
Probabilistic compositional semantics, purely

Julian Grove and Jean-Philippe Bernardy

CLASP Seminar, November 10, 2021

CLASP, University of Gothenburg

Outline

Introduction

Formal semantics

The traditional interpretation

The probabilistic interpretation

Probabilistic programs

Bayesian inference

Conclusion

1

Introduction

Probabilistic semantics

In the last decade, lots of e�ort to connect formal semantics to
mathematically explicit models of pragmatic reasoning. . .

• Rational Speech Act (RSA) models to formalize Gricean
pragmatics (Goodman and Stuhlmüller, 2013; Lassiter and
Goodman, 2013; Goodman and Frank, 2016; Lassiter and
Goodman, 2017)

. . . generally, by dropping typed 𝜆-calculus and encoding meanings
in terms of probabilistic programming languages.

• Church (Goodman et al., 2008)

Such programming languages are o�en impure: they allow for
probabilistic e�ects, like sampling and marginalization, to occur at
any point in a program.

2

Probabilistic semantics

In the last decade, lots of e�ort to connect formal semantics to
mathematically explicit models of pragmatic reasoning. . .

• Rational Speech Act (RSA) models to formalize Gricean
pragmatics (Goodman and Stuhlmüller, 2013; Lassiter and
Goodman, 2013; Goodman and Frank, 2016; Lassiter and
Goodman, 2017)

. . . generally, by dropping typed 𝜆-calculus and encoding meanings
in terms of probabilistic programming languages.

• Church (Goodman et al., 2008)

Such programming languages are o�en impure: they allow for
probabilistic e�ects, like sampling and marginalization, to occur at
any point in a program.

2

Probabilistic semantics

In the last decade, lots of e�ort to connect formal semantics to
mathematically explicit models of pragmatic reasoning. . .

• Rational Speech Act (RSA) models to formalize Gricean
pragmatics (Goodman and Stuhlmüller, 2013; Lassiter and
Goodman, 2013; Goodman and Frank, 2016; Lassiter and
Goodman, 2017)

. . . generally, by dropping typed 𝜆-calculus and encoding meanings
in terms of probabilistic programming languages.

• Church (Goodman et al., 2008)

Such programming languages are o�en impure: they allow for
probabilistic e�ects, like sampling and marginalization, to occur at
any point in a program.

2

Probabilistic semantics

In the last decade, lots of e�ort to connect formal semantics to
mathematically explicit models of pragmatic reasoning. . .

• Rational Speech Act (RSA) models to formalize Gricean
pragmatics (Goodman and Stuhlmüller, 2013; Lassiter and
Goodman, 2013; Goodman and Frank, 2016; Lassiter and
Goodman, 2017)

. . . generally, by dropping typed 𝜆-calculus and encoding meanings
in terms of probabilistic programming languages.

• Church (Goodman et al., 2008)

Such programming languages are o�en impure: they allow for
probabilistic e�ects, like sampling and marginalization, to occur at
any point in a program.

2

Probabilistic semantics

In the last decade, lots of e�ort to connect formal semantics to
mathematically explicit models of pragmatic reasoning. . .

• Rational Speech Act (RSA) models to formalize Gricean
pragmatics (Goodman and Stuhlmüller, 2013; Lassiter and
Goodman, 2013; Goodman and Frank, 2016; Lassiter and
Goodman, 2017)

. . . generally, by dropping typed 𝜆-calculus and encoding meanings
in terms of probabilistic programming languages.

• Church (Goodman et al., 2008)

Such programming languages are o�en impure: they allow for
probabilistic e�ects, like sampling and marginalization, to occur at
any point in a program.

2

Probabilistic semantics

In the last decade, lots of e�ort to connect formal semantics to
mathematically explicit models of pragmatic reasoning. . .

• Rational Speech Act (RSA) models to formalize Gricean
pragmatics (Goodman and Stuhlmüller, 2013; Lassiter and
Goodman, 2013; Goodman and Frank, 2016; Lassiter and
Goodman, 2017)

. . . generally, by dropping typed 𝜆-calculus and encoding meanings
in terms of probabilistic programming languages.

• Church (Goodman et al., 2008)

Such programming languages are o�en impure: they allow for
probabilistic e�ects, like sampling and marginalization, to occur at
any point in a program.

2

Probabilistic semantics

In the last decade, lots of e�ort to connect formal semantics to
mathematically explicit models of pragmatic reasoning. . .

• Rational Speech Act (RSA) models to formalize Gricean
pragmatics (Goodman and Stuhlmüller, 2013; Lassiter and
Goodman, 2013; Goodman and Frank, 2016; Lassiter and
Goodman, 2017)

. . . generally, by dropping typed 𝜆-calculus and encoding meanings
in terms of probabilistic programming languages.

• Church (Goodman et al., 2008)

Such programming languages are o�en impure: they allow for
probabilistic e�ects, like sampling and marginalization, to occur at
any point in a program.

2

Today’s talk

Goal: show how a probabilistic semantics for natural language can
be presented using only the simply typed 𝜆-calculus (with products).

• Achieve a seamless integration with approaches to meaning
based on higher-order logic.

End up with a characterization of meanings as probabilistic
programs, which are, nevertheless, pure (i.e., no real probabilistic
e�ects).

Such programs describe probability distributions over logical
meanings.

3

Today’s talk

Goal: show how a probabilistic semantics for natural language can
be presented using only the simply typed 𝜆-calculus (with products).

• Achieve a seamless integration with approaches to meaning
based on higher-order logic.

End up with a characterization of meanings as probabilistic
programs, which are, nevertheless, pure (i.e., no real probabilistic
e�ects).

Such programs describe probability distributions over logical
meanings.

3

Today’s talk

Goal: show how a probabilistic semantics for natural language can
be presented using only the simply typed 𝜆-calculus (with products).

• Achieve a seamless integration with approaches to meaning
based on higher-order logic.

End up with a characterization of meanings as probabilistic
programs, which are, nevertheless, pure (i.e., no real probabilistic
e�ects).

Such programs describe probability distributions over logical
meanings.

3

Today’s talk

Goal: show how a probabilistic semantics for natural language can
be presented using only the simply typed 𝜆-calculus (with products).

• Achieve a seamless integration with approaches to meaning
based on higher-order logic.

End up with a characterization of meanings as probabilistic
programs, which are, nevertheless, pure (i.e., no real probabilistic
e�ects).

Such programs describe probability distributions over logical
meanings.

3

Today’s talk

Goal: show how a probabilistic semantics for natural language can
be presented using only the simply typed 𝜆-calculus (with products).

• Achieve a seamless integration with approaches to meaning
based on higher-order logic.

End up with a characterization of meanings as probabilistic
programs, which are, nevertheless, pure (i.e., no real probabilistic
e�ects).

Such programs describe probability distributions over logical
meanings.

3

Formal semantics

Logics and sets

Two strategies to formally interpret natural language, inherited
from Montague:

• direct: right into set theory

• denotations (entities, functions, etc.) are elements of sets

• indirect: into a formal logic, e.g., the simply-typed
𝜆-calculus/higher-order logic

4

Logics and sets

Two strategies to formally interpret natural language, inherited
from Montague:

• direct: right into set theory

• denotations (entities, functions, etc.) are elements of sets

• indirect: into a formal logic, e.g., the simply-typed
𝜆-calculus/higher-order logic

4

Logics and sets

Two strategies to formally interpret natural language, inherited
from Montague:

• direct: right into set theory
• denotations (entities, functions, etc.) are elements of sets

• indirect: into a formal logic, e.g., the simply-typed
𝜆-calculus/higher-order logic

4

Logics and sets

Two strategies to formally interpret natural language, inherited
from Montague:

• direct: right into set theory
• denotations (entities, functions, etc.) are elements of sets

• indirect: into a formal logic, e.g., the simply-typed
𝜆-calculus/higher-order logic

4

Indirect interpretation

(1) Someone is tall.

JsomeoneK = 𝜆k .∃x : human(x) ∧ k (x)
JisK = 𝜆x .x

JtallK = 𝜆x .height(x) ≥ 𝜃tall

Functional application and 𝛽-reduction:

• JsomeoneK(JisK(JtallK)) →𝛽 ∃x : human(x)∧height(x) ≥ 𝜃tall

5

Indirect interpretation

(1) Someone is tall.

JsomeoneK = 𝜆k .∃x : human(x) ∧ k (x)

JisK = 𝜆x .x

JtallK = 𝜆x .height(x) ≥ 𝜃tall

Functional application and 𝛽-reduction:

• JsomeoneK(JisK(JtallK)) →𝛽 ∃x : human(x)∧height(x) ≥ 𝜃tall

5

Indirect interpretation

(1) Someone is tall.

JsomeoneK = 𝜆k .∃x : human(x) ∧ k (x)
JisK = 𝜆x .x

JtallK = 𝜆x .height(x) ≥ 𝜃tall

Functional application and 𝛽-reduction:

• JsomeoneK(JisK(JtallK)) →𝛽 ∃x : human(x)∧height(x) ≥ 𝜃tall

5

Indirect interpretation

(1) Someone is tall.

JsomeoneK = 𝜆k .∃x : human(x) ∧ k (x)
JisK = 𝜆x .x

JtallK = 𝜆x .height(x) ≥ 𝜃tall

Functional application and 𝛽-reduction:

• JsomeoneK(JisK(JtallK)) →𝛽 ∃x : human(x)∧height(x) ≥ 𝜃tall

5

Indirect interpretation

(1) Someone is tall.

