) ∗ PL1 (w, 𝜃 )∫

w′∈W

∫
𝜃 ′∈Θ PS1 (u0 | w ′, 𝜃 ′) ∗ PL1 (w ′, 𝜃 ′)d𝜃 ′dw ′

(L1)

PS1 (u | w, 𝜃 ) =
(PL0 (w | u, 𝜃 ) ∗ e−C (u) )𝛼

Σu′∈U (PL0 (w | u′, 𝜃 ) ∗ e−C (u′) )𝛼

(S1)

PL0 (w | u, 𝜃 ) = PL0 (w | JuK𝜃 = >)

(L0)
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Factoring by a weight

Recall observe:

observe : t → (� → r) → r

observe(𝜙) (f ) = 1(𝜙) ∗ f (�)

A useful generalization:

factor : r → (� → r) → r

factor (x) (f ) = x ∗ f (�)

29



Factoring by a weight

Recall observe:

observe : t → (� → r) → r

observe(𝜙) (f ) = 1(𝜙) ∗ f (�)

A useful generalization:

factor : r → (� → r) → r

factor (x) (f ) = x ∗ f (�)

29



Factoring by a weight

Recall observe:

observe : t → (� → r) → r

observe(𝜙) (f ) = 1(𝜙) ∗ f (�)

A useful generalization:

factor : r → (� → r) → r

factor (x) (f ) = x ∗ f (�)

29



Factoring by a weight

Recall observe:

observe : t → (� → r) → r

observe(𝜙) (f ) = 1(𝜙) ∗ f (�)

A useful generalization:

factor : r → (� → r) → r

factor (x) (f ) = x ∗ f (�)

29



Another preliminary

We would also like to be able to obtain a probability density
function from a distribution.

PDF( ·) : ((𝛼 → r) → r) → 𝛼 → r

The discrete case:

PDFp = 𝜆x .P (p★ 𝜆y .𝜂 (y = x))

The continuous case:

PDFp = 𝜆x .
d
dx

[P (p★ 𝜆y .𝜂 (y ≤ x))]
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RSA: implementation

• u: the type of u�erances
• 𝜎 : the type of world states (sampled from a priorW )
• 𝜋 : the type of linguistic parameters (sampled from a prior Θ)

L1 : u → (𝜎 × 𝜋 → r) → r

L1(u0) = W ★ 𝜆w .Θ★ 𝜆𝜃 .factor (PDFS1 (w,𝜃 ) (u0)) ★ 𝜆�.𝜂 (w, 𝜃 )

S1 : 𝜎 × 𝜋 → (u → r) → r

S1(w, 𝜃 ) = U ★ 𝜆u.factor (PDFL0 (u,𝜃 ) (w) ∗ e−C (u) )𝛼 ★ 𝜆�.𝜂 (u)

L0 : u × 𝜋 → (𝜎 → r) → r

L0(u, 𝜃 ) = W ★ 𝜆w .observe(LuM〈w,𝜃 〉) ★ 𝜆�.𝜂 (w)

Note the di�erent types of L0 and L1.
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RSA: a revised version

This can be improved!

Using contexts!

• The types of L0 and L1 can be made the same.
• Doing so allows distributions over world states and linguistic
parameters to be merged into one over contexts.

• Say the type of the context is some 𝜅 = 𝛼1 × ... × 𝛼n. . .

L1 : u → (𝜅 → r) → r

L1(u) = K ★ 𝜆𝜅.factor (PDFS1 (𝜅) (u)) ★ 𝜆�.𝜂 (𝜅)

S1 : 𝜅 → (u → r) → r

S1(𝜅) = U∗ ★ 𝜆u.factor (PDFL0 (u) (𝜅)𝛼 ) ★ 𝜆�.𝜂 (u)

L0 : u → (𝜅 → r) → r

L0(u) = K ★ 𝜆𝜅.observe(LuM𝜅) ★ 𝜆�.𝜂 (𝜅)
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Conclusion



Summing up

It is possible to have probabilistic semantics for natural language
that relies on the same machinery as used for logical
interpretations:

• typed 𝜆-calculus
• functional application

This semantics allows one to characterize:

• probability distributions over possible denotations
• probabilities for formulae (given some distribution over
contexts)

• Bayesian update (or marginalization)
• semantic learning, RSA models

. . . using the same logical language one uses to characterize
linguistic meanings.
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