JsomeoneK = 𝜆k .∃x : human(x) ∧ k (x)
JisK = 𝜆x .x

JtallK = 𝜆x .height(x) ≥ 𝜃tall

Functional application and 𝛽-reduction:

• JsomeoneK(JisK(JtallK)) →𝛽 ∃x : human(x)∧height(x) ≥ 𝜃tall

5

Indirect interpretation

(1) Someone is tall.

JsomeoneK = 𝜆k .∃x : human(x) ∧ k (x)
JisK = 𝜆x .x

JtallK = 𝜆x .height(x) ≥ 𝜃tall

Functional application and 𝛽-reduction:

• JsomeoneK(JisK(JtallK)) →𝛽 ∃x : human(x)∧height(x) ≥ 𝜃tall

5

Indirect interpretation

(1) Someone is tall.

JsomeoneK = 𝜆k .∃x : human(x) ∧ k (x)
JisK = 𝜆x .x

JtallK = 𝜆x .height(x) ≥ 𝜃tall

Functional application and 𝛽-reduction:

• JsomeoneK(JisK(JtallK)) →𝛽 ∃x : human(x)∧height(x) ≥ 𝜃tall

5

The traditional interpretation

A 𝜆-homomorphism

We call on a 𝜆-homomorphism to interpret this logical language into
a model. . .

LxM = x (variables)

L𝜆x .MM = 𝜆x .LMM (abstractions)

LMNM = LMMLNM (applications)

L〈M,N〉M = 〈LMM, LNM〉 (pairing)

LMiM = LMMi (projection)

L𝜃tallM = d (some real number)

LheightM = height (some function)

LhumanM = human (some property)

L(≥)M = (≥) (“less than or equal to”)

Etc. (�, logical constants)

6

A 𝜆-homomorphism

We call on a 𝜆-homomorphism to interpret this logical language into
a model. . .

LxM = x (variables)

L𝜆x .MM = 𝜆x .LMM (abstractions)

LMNM = LMMLNM (applications)

L〈M,N〉M = 〈LMM, LNM〉 (pairing)

LMiM = LMMi (projection)

L𝜃tallM = d (some real number)

LheightM = height (some function)

LhumanM = human (some property)

L(≥)M = (≥) (“less than or equal to”)

Etc. (�, logical constants)

6

A 𝜆-homomorphism

We call on a 𝜆-homomorphism to interpret this logical language into
a model. . .

LxM = x (variables)

L𝜆x .MM = 𝜆x .LMM (abstractions)

LMNM = LMMLNM (applications)

L〈M,N〉M = 〈LMM, LNM〉 (pairing)

LMiM = LMMi (projection)

L𝜃tallM = d (some real number)

LheightM = height (some function)

LhumanM = human (some property)

L(≥)M = (≥) (“less than or equal to”)

Etc. (�, logical constants)

6

A 𝜆-homomorphism

We call on a 𝜆-homomorphism to interpret this logical language into
a model. . .

LxM = x (variables)

L𝜆x .MM = 𝜆x .LMM (abstractions)

LMNM = LMMLNM (applications)

L〈M,N〉M = 〈LMM, LNM〉 (pairing)

LMiM = LMMi (projection)

L𝜃tallM = d (some real number)

LheightM = height (some function)

LhumanM = human (some property)

L(≥)M = (≥) (“less than or equal to”)

Etc. (�, logical constants)

6

A 𝜆-homomorphism

We call on a 𝜆-homomorphism to interpret this logical language into
a model. . .

LxM = x (variables)

L𝜆x .MM = 𝜆x .LMM (abstractions)

LMNM = LMMLNM (applications)

L〈M,N〉M = 〈LMM, LNM〉 (pairing)

LMiM = LMMi (projection)

L𝜃tallM = d (some real number)

LheightM = height (some function)

LhumanM = human (some property)

L(≥)M = (≥) (“less than or equal to”)

Etc. (�, logical constants)

6

A 𝜆-homomorphism

We call on a 𝜆-homomorphism to interpret this logical language into
a model. . .

LxM = x (variables)

L𝜆x .MM = 𝜆x .LMM (abstractions)

LMNM = LMMLNM (applications)

L〈M,N〉M = 〈LMM, LNM〉 (pairing)

LMiM = LMMi (projection)

L𝜃tallM = d (some real number)

LheightM = height (some function)

LhumanM = human (some property)

L(≥)M = (≥) (“less than or equal to”)

Etc. (�, logical constants)

6

A 𝜆-homomorphism

We call on a 𝜆-homomorphism to interpret this logical language into
a model. . .

LxM = x (variables)

L𝜆x .MM = 𝜆x .LMM (abstractions)

LMNM = LMMLNM (applications)

L〈M,N〉M = 〈LMM, LNM〉 (pairing)

LMiM = LMMi (projection)

L𝜃tallM = d (some real number)

LheightM = height (some function)

LhumanM = human (some property)

L(≥)M = (≥) (“less than or equal to”)

Etc. (�, logical constants)

6

A 𝜆-homomorphism

We call on a 𝜆-homomorphism to interpret this logical language into
a model. . .

LxM = x (variables)

L𝜆x .MM = 𝜆x .LMM (abstractions)

LMNM = LMMLNM (applications)

L〈M,N〉M = 〈LMM, LNM〉 (pairing)

LMiM = LMMi (projection)

L𝜃tallM = d (some real number)

LheightM = height (some function)

LhumanM = human (some property)

L(≥)M = (≥) (“less than or equal to”)

Etc. (�, logical constants)

6

A 𝜆-homomorphism

We call on a 𝜆-homomorphism to interpret this logical language into
a model. . .

LxM = x (variables)

L𝜆x .MM = 𝜆x .LMM (abstractions)

LMNM = LMMLNM (applications)

L〈M,N〉M = 〈LMM, LNM〉 (pairing)

LMiM = LMMi (projection)

L𝜃tallM = d (some real number)

LheightM = height (some function)

LhumanM = human (some property)

L(≥)M = (≥) (“less than or equal to”)

Etc. (�, logical constants)

6

A 𝜆-homomorphism

We call on a 𝜆-homomorphism to interpret this logical language into
a model. . .

LxM = x (variables)

L𝜆x .MM = 𝜆x .LMM (abstractions)

LMNM = LMMLNM (applications)

L〈M,N〉M = 〈LMM, LNM〉 (pairing)

LMiM = LMMi (projection)

L𝜃tallM = d (some real number)

LheightM = height (some function)

LhumanM = human (some property)

L(≥)M = (≥) (“less than or equal to”)

Etc. (�, logical constants)

6

A 𝜆-homomorphism

We call on a 𝜆-homomorphism to interpret this logical language into
a model. . .

LxM = x (variables)

L𝜆x .MM = 𝜆x .LMM (abstractions)

LMNM = LMMLNM (applications)

L〈M,N〉M = 〈LMM, LNM〉 (pairing)

LMiM = LMMi (projection)

L𝜃tallM = d (some real number)

LheightM = height (some function)

LhumanM = human (some property)

L(≥)M = (≥) (“less than or equal to”)

Etc. (�, logical constants)

6

A 𝜆-homomorphism

We call on a 𝜆-homomorphism to interpret this logical language into
a model. . .

LxM = x (variables)

L𝜆x .MM = 𝜆x .LMM (abstractions)

LMNM = LMMLNM (applications)

L〈M,N〉M = 〈LMM, LNM〉 (pairing)

LMiM = LMMi (projection)

L𝜃tallM = d (some real number)

LheightM = height (some function)

LhumanM = human (some property)

L(≥)M = (≥) (“less than or equal to”)

Etc. (�, logical constants)
6

Composing L·M with J·K

If we compose the logical interpretation with the 𝜆-homomorphism:

• LJsomeone is tallKM = ∃x : human(x) ∧ height (x) ≥ d

• A truth value.

7

Composing L·M with J·K

If we compose the logical interpretation with the 𝜆-homomorphism:

• LJsomeone is tallKM = ∃x : human(x) ∧ height (x) ≥ d

• A truth value.

7

Composing L·M with J·K

If we compose the logical interpretation with the 𝜆-homomorphism:

• LJsomeone is tallKM = ∃x : human(x) ∧ height (x) ≥ d

• A truth value.

7

The probabilistic interpretation

Contexts

Let us assume that the non-logical constants of the logical language
are finite in number and are ordered.

• (1) height : e → dtall (2) human : e → t
(3) (≥) : r → r → t (4) 𝜃tall : dtall

• A context (𝜅) is a tuple of type 𝛼1 × ... × 𝛼n, where 𝛼i is the type
of the ith constant.

• A context for this language would be of type
(e → dtall) × (e → t) × (r → r → t) × dtall .

8

Contexts

Let us assume that the non-logical constants of the logical language
are finite in number and are ordered.

• (1) height : e → dtall (2) human : e → t
(3) (≥) : r → r → t (4) 𝜃tall : dtall

• A context (𝜅) is a tuple of type 𝛼1 × ... × 𝛼n, where 𝛼i is the type
of the ith constant.

• A context for this language would be of type
(e → dtall) × (e → t) × (r → r → t) × dtall .

8

Contexts

Let us assume that the non-logical constants of the logical language
are finite in number and are ordered.

• (1) height : e → dtall (2) human : e → t
(3) (≥) : r → r → t (4) 𝜃tall : dtall

• A context (𝜅) is a tuple of type 𝛼1 × ... × 𝛼n, where 𝛼i is the type
of the ith constant.

• A context for this language would be of type
(e → dtall) × (e → t) × (r → r → t) × dtall .

8

Contexts

Let us assume that the non-logical constants of the logical language
are finite in number and are ordered.

• (1) height : e → dtall (2) human : e → t
(3) (≥) : r → r → t (4) 𝜃tall : dtall

• A context (𝜅) is a tuple of type 𝛼1 × ... × 𝛼n, where 𝛼i is the type
of the ith constant.

• A context for this language would be of type
(e → dtall) × (e → t) × (r → r → t) × dtall .

8

A 𝜆-homomorphism in a context

Given some context 𝜅:

LxM𝜅 = x (variables)

L𝜆x .MM𝜅 = 𝜆x .LMM𝜅 (abstractions)

LMNM𝜅 = LMM𝜅LNM𝜅 (applications)

L〈M,N〉M𝜅 = 〈LMM𝜅, LNM𝜅〉 (pairing)

LMiM𝜅 = LMM𝜅i (projection)

LciM𝜅 = 𝜅i (ci is the ith constant)

Etc. (�, logical constants)

9

A 𝜆-homomorphism in a context

Given some context 𝜅:

LxM𝜅 = x (variables)

L𝜆x .MM𝜅 = 𝜆x .LMM𝜅 (abstractions)

LMNM𝜅 = LMM𝜅LNM𝜅 (applications)

L〈M,N〉M𝜅 = 〈LMM𝜅, LNM𝜅〉 (pairing)

LMiM𝜅 = LMM𝜅i (projection)

LciM𝜅 = 𝜅i (ci is the ith constant)

Etc. (�, logical constants)

9

A 𝜆-homomorphism in a context

Given some context 𝜅:

LxM𝜅 = x (variables)

L𝜆x .MM𝜅 = 𝜆x .LMM𝜅 (abstractions)

LMNM𝜅 = LMM𝜅LNM𝜅 (applications)

L〈M,N〉M𝜅 = 〈LMM𝜅, LNM𝜅〉 (pairing)

LMiM𝜅 = LMM𝜅i (projection)

LciM𝜅 = 𝜅i (ci is the ith constant)

Etc. (�, logical constants)

9

A 𝜆-homomorphism in a context

Given some context 𝜅:

LxM𝜅 = x (variables)

L𝜆x .MM𝜅 = 𝜆x .LMM𝜅 (abstractions)

LMNM𝜅 = LMM𝜅LNM𝜅 (applications)

L〈M,N〉M𝜅 = 〈LMM𝜅, LNM𝜅〉 (pairing)

LMiM𝜅 = LMM𝜅i (projection)

LciM𝜅 = 𝜅i (ci is the ith constant)

Etc. (�, logical constants)

9

A 𝜆-homomorphism in a context

Given some context 𝜅:

LxM𝜅 = x (variables)

L𝜆x .MM𝜅 = 𝜆x .LMM𝜅 (abstractions)

LMNM𝜅 = LMM𝜅LNM𝜅 (applications)

L〈M,N〉M𝜅 = 〈LMM𝜅, LNM𝜅〉 (pairing)

LMiM𝜅 = LMM𝜅i (projection)

LciM𝜅 = 𝜅i (ci is the ith constant)

Etc. (�, logical constants)

9

A 𝜆-homomorphism in a context

Given some context 𝜅:

LxM𝜅 = x (variables)

L𝜆x .MM𝜅 = 𝜆x .LMM𝜅 (abstractions)

LMNM𝜅 = LMM𝜅LNM𝜅 (applications)

L〈M,N〉M𝜅 = 〈LMM𝜅, LNM𝜅〉 (pairing)

LMiM𝜅 = LMM𝜅i (projection)

LciM𝜅 = 𝜅i (ci is the ith constant)

Etc. (�, logical constants)

9

A 𝜆-homomorphism in a context

Given some context 𝜅:

LxM𝜅 = x (variables)

L𝜆x .MM𝜅 = 𝜆x .LMM𝜅 (abstractions)

LMNM𝜅 = LMM𝜅LNM𝜅 (applications)

L〈M,N〉M𝜅 = 〈LMM𝜅, LNM𝜅〉 (pairing)

LMiM𝜅 = LMM𝜅i (projection)

LciM𝜅 = 𝜅i (ci is the ith constant)

Etc. (�, logical constants)

9

A 𝜆-homomorphism in a context

Given some context 𝜅:

LxM𝜅 = x (variables)

L𝜆x .MM𝜅 = 𝜆x .LMM𝜅 (abstractions)

LMNM𝜅 = LMM𝜅LNM𝜅 (applications)

L〈M,N〉M𝜅 = 〈LMM𝜅, LNM𝜅〉 (pairing)

LMiM𝜅 = LMM𝜅i (projection)

LciM𝜅 = 𝜅i (ci is the ith constant)

Etc. (�, logical constants)

9

A 𝜆-homomorphism in a context

Given some context 𝜅:

LxM𝜅 = x (variables)

L𝜆x .MM𝜅 = 𝜆x .LMM𝜅 (abstractions)

LMNM𝜅 = LMM𝜅LNM𝜅 (applications)

L〈M,N〉M𝜅 = 〈LMM𝜅, LNM𝜅〉 (pairing)

LMiM𝜅 = LMM𝜅i (projection)

LciM𝜅 = 𝜅i (ci is the ith constant)

Etc. (�, logical constants)

9

Composing L·M𝜅 with J·K

If we compose the logical interpretation with the 𝜆-homomorphism
in some context 𝜅:

• LJsomeone is tallKM𝜅 = ∃x : 𝜅2(x) ∧ 𝜅3(𝜅1(x)) (𝜅4)
• A truth value.

For example, say 𝜅 = 〈height, human, (≥), d〉:

• LJsomeone is tallKM𝜅 = ∃x : human(x) ∧ height (x) ≥ d

Goal: allow the context to be a random variable.

10

Composing L·M𝜅 with J·K

If we compose the logical interpretation with the 𝜆-homomorphism
in some context 𝜅:

• LJsomeone is tallKM𝜅 = ∃x : 𝜅2(x) ∧ 𝜅3(𝜅1(x)) (𝜅4)

• A truth value.

For example, say 𝜅 = 〈height, human, (≥), d〉:

• LJsomeone is tallKM𝜅 = ∃x : human(x) ∧ height (x) ≥ d

Goal: allow the context to be a random variable.

10

Composing L·M𝜅 with J·K

If we compose the logical interpretation with the 𝜆-homomorphism
in some context 𝜅:

• LJsomeone is tallKM𝜅 = ∃x : 𝜅2(x) ∧ 𝜅3(𝜅1(x)) (𝜅4)
• A truth value.

For example, say 𝜅 = 〈height, human, (≥), d〉:

• LJsomeone is tallKM𝜅 = ∃x : human(x) ∧ height (x) ≥ d

Goal: allow the context to be a random variable.

10

Composing L·M𝜅 with J·K

If we compose the logical interpretation with the 𝜆-homomorphism
in some context 𝜅:

• LJsomeone is tallKM𝜅 = ∃x : 𝜅2(x) ∧ 𝜅3(𝜅1(x)) (𝜅4)
• A truth value.

For example, say 𝜅 = 〈height, human, (≥), d〉:

• LJsomeone is tallKM𝜅 = ∃x : human(x) ∧ height (x) ≥ d

Goal: allow the context to be a random variable.

10

Composing L·M𝜅 with J·K

If we compose the logical interpretation with the 𝜆-homomorphism
in some context 𝜅:

• LJsomeone is tallKM𝜅 = ∃x : 𝜅2(x) ∧ 𝜅3(𝜅1(x)) (𝜅4)
• A truth value.

For example, say 𝜅 = 〈height, human, (≥), d〉:

• LJsomeone is tallKM𝜅 = ∃x : human(x) ∧ height (x) ≥ d

Goal: allow the context to be a random variable.

10

Composing L·M𝜅 with J·K

If we compose the logical interpretation with the 𝜆-homomorphism
in some context 𝜅:

• LJsomeone is tallKM𝜅 = ∃x : 𝜅2(x) ∧ 𝜅3(𝜅1(x)) (𝜅4)
• A truth value.

For example, say 𝜅 = 〈height, human, (≥), d〉:

• LJsomeone is tallKM𝜅 = ∃x : human(x) ∧ height (x) ≥ d

Goal: allow the context to be a random variable.

10

Composing L·M𝜅 with J·K

If we compose the logical interpretation with the 𝜆-homomorphism
in some context 𝜅:

• LJsomeone is tallKM𝜅 = ∃x : 𝜅2(x) ∧ 𝜅3(𝜅1(x)) (𝜅4)
• A truth value.

For example, say 𝜅 = 〈height, human, (≥), d〉:

• LJsomeone is tallKM𝜅 = ∃x : human(x) ∧ height (x) ≥ d

Goal: allow the context to be a random variable.

10

Composing L·M𝜅 with J·K

If we compose the logical interpretation with the 𝜆-homomorphism
in some context 𝜅:

• LJsomeone is tallKM𝜅 = ∃x : 𝜅2(x) ∧ 𝜅3(𝜅1(x)) (𝜅4)
• A truth value.

For example, say 𝜅 = 〈height, human, (≥), d〉:

• LJsomeone is tallKM𝜅 = ∃x : human(x) ∧ height (x) ≥ d

Goal: allow the context to be a random variable.

10

Probabilistic programs

Definition

For any type 𝛼 , a function of type (𝛼 → r) → r returns values of
type 𝛼 .

• Consumes a projection function: some f of type 𝛼 → r .

• Results in an r , by summing/integrating f over the possible
values x of type 𝛼 , weighting each f (x) by the probability of x .

• E.g., N(𝜇, 𝜎) : (dtall → r) → r

• Represents a normal distribution with mean 𝜇 and standard
deviation 𝜎 .

• N(𝜇, 𝜎) (f) =
∫ ∞
−∞ PDFN(𝜇,𝜎) (x) ∗ f (x)dx

11

Definition

For any type 𝛼 , a function of type (𝛼 → r) → r returns values of
type 𝛼 .

• Consumes a projection function: some f of type 𝛼 → r .

• Results in an r , by summing/integrating f over the possible
values x of type 𝛼 , weighting each f (x) by the probability of x .

• E.g., N(𝜇, 𝜎) : (dtall → r) → r

• Represents a normal distribution with mean 𝜇 and standard
deviation 𝜎 .

• N(𝜇, 𝜎) (f) =
∫ ∞
−∞ PDFN(𝜇,𝜎) (x) ∗ f (x)dx

11

Definition

For any type 𝛼 , a function of type (𝛼 → r) → r returns values of
type 𝛼 .

• Consumes a projection function: some f of type 𝛼 → r .

• Results in an r , by summing/integrating f over the possible
values x of type 𝛼 , weighting each f (x) by the probability of x .

• E.g., N(𝜇, 𝜎) : (dtall → r) → r

• Represents a normal distribution with mean 𝜇 and standard
deviation 𝜎 .

• N(𝜇, 𝜎) (f) =
∫ ∞
−∞ PDFN(𝜇,𝜎) (x) ∗ f (x)dx

11

Definition

For any type 𝛼 , a function of type (𝛼 → r) → r returns values of
type 𝛼 .

• Consumes a projection function: some f of type 𝛼 → r .

• Results in an r , by summing/integrating f over the possible
values x of type 𝛼 , weighting each f (x) by the probability of x .

• E.g., N(𝜇, 𝜎) : (dtall → r) → r

• Represents a normal distribution with mean 𝜇 and standard
deviation 𝜎 .

• N(𝜇, 𝜎) (f) =
∫ ∞
−∞ PDFN(𝜇,𝜎) (x) ∗ f (x)dx

11

Definition

For any type 𝛼 , a function of type (𝛼 → r) → r returns values of
type 𝛼 .

• Consumes a projection function: some f of type 𝛼 → r .

• Results in an r , by summing/integrating f over the possible
values x of type 𝛼 , weighting each f (x) by the probability of x .

• E.g., N(𝜇, 𝜎) : (dtall → r) → r

• Represents a normal distribution with mean 𝜇 and standard
deviation 𝜎 .

• N(𝜇, 𝜎) (f) =
∫ ∞
−∞ PDFN(𝜇,𝜎) (x) ∗ f (x)dx

11

Definition

For any type 𝛼 , a function of type (𝛼 → r) → r returns values of
type 𝛼 .

• Consumes a projection function: some f of type 𝛼 → r .

• Results in an r , by summing/integrating f over the possible
values x of type 𝛼 , weighting each f (x) by the probability of x .

• E.g., N(𝜇, 𝜎) : (dtall → r) → r

• Represents a normal distribution with mean 𝜇 and standard
deviation 𝜎 .

• N(𝜇, 𝜎) (f) =
∫ ∞
−∞ PDFN(𝜇,𝜎) (x) ∗ f (x)dx

11

Some nice things about probabilistic programs (pt. 1)

You can turn any value (of any type 𝛼) into a trivial probabilistic
program that returns just that value:

𝜂 : 𝛼 → (𝛼 → r) → r (‘return’)

𝜂 (a) = 𝜆f .f (a)

E.g., 𝜂 (jp) = 𝜆f .f (jp):

• The probabilistic program that returns Jean-Philippe with a
probability of 1.

12

Some nice things about probabilistic programs (pt. 1)

You can turn any value (of any type 𝛼) into a trivial probabilistic
program that returns just that value:

𝜂 : 𝛼 → (𝛼 → r) → r (‘return’)

𝜂 (a) = 𝜆f .f (a)

E.g., 𝜂 (jp) = 𝜆f .f (jp):

• The probabilistic program that returns Jean-Philippe with a
probability of 1.

12

Some nice things about probabilistic programs (pt. 1)

You can turn any value (of any type 𝛼) into a trivial probabilistic
program that returns just that value:

𝜂 : 𝛼 → (𝛼 → r) → r (‘return’)

𝜂 (a) = 𝜆f .f (a)

E.g., 𝜂 (jp) = 𝜆f .f (jp):

• The probabilistic program that returns Jean-Philippe with a
probability of 1.

12

Some nice things about probabilistic programs (pt. 1)

You can turn any value (of any type 𝛼) into a trivial probabilistic
program that returns just that value:

𝜂 : 𝛼 → (𝛼 → r) → r (‘return’)

𝜂 (a) = 𝜆f .f (a)

E.g., 𝜂 (jp) = 𝜆f .f (jp):

• The probabilistic program that returns Jean-Philippe with a
probability of 1.

12

Some nice things about probabilistic programs (pt. 2)

You can pass the value returned by a probabilistic program m to a
function k from values to probabilistic programs, in order to make a
bigger, sequenced probabilistic program.

(★) : ((𝛼 → r) → r) (‘bind’)

→ (𝛼 → (𝛽 → r) → r)
→ (𝛽 → r) → r

m★ k = 𝜆f .m(𝜆x .k (x) (f))

“Run m, computing x . Then feed x to k."

13

Some nice things about probabilistic programs (pt. 2)

You can pass the value returned by a probabilistic program m to a
function k from values to probabilistic programs, in order to make a
bigger, sequenced probabilistic program.

(★) : ((𝛼 → r) → r) (‘bind’)

→ (𝛼 → (𝛽 → r) → r)
→ (𝛽 → r) → r

m★ k = 𝜆f .m(𝜆x .k (x) (f))

“Run m, computing x . Then feed x to k."

13

Some nice things about probabilistic programs (pt. 2)

You can pass the value returned by a probabilistic program m to a
function k from values to probabilistic programs, in order to make a
bigger, sequenced probabilistic program.

(★) : ((𝛼 → r) → r) (‘bind’)

→ (𝛼 → (𝛽 → r) → r)
→ (𝛽 → r) → r

m★ k = 𝜆f .m(𝜆x .k (x) (f))

“Run m, computing x . Then feed x to k."

13

What this all means

Probabilistic programs form a monad.

14

Monads

Operators

𝜂 : 𝛼 → M𝛼

(★) : M𝛼 → (𝛼 → M𝛽) → M𝛽

Laws on terms

𝜂 (v) ★ k = k (v) (Le� Identity)

m★𝜂 = m (Right Identity)

(m★ n) ★ o = m★ (𝜆x .n(x) ★ o) (Associativity)

15

Monads

Operators

𝜂 : 𝛼 → M𝛼

(★) : M𝛼 → (𝛼 → M𝛽) → M𝛽

Laws on terms

𝜂 (v) ★ k = k (v) (Le� Identity)

m★𝜂 = m (Right Identity)

(m★ n) ★ o = m★ (𝜆x .n(x) ★ o) (Associativity)

15

The continuation monad

The monad formed by probabilistic programs is a version of the
continuation monad, i.e., where the result of the continuation is an r :

𝜂 : 𝛼 → (𝛼 → r) → r

𝜂 (a) = 𝜆f .f (a)

(★) : ((𝛼 → r) → r)
→ (𝛼 → (𝛽 → r) → r)
→ (𝛽 → r) → r

m★ k = 𝜆c.m(𝜆x .k (x) (c))

The continuations are just projection functions.

16

The continuation monad

The monad formed by probabilistic programs is a version of the
continuation monad, i.e., where the result of the continuation is an r :

𝜂 : 𝛼 → (𝛼 → r) → r

𝜂 (a) = 𝜆f .f (a)

(★) : ((𝛼 → r) → r)
→ (𝛼 → (𝛽 → r) → r)
→ (𝛽 → r) → r

m★ k = 𝜆c.m(𝜆x .k (x) (c))

The continuations are just projection functions.

16

Building probabilistic programs

We may now build probabilistic programs that return contexts.

• If a context is of type 𝛼1 × ... × 𝛼n, then we seek a probabilistic
program K of type (𝛼1 × ... × 𝛼n → r) → r .

• Then, for a sentence 𝜙 in the logical language, we may do:

K ★ 𝜆𝜅.𝜂 (L𝜙M𝜅) : (t → r) → r

17

Building probabilistic programs

We may now build probabilistic programs that return contexts.

• If a context is of type 𝛼1 × ... × 𝛼n, then we seek a probabilistic
program K of type (𝛼1 × ... × 𝛼n → r) → r .

• Then, for a sentence 𝜙 in the logical language, we may do:

K ★ 𝜆𝜅.𝜂 (L𝜙M𝜅) : (t → r) → r

17

Building probabilistic programs

We may now build probabilistic programs that return contexts.

• If a context is of type 𝛼1 × ... × 𝛼n, then we seek a probabilistic
program K of type (𝛼1 × ... × 𝛼n → r) → r .

• Then, for a sentence 𝜙 in the logical language, we may do:

K ★ 𝜆𝜅.𝜂 (L𝜙M𝜅) : (t → r) → r

17

Computing probabilities

Once we have a probabilistic program of type (t → r) → r , we may
compute a probability from it:

P : ((t → r) → r) → r

P (p) = p(1)
p(𝜆b.1)

• 1 : t → r is an indicator function:

• 1(>) = 1
• 1(⊥) = 0

• In the above, it picks out the mass assigned to >.
• 𝜆b.1 picks out the total mass (assigned to > and ⊥).
• So, P (p) is the probability that p returns >.

18

Computing probabilities

Once we have a probabilistic program of type (t → r) → r , we may
compute a probability from it:

P : ((t → r) → r) → r

P (p) = p(1)
p(𝜆b.1)

• 1 : t → r is an indicator function:

• 1(>) = 1
• 1(⊥) = 0

• In the above, it picks out the mass assigned to >.
• 𝜆b.1 picks out the total mass (assigned to > and ⊥).
• So, P (p) is the probability that p returns >.

18

Computing probabilities

Once we have a probabilistic program of type (t → r) → r , we may
compute a probability from it:

P : ((t → r) → r) → r

P (p) = p(1)
p(𝜆b.1)

• 1 : t → r is an indicator function:

• 1(>) = 1
• 1(⊥) = 0

• In the above, it picks out the mass assigned to >.
• 𝜆b.1 picks out the total mass (assigned to > and ⊥).
• So, P (p) is the probability that p returns >.

18

Computing probabilities

Once we have a probabilistic program of type (t → r) → r , we may
compute a probability from it:

P : ((t → r) → r) → r

P (p) = p(1)
p(𝜆b.1)

• 1 : t → r is an indicator function:

• 1(>) = 1
• 1(⊥) = 0

• In the above, it picks out the mass assigned to >.
• 𝜆b.1 picks out the total mass (assigned to > and ⊥).
• So, P (p) is the probability that p returns >.

18

Computing probabilities

Once we have a probabilistic program of type (t → r) → r , we may
compute a probability from it:

P : ((t → r) → r) → r

P (p) = p(1)
p(𝜆b.1)

• 1 : t → r is an indicator function:

• 1(>) = 1
• 1(⊥) = 0

• In the above, it picks out the mass assigned to >.
• 𝜆b.1 picks out the total mass (assigned to > and ⊥).
• So, P (p) is the probability that p returns >.

18

Computing probabilities

Once we have a probabilistic program of type (t → r) → r , we may
compute a probability from it:

P : ((t → r) → r) → r

P (p) = p(1)
p(𝜆b.1)

• 1 : t → r is an indicator function:
• 1(>) = 1

• 1(⊥) = 0

• In the above, it picks out the mass assigned to >.
• 𝜆b.1 picks out the total mass (assigned to > and ⊥).
• So, P (p) is the probability that p returns >.

18

Computing probabilities

Once we have a probabilistic program of type (t → r) → r , we may
compute a probability from it:

P : ((t → r) → r) → r

P (p) = p(1)
p(𝜆b.1)

• 1 : t → r is an indicator function:
• 1(>) = 1
• 1(⊥) = 0

• In the above, it picks out the mass assigned to >.
• 𝜆b.1 picks out the total mass (assigned to > and ⊥).
• So, P (p) is the probability that p returns >.

18

Computing probabilities

Once we have a probabilistic program of type (t → r) → r , we may
compute a probability from it:

P : ((t → r) → r) → r

P (p) = p(1)
p(𝜆b.1)

• 1 : t → r is an indicator function:
• 1(>) = 1
• 1(⊥) = 0

• In the above, it picks out the mass assigned to >.

• 𝜆b.1 picks out the total mass (assigned to > and ⊥).
• So, P (p) is the probability that p returns >.

18

Computing probabilities

Once we have a probabilistic program of type (t → r) → r , we may
compute a probability from it:

P : ((t → r) → r) → r

P (p) = p(1)
p(𝜆b.1)

• 1 : t → r is an indicator function:
• 1(>) = 1
• 1(⊥) = 0

• In the above, it picks out the mass assigned to >.
• 𝜆b.1 picks out the total mass (assigned to > and ⊥).

• So, P (p) is the probability that p returns >.

18

Computing probabilities

Once we have a probabilistic program of type (t → r) → r , we may
compute a probability from it:

P : ((t → r) → r) → r

P (p) = p(1)
p(𝜆b.1)

• 1 : t → r is an indicator function:
• 1(>) = 1
• 1(⊥) = 0

• In the above, it picks out the mass assigned to >.
• 𝜆b.1 picks out the total mass (assigned to > and ⊥).
• So, P (p) is the probability that p returns >.

18

An example

(1) Someone is tall.

Say our constants are:

1. height : e → dtall

2. human : e → t

3. (≥) : r → r → t

4. 𝜃tall : dtall

Define K as:

K = N(72, 3) ★ 𝜆d .𝜂 (height, human, (≥), d)

19

An example

(1) Someone is tall.

Say our constants are:

1. height : e → dtall

2. human : e → t

3. (≥) : r → r → t

4. 𝜃tall : dtall

Define K as:

K = N(72, 3) ★ 𝜆d .𝜂 (height, human, (≥), d)

19

An example

(1) Someone is tall.

Say our constants are:

1. height : e → dtall

2. human : e → t

3. (≥) : r → r → t

4. 𝜃tall : dtall

Define K as:

K = N(72, 3) ★ 𝜆d .𝜂 (height, human, (≥), d)

19

An example (cont’d)

K ★ 𝜆𝜅.𝜂 (L∃x : human(x) ∧ height(x) ≥ 𝜃tallM𝜅)

= K ★ 𝜆𝜅.𝜂 (∃x : LhumanM𝜅 (x) ∧ L(≥)M𝜅 (LheightM𝜅 (x)) (L𝜃tallM𝜅))
= N(72, 3) ★ 𝜆d .𝜂 (∃x : human(x) ∧ height (x) ≥ d)
= 𝜆f .N(72, 3) (𝜆d .f (∃x : human(x) ∧ height (x) ≥ d))

Computing a probability:

N(72, 3) (𝜆d .1(∃x : human(x) ∧ height (x) ≥ d))
N (72, 3) (𝜆d .1)

= N(72, 3) (𝜆d .1(∃x : human(x) ∧ height (x) ≥ d))

Probability is the mass of N(72, 3) less than or equal to the height
of the tallest human.

20

An example (cont’d)

K ★ 𝜆𝜅.𝜂 (L∃x : human(x) ∧ height(x) ≥ 𝜃tallM𝜅)
= K ★ 𝜆𝜅.𝜂 (∃x : LhumanM𝜅 (x) ∧ L(≥)M𝜅 (LheightM𝜅 (x)) (L𝜃tallM𝜅))

= N(72, 3) ★ 𝜆d .𝜂 (∃x : human(x) ∧ height (x) ≥ d)
= 𝜆f .N(72, 3) (𝜆d .f (∃x : human(x) ∧ height (x) ≥ d))

Computing a probability:

N(72, 3) (𝜆d .1(∃x : human(x) ∧ height (x) ≥ d))
N (72, 3) (𝜆d .1)

= N(72, 3) (𝜆d .1(∃x : human(x) ∧ height (x) ≥ d))

Probability is the mass of N(72, 3) less than or equal to the height
of the tallest human.

20

An example (cont’d)

K ★ 𝜆𝜅.𝜂 (L∃x : human(x) ∧ height(x) ≥ 𝜃tallM𝜅)
= K ★ 𝜆𝜅.𝜂 (∃x : LhumanM𝜅 (x) ∧ L(≥)M𝜅 (LheightM𝜅 (x)) (L𝜃tallM𝜅))
= N(72, 3) ★ 𝜆d .𝜂 (∃x : human(x) ∧ height (x) ≥ d)

= 𝜆f .N(72, 3) (𝜆d .f (∃x : human(x) ∧ height (x) ≥ d))

Computing a probability:

N(72, 3) (𝜆d .1(∃x : human(x) ∧ height (x) ≥ d))
N (72, 3) (𝜆d .1)

= N(72, 3) (𝜆d .1(∃x : human(x) ∧ height (x) ≥ d))

Probability is the mass of N(72, 3) less than or equal to the height
of the tallest human.

20

An example (cont’d)

K ★ 𝜆𝜅.𝜂 (L∃x : human(x) ∧ height(x) ≥ 𝜃tallM𝜅)
= K ★ 𝜆𝜅.𝜂 (∃x : LhumanM𝜅 (x) ∧ L(≥)M𝜅 (LheightM𝜅 (x)) (L𝜃tallM𝜅))
= N(72, 3) ★ 𝜆d .𝜂 (∃x : human(x) ∧ height (x) ≥ d)
= 𝜆f .N(72, 3) (𝜆d .f (∃x : human(x) ∧ height (x) ≥ d))

Computing a probability:

N(72, 3) (𝜆d .1(∃x : human(x) ∧ height (x) ≥ d))
N (72, 3) (𝜆d .1)

= N(72, 3) (𝜆d .1(∃x : human(x) ∧ height (x) ≥ d))

Probability is the mass of N(72, 3) less than or equal to the height
of the tallest human.

20

An example (cont’d)

K ★ 𝜆𝜅.𝜂 (L∃x : human(x) ∧ height(x) ≥ 𝜃tallM𝜅)
= K ★ 𝜆𝜅.𝜂 (∃x : LhumanM𝜅 (x) ∧ L(≥)M𝜅 (LheightM𝜅 (x)) (L𝜃tallM𝜅))
= N(72, 3) ★ 𝜆d .𝜂 (∃x : human(x) ∧ height (x) ≥ d)
= 𝜆f .N(72, 3) (𝜆d .f (∃x : human(x) ∧ height (x) ≥ d))

Computing a probability:

N(72, 3) (𝜆d .1(∃x : human(x) ∧ height (x) ≥ d))
N (72, 3) (𝜆d .1)

= N(72, 3) (𝜆d .1(∃x : human(x) ∧ height (x) ≥ d))

Probability is the mass of N(72, 3) less than or equal to the height
of the tallest human.

20

An example (cont’d)

K ★ 𝜆𝜅.𝜂 (L∃x : human(x) ∧ height(x) ≥ 𝜃tallM𝜅)
= K ★ 𝜆𝜅.𝜂 (∃x : LhumanM𝜅 (x) ∧ L(≥)M𝜅 (LheightM𝜅 (x)) (L𝜃tallM𝜅))
= N(72, 3) ★ 𝜆d .𝜂 (∃x : human(x) ∧ height (x) ≥ d)
= 𝜆f .N(72, 3) (𝜆d .f (∃x : human(x) ∧ height (x) ≥ d))

Computing a probability:

N(72, 3) (𝜆d .1(∃x : human(x) ∧ height (x) ≥ d))
N (72, 3) (𝜆d .1)

= N(72, 3) (𝜆d .1(∃x : human(x) ∧ height (x) ≥ d))

Probability is the mass of N(72, 3) less than or equal to the height
of the tallest human.

20

An example (cont’d)

K ★ 𝜆𝜅.𝜂 (L∃x : human(x) ∧ height(x) ≥ 𝜃tallM𝜅)
= K ★ 𝜆𝜅.𝜂 (∃x : LhumanM𝜅 (x) ∧ L(≥)M𝜅 (LheightM𝜅 (x)) (L𝜃tallM𝜅))
= N(72, 3) ★ 𝜆d .𝜂 (∃x : human(x) ∧ height (x) ≥ d)
= 𝜆f .N(72, 3) (𝜆d .f (∃x : human(x) ∧ height (x) ≥ d))

Computing a probability:

N(72, 3) (𝜆d .1(∃x : human(x) ∧ height (x) ≥ d))
N (72, 3) (𝜆d .1)

= N(72, 3) (𝜆d .1(∃x : human(x) ∧ height (x) ≥ d))

Probability is the mass of N(72, 3) less than or equal to the height
of the tallest human.

20

An example (cont’d)

K ★ 𝜆𝜅.𝜂 (L∃x : human(x) ∧ height(x) ≥ 𝜃tallM𝜅)
= K ★ 𝜆𝜅.𝜂 (∃x : LhumanM𝜅 (x) ∧ L(≥)M𝜅 (LheightM𝜅 (x)) (L𝜃tallM𝜅))
= N(72, 3) ★ 𝜆d .𝜂 (∃x : human(x) ∧ height (x) ≥ d)
= 𝜆f .N(72, 3) (𝜆d .f (∃x : human(x) ∧ height (x) ≥ d))

Computing a probability:

N(72, 3) (𝜆d .1(∃x : human(x) ∧ height (x) ≥ d))
N (72, 3) (𝜆d .1)

= N(72, 3) (𝜆d .1(∃x : human(x) ∧ height (x) ≥ d))

Probability is the mass of N(72, 3) less than or equal to the height
of the tallest human.

20

An example (cont’d)

K ★ 𝜆𝜅.𝜂 (L∃x : human(x) ∧ height(x) ≥ 𝜃tallM𝜅)
= K ★ 𝜆𝜅.𝜂 (∃x : LhumanM𝜅 (x) ∧ L(≥)M𝜅 (LheightM𝜅 (x)) (L𝜃tallM𝜅))
= N(72, 3) ★ 𝜆d .𝜂 (∃x : human(x) ∧ height (x) ≥ d)
= 𝜆f .N(72, 3) (𝜆d .f (∃x : human(x) ∧ height (x) ≥ d))

Computing a probability:

N(72, 3) (𝜆d .1(∃x : human(x) ∧ height (x) ≥ d))
N (72, 3) (𝜆d .1)

= N(72, 3) (𝜆d .1(∃x : human(x) ∧ height (x) ≥ d))

Probability is the mass of N(72, 3) less than or equal to the height
of the tallest human.

20

An example (cont’d)

K ★ 𝜆𝜅.𝜂 (L∃x : human(x) ∧ height(x) ≥ 𝜃tallM𝜅)
= K ★ 𝜆𝜅.𝜂 (∃x : LhumanM𝜅 (x) ∧ L(≥)M𝜅 (LheightM𝜅 (x)) (L𝜃tallM𝜅))
= N(72, 3) ★ 𝜆d .𝜂 (∃x : human(x) ∧ height (x) ≥ d)
= 𝜆f .N(72, 3) (𝜆d .f (∃x : human(x) ∧ height (x) ≥ d))

Computing a probability:

N(72, 3) (𝜆d .1(∃x : human(x) ∧ height (x) ≥ d))
N (72, 3) (𝜆d .1)

= N(72, 3) (𝜆d .1(∃x : human(x) ∧ height (x) ≥ d))

Probability is the mass of N(72, 3) less than or equal to the height
of the tallest human.

20

Bayesian inference

Observing a premise

observe : t → (� → r) → r

observe(𝜙) (f) = 1(𝜙) ∗ f (�)

21

Semantic learning

Semantic learning is a ma�er of updating distributions over
contexts (i.e., probabilistic programs returning contexts).

• Given some initial distribution K0:

K1 = K0 ★ 𝜆𝜅.observe(𝜙1) ★ 𝜆�. ... observe(𝜙n) ★ 𝜆�.𝜂 (𝜅)

22

Semantic learning

Semantic learning is a ma�er of updating distributions over
contexts (i.e., probabilistic programs returning contexts).

• Given some initial distribution K0:

K1 = K0 ★ 𝜆𝜅.observe(𝜙1) ★ 𝜆�. ... observe(𝜙n) ★ 𝜆�.𝜂 (𝜅)

22

Semantic learning

Semantic learning is a ma�er of updating distributions over
contexts (i.e., probabilistic programs returning contexts).

• Given some initial distribution K0:

K1 = K0 ★ 𝜆𝜅.observe(𝜙1) ★ 𝜆�. ... observe(𝜙n) ★ 𝜆�.𝜂 (𝜅)

22

Semantic learning

Semantic learning is a ma�er of updating distributions over
contexts (i.e., probabilistic programs returning contexts).

• Given some initial distribution K0:

K1 = K0 ★ 𝜆𝜅.observe(𝜙1) ★ 𝜆�. ... observe(𝜙n) ★ 𝜆�.𝜂 (𝜅)

22

Semantic learning: an example

Say we have the constants:

• c,m, a, v : e

• height : e → dtall
• (≥) : r → r → t

• 𝜃tall

Say we start out with the initial context:

K0 = N(68, 3) ★ 𝜆d .𝜂 (c,m, a, v, height, (≥), d)

Say we know:

height (c) = 65 height (m) = 67 height (a) = 72

Someone u�ers, “Camilla isn’t tall. Ma� isn’t tall. Anna is tall.”

23

Semantic learning: an example

Say we have the constants:

• c,m, a, v : e

• height : e → dtall
• (≥) : r → r → t

• 𝜃tall

Say we start out with the initial context:

K0 = N(68, 3) ★ 𝜆d .𝜂 (c,m, a, v, height, (≥), d)

Say we know:

height (c) = 65 height (m) = 67 height (a) = 72

Someone u�ers, “Camilla isn’t tall. Ma� isn’t tall. Anna is tall.”

23

Semantic learning: an example

Say we have the constants:

• c,m, a, v : e

• height : e → dtall
• (≥) : r → r → t

• 𝜃tall

Say we start out with the initial context:

K0 = N(68, 3) ★ 𝜆d .𝜂 (c,m, a, v, height, (≥), d)

Say we know:

height (c) = 65 height (m) = 67 height (a) = 72

Someone u�ers, “Camilla isn’t tall. Ma� isn’t tall. Anna is tall.”

23

Semantic learning: an example

Say we have the constants:

• c,m, a, v : e

• height : e → dtall
• (≥) : r → r → t

• 𝜃tall

Say we start out with the initial context:

K0 = N(68, 3) ★ 𝜆d .𝜂 (c,m, a, v, height, (≥), d)

Say we know:

height (c) = 65 height (m) = 67 height (a) = 72

Someone u�ers, “Camilla isn’t tall. Ma� isn’t tall. Anna is tall.”

23

Semantic learning

K1 = K0

★ 𝜆𝜅.observe(L¬height(c) ≥ 𝜃tallM𝜅)
★ 𝜆�.observe(L¬height(m) ≥ 𝜃tallM𝜅)
★ 𝜆�.observe(Lheight(a) ≥ 𝜃tallM𝜅)
★ 𝜆�.𝜂 (𝜅)

= N(68, 3) (by Associativity and Le� Identity)

★ 𝜆d .observe(¬65 ≥ d)
★ 𝜆�.observe(¬67 ≥ d)
★ 𝜆�.observe(72 ≥ d)
★ 𝜆�.𝜂 (c,m, a, v, height, (≥), d)

We’ve pared down the distribution to the interval (67, 72].

24

Semantic learning

K1 = K0

★ 𝜆𝜅.observe(L¬height(c) ≥ 𝜃tallM𝜅)
★ 𝜆�.observe(L¬height(m) ≥ 𝜃tallM𝜅)
★ 𝜆�.observe(Lheight(a) ≥ 𝜃tallM𝜅)
★ 𝜆�.𝜂 (𝜅)

= N(68, 3) (by Associativity and Le� Identity)

★ 𝜆d .observe(¬65 ≥ d)
★ 𝜆�.observe(¬67 ≥ d)
★ 𝜆�.observe(72 ≥ d)
★ 𝜆�.𝜂 (c,m, a, v, height, (≥), d)

We’ve pared down the distribution to the interval (67, 72].

24

Semantic learning

K1 = K0

★ 𝜆𝜅.observe(L¬height(c) ≥ 𝜃tallM𝜅)
★ 𝜆�.observe(L¬height(m) ≥ 𝜃tallM𝜅)
★ 𝜆�.observe(Lheight(a) ≥ 𝜃tallM𝜅)
★ 𝜆�.𝜂 (𝜅)

= N(68, 3) (by Associativity and Le� Identity)

★ 𝜆d .observe(¬65 ≥ d)
★ 𝜆�.observe(¬67 ≥ d)
★ 𝜆�.observe(72 ≥ d)
★ 𝜆�.𝜂 (c,m, a, v, height, (≥), d)

We’ve pared down the distribution to the interval (67, 72].

24

Semantic learning

K1 = K0

★ 𝜆𝜅.observe(L¬height(c) ≥ 𝜃tallM𝜅)
★ 𝜆�.observe(L¬height(m) ≥ 𝜃tallM𝜅)
★ 𝜆�.observe(Lheight(a) ≥ 𝜃tallM𝜅)
★ 𝜆�.𝜂 (𝜅)

= N(68, 3) (by Associativity and Le� Identity)

★ 𝜆d .observe(¬65 ≥ d)
★ 𝜆�.observe(¬67 ≥ d)
★ 𝜆�.observe(72 ≥ d)
★ 𝜆�.𝜂 (c,m, a, v, height, (≥), d)

We’ve pared down the distribution to the interval (67, 72]. 24

Comparing K0 and K1

(2) Vlad is tall.

Say height (v) = 68.

Then:

K0(𝜆𝜅.1(Lheight(v) ≥ 𝜃tallM𝜅))
K0(𝜆𝜅.1)

= 0.5

K1(𝜆𝜅.1(Lheight(v) ≥ 𝜃tallM𝜅))
K1(𝜆𝜅.1)

≈ 0.24

25

Comparing K0 and K1

(2) Vlad is tall.

Say height (v) = 68.

Then:

K0(𝜆𝜅.1(Lheight(v) ≥ 𝜃tallM𝜅))
K0(𝜆𝜅.1)

= 0.5

K1(𝜆𝜅.1(Lheight(v) ≥ 𝜃tallM𝜅))
K1(𝜆𝜅.1)

≈ 0.24

25

Comparing K0 and K1

(2) Vlad is tall.

Say height (v) = 68.

Then:

K0(𝜆𝜅.1(Lheight(v) ≥ 𝜃tallM𝜅))
K0(𝜆𝜅.1)

= 0.5

K1(𝜆𝜅.1(Lheight(v) ≥ 𝜃tallM𝜅))
K1(𝜆𝜅.1)

≈ 0.24

25

Comparing K0 and K1

(2) Vlad is tall.

Say height (v) = 68.

Then:

K0(𝜆𝜅.1(Lheight(v) ≥ 𝜃tallM𝜅))
K0(𝜆𝜅.1)

= 0.5

K1(𝜆𝜅.1(Lheight(v) ≥ 𝜃tallM𝜅))
K1(𝜆𝜅.1)

≈ 0.24

25

RSA

RSA models: a popular application of probabilistic semantics.

The
basic idea:

• The RSA framework models a pragmatic listener, L1. . .

• . . .who infers a distribution over meanings m from an u�erance
u, based on the probability that a pragmatic speaker, S1, would
make the u�erance u to convey m.

• Given a meaning m, the probability that S1 would make the
u�erance u to convey m is related to the probability that a
literal listener, L0, would infer m, given a literal interpretation
of u.

26

RSA

RSA models: a popular application of probabilistic semantics. The
basic idea:

• The RSA framework models a pragmatic listener, L1. . .

• . . .who infers a distribution over meanings m from an u�erance
u, based on the probability that a pragmatic speaker, S1, would
make the u�erance u to convey m.

• Given a meaning m, the probability that S1 would make the
u�erance u to convey m is related to the probability that a
literal listener, L0, would infer m, given a literal interpretation
of u.

26

RSA

RSA models: a popular application of probabilistic semantics. The
basic idea:

• The RSA framework models a pragmatic listener, L1. . .

• . . .who infers a distribution over meanings m from an u�erance
u, based on the probability that a pragmatic speaker, S1, would
make the u�erance u to convey m.

• Given a meaning m, the probability that S1 would make the
u�erance u to convey m is related to the probability that a
literal listener, L0, would infer m, given a literal interpretation
of u.

26

RSA

RSA models: a popular application of probabilistic semantics. The
basic idea:

• The RSA framework models a pragmatic listener, L1. . .

• . . .who infers a distribution over meanings m from an u�erance
u, based on the probability that a pragmatic speaker, S1, would
make the u�erance u to convey m.

• Given a meaning m, the probability that S1 would make the
u�erance u to convey m is related to the probability that a
literal listener, L0, would infer m, given a literal interpretation
of u.

26

RSA

RSA models: a popular application of probabilistic semantics. The
basic idea:

• The RSA framework models a pragmatic listener, L1. . .

• . . .who infers a distribution over meanings m from an u�erance
u, based on the probability that a pragmatic speaker, S1, would
make the u�erance u to convey m.

• Given a meaning m, the probability that S1 would make the
u�erance u to convey m is related to the probability that a
literal listener, L0, would infer m, given a literal interpretation
of u.

26

RSA: Lassiter and Goodman (2013)

PL1 (h, dtall | ‘Vlad is tall’) ∝ PS1 (‘Vlad is tall’ | h, dtall) ∗ PL1 (h) (L1)

PS1 (u | h, dtall) ∝ (PL0 (h | u, dtall) ∗ e−C (u))𝛼

(S1)

PL0 (h | u, dtall) = PL0 (h | JuKdtall = >)

(L0)

27

RSA: Lassiter and Goodman (2013)

PL1 (h, dtall | ‘Vlad is tall’) ∝ PS1 (‘Vlad is tall’ | h, dtall) ∗ PL1 (h) (L1)

PS1 (u | h, dtall) ∝ (PL0 (h | u, dtall) ∗ e−C (u))𝛼 (S1)

PL0 (h | u, dtall) = PL0 (h | JuKdtall = >)

(L0)

27

RSA: Lassiter and Goodman (2013)

PL1 (h, dtall | ‘Vlad is tall’) ∝ PS1 (‘Vlad is tall’ | h, dtall) ∗ PL1 (h) (L1)

PS1 (u | h, dtall) ∝ (PL0 (h | u, dtall) ∗ e−C (u))𝛼 (S1)

PL0 (h | u, dtall) = PL0 (h | JuKdtall = >) (L0)

27

RSA: more generally

PL1 (w, 𝜃 | u0) =
PS1 (u0 | w, 𝜃) ∗ PL1 (w, 𝜃)∫

w′∈W

∫
𝜃 ′∈Θ PS1 (u0 | w ′, 𝜃 ′) ∗ PL1 (w ′, 𝜃 ′)d𝜃 ′dw ′

(L1)

PS1 (u | w, 𝜃) =
(PL0 (w | u, 𝜃) ∗ e−C (u))𝛼

Σu′∈U (PL0 (w | u′, 𝜃) ∗ e−C (u′))𝛼

(S1)

PL0 (w | u, 𝜃) = PL0 (w | JuK𝜃 = >)

(L0)

28

RSA: more generally

PL1 (w, 𝜃 | u0) =
PS1 (u0 | w, 𝜃) ∗ PL1 (w, 𝜃)∫

w′∈W

∫
𝜃 ′∈Θ PS1 (u0 | w ′, 𝜃 ′) ∗ PL1 (w ′, 𝜃 ′)d𝜃 ′dw ′

(L1)

PS1 (u | w, 𝜃) =
(PL0 (w | u, 𝜃) ∗ e−C (u))𝛼

Σu′∈U (PL0 (w | u′, 𝜃) ∗ e−C (u′))𝛼
(S1)

PL0 (w | u, 𝜃) = PL0 (w | JuK𝜃 = >)

(L0)

28

RSA: more generally

PL1 (w, 𝜃 | u0) =
PS1 (u0 | w, 𝜃) ∗ PL1 (w, 𝜃)∫

w′∈W

∫
𝜃 ′∈Θ PS1 (u0 | w ′, 𝜃 ′) ∗ PL1 (w ′, 𝜃 ′)d𝜃 ′dw ′

(L1)

PS1 (u | w, 𝜃) =
(PL0 (w | u, 𝜃) ∗ e−C (u))𝛼

Σu′∈U (PL0 (w | u′, 𝜃) ∗ e−C (u′))𝛼
(S1)

PL0 (w | u, 𝜃) = PL0 (w | JuK𝜃 = >) (L0)

28

Factoring by a weight

Recall observe:

observe : t → (� → r) → r

observe(𝜙) (f) = 1(𝜙) ∗ f (�)

A useful generalization:

factor : r → (� → r) → r

factor (x) (f) = x ∗ f (�)

29

Factoring by a weight

Recall observe:

observe : t → (� → r) → r

observe(𝜙) (f) = 1(𝜙) ∗ f (�)

A useful generalization:

factor : r → (� → r) → r

factor (x) (f) = x ∗ f (�)

29

Factoring by a weight

Recall observe:

observe : t → (� → r) → r

observe(𝜙) (f) = 1(𝜙) ∗ f (�)

A useful generalization:

factor : r → (� → r) → r

factor (x) (f) = x ∗ f (�)

29

Factoring by a weight

Recall observe:

observe : t → (� → r) → r

observe(𝜙) (f) = 1(𝜙) ∗ f (�)

A useful generalization:

factor : r → (� → r) → r

factor (x) (f) = x ∗ f (�)

29

Another preliminary

We would also like to be able to obtain a probability density
function from a distribution.

PDF(·) : ((𝛼 → r) → r) → 𝛼 → r

The discrete case:

PDFp = 𝜆x .P (p★ 𝜆y .𝜂 (y = x))

The continuous case:

PDFp = 𝜆x .
d
dx

[P (p★ 𝜆y .𝜂 (y ≤ x))]

30

Another preliminary

We would also like to be able to obtain a probability density
function from a distribution.

PDF(·) : ((𝛼 → r) → r) → 𝛼 → r

The discrete case:

PDFp = 𝜆x .P (p★ 𝜆y .𝜂 (y = x))

The continuous case:

PDFp = 𝜆x .
d
dx

[P (p★ 𝜆y .𝜂 (y ≤ x))]

30

Another preliminary

We would also like to be able to obtain a probability density
function from a distribution.

PDF(·) : ((𝛼 → r) → r) → 𝛼 → r

The discrete case:

PDFp = 𝜆x .P (p★ 𝜆y .𝜂 (y = x))

The continuous case:

PDFp = 𝜆x .
d
dx

[P (p★ 𝜆y .𝜂 (y ≤ x))]

30

Another preliminary

We would also like to be able to obtain a probability density
function from a distribution.

PDF(·) : ((𝛼 → r) → r) → 𝛼 → r

The discrete case:

PDFp = 𝜆x .P (p★ 𝜆y .𝜂 (y = x))

The continuous case:

PDFp = 𝜆x .
d
dx

[P (p★ 𝜆y .𝜂 (y ≤ x))]

30

RSA: implementation

• u: the type of u�erances
• 𝜎 : the type of world states (sampled from a priorW)
• 𝜋 : the type of linguistic parameters (sampled from a prior Θ)

L1 : u → (𝜎 × 𝜋 → r) → r

L1(u0) = W ★ 𝜆w .Θ★ 𝜆𝜃 .factor (PDFS1 (w,𝜃) (u0)) ★ 𝜆�.𝜂 (w, 𝜃)

S1 : 𝜎 × 𝜋 → (u → r) → r

S1(w, 𝜃) = U ★ 𝜆u.factor (PDFL0 (u,𝜃) (w) ∗ e−C (u))𝛼 ★ 𝜆�.𝜂 (u)

L0 : u × 𝜋 → (𝜎 → r) → r

L0(u, 𝜃) = W ★ 𝜆w .observe(LuM〈w,𝜃 〉) ★ 𝜆�.𝜂 (w)

Note the di�erent types of L0 and L1.

31

RSA: implementation

• u: the type of u�erances
• 𝜎 : the type of world states (sampled from a priorW)
• 𝜋 : the type of linguistic parameters (sampled from a prior Θ)

L1 : u → (𝜎 × 𝜋 → r) → r

L1(u0) = W ★ 𝜆w .Θ★ 𝜆𝜃 .factor (PDFS1 (w,𝜃) (u0)) ★ 𝜆�.𝜂 (w, 𝜃)

S1 : 𝜎 × 𝜋 → (u → r) → r

S1(w, 𝜃) = U ★ 𝜆u.factor (PDFL0 (u,𝜃) (w) ∗ e−C (u))𝛼 ★ 𝜆�.𝜂 (u)

L0 : u × 𝜋 → (𝜎 → r) → r

L0(u, 𝜃) = W ★ 𝜆w .observe(LuM〈w,𝜃 〉) ★ 𝜆�.𝜂 (w)

Note the di�erent types of L0 and L1.

31

RSA: implementation

• u: the type of u�erances
• 𝜎 : the type of world states (sampled from a priorW)
• 𝜋 : the type of linguistic parameters (sampled from a prior Θ)

L1 : u → (𝜎 × 𝜋 → r) → r

L1(u0) = W ★ 𝜆w .Θ★ 𝜆𝜃 .factor (PDFS1 (w,𝜃) (u0)) ★ 𝜆�.𝜂 (w, 𝜃)

S1 : 𝜎 × 𝜋 → (u → r) → r

S1(w, 𝜃) = U ★ 𝜆u.factor (PDFL0 (u,𝜃) (w) ∗ e−C (u))𝛼 ★ 𝜆�.𝜂 (u)

L0 : u × 𝜋 → (𝜎 → r) → r

L0(u, 𝜃) = W ★ 𝜆w .observe(LuM〈w,𝜃 〉) ★ 𝜆�.𝜂 (w)

Note the di�erent types of L0 and L1.

31

RSA: implementation

• u: the type of u�erances
• 𝜎 : the type of world states (sampled from a priorW)
• 𝜋 : the type of linguistic parameters (sampled from a prior Θ)

L1 : u → (𝜎 × 𝜋 → r) → r

L1(u0) = W ★ 𝜆w .Θ★ 𝜆𝜃 .factor (PDFS1 (w,𝜃) (u0)) ★ 𝜆�.𝜂 (w, 𝜃)

S1 : 𝜎 × 𝜋 → (u → r) → r

S1(w, 𝜃) = U ★ 𝜆u.factor (PDFL0 (u,𝜃) (w) ∗ e−C (u))𝛼 ★ 𝜆�.𝜂 (u)

L0 : u × 𝜋 → (𝜎 → r) → r

L0(u, 𝜃) = W ★ 𝜆w .observe(LuM〈w,𝜃 〉) ★ 𝜆�.𝜂 (w)

Note the di�erent types of L0 and L1.

31

RSA: implementation

• u: the type of u�erances
• 𝜎 : the type of world states (sampled from a priorW)
• 𝜋 : the type of linguistic parameters (sampled from a prior Θ)

L1 : u → (𝜎 × 𝜋 → r) → r

L1(u0) = W ★ 𝜆w .Θ★ 𝜆𝜃 .factor (PDFS1 (w,𝜃) (u0)) ★ 𝜆�.𝜂 (w, 𝜃)

S1 : 𝜎 × 𝜋 → (u → r) → r

S1(w, 𝜃) = U ★ 𝜆u.factor (PDFL0 (u,𝜃) (w) ∗ e−C (u))𝛼 ★ 𝜆�.𝜂 (u)

L0 : u × 𝜋 → (𝜎 → r) → r

L0(u, 𝜃) = W ★ 𝜆w .observe(LuM〈w,𝜃 〉) ★ 𝜆�.𝜂 (w)

Note the di�erent types of L0 and L1.

31

RSA: implementation

• u: the type of u�erances
• 𝜎 : the type of world states (sampled from a priorW)
• 𝜋 : the type of linguistic parameters (sampled from a prior Θ)

L1 : u → (𝜎 × 𝜋 → r) → r

L1(u0) = W ★ 𝜆w .Θ★ 𝜆𝜃 .factor (PDFS1 (w,𝜃) (u0)) ★ 𝜆�.𝜂 (w, 𝜃)

S1 : 𝜎 × 𝜋 → (u → r) → r

S1(w, 𝜃) = U ★ 𝜆u.factor (PDFL0 (u,𝜃) (w) ∗ e−C (u))𝛼 ★ 𝜆�.𝜂 (u)

L0 : u × 𝜋 → (𝜎 → r) → r

L0(u, 𝜃) = W ★ 𝜆w .observe(LuM〈w,𝜃 〉) ★ 𝜆�.𝜂 (w)

Note the di�erent types of L0 and L1.

31

RSA: implementation

• u: the type of u�erances
• 𝜎 : the type of world states (sampled from a priorW)
• 𝜋 : the type of linguistic parameters (sampled from a prior Θ)

L1 : u → (𝜎 × 𝜋 → r) → r

L1(u0) = W ★ 𝜆w .Θ★ 𝜆𝜃 .factor (PDFS1 (w,𝜃) (u0)) ★ 𝜆�.𝜂 (w, 𝜃)

S1 : 𝜎 × 𝜋 → (u → r) → r

S1(w, 𝜃) = U ★ 𝜆u.factor (PDFL0 (u,𝜃) (w) ∗ e−C (u))𝛼 ★ 𝜆�.𝜂 (u)

L0 : u × 𝜋 → (𝜎 → r) → r

L0(u, 𝜃) = W ★ 𝜆w .observe(LuM〈w,𝜃 〉) ★ 𝜆�.𝜂 (w)

Note the di�erent types of L0 and L1.

31

RSA: implementation

• u: the type of u�erances
• 𝜎 : the type of world states (sampled from a priorW)
• 𝜋 : the type of linguistic parameters (sampled from a prior Θ)

L1 : u → (𝜎 × 𝜋 → r) → r

L1(u0) = W ★ 𝜆w .Θ★ 𝜆𝜃 .factor (PDFS1 (w,𝜃) (u0)) ★ 𝜆�.𝜂 (w, 𝜃)

S1 : 𝜎 × 𝜋 → (u → r) → r

S1(w, 𝜃) = U ★ 𝜆u.factor (PDFL0 (u,𝜃) (w) ∗ e−C (u))𝛼 ★ 𝜆�.𝜂 (u)

L0 : u × 𝜋 → (𝜎 → r) → r

L0(u, 𝜃) = W ★ 𝜆w .observe(LuM〈w,𝜃 〉) ★ 𝜆�.𝜂 (w)

Note the di�erent types of L0 and L1.

31

RSA: implementation

• u: the type of u�erances
• 𝜎 : the type of world states (sampled from a priorW)
• 𝜋 : the type of linguistic parameters (sampled from a prior Θ)

L1 : u → (𝜎 × 𝜋 → r) → r

L1(u0) = W ★ 𝜆w .Θ★ 𝜆𝜃 .factor (PDFS1 (w,𝜃) (u0)) ★ 𝜆�.𝜂 (w, 𝜃)

S1 : 𝜎 × 𝜋 → (u → r) → r

S1(w, 𝜃) = U ★ 𝜆u.factor (PDFL0 (u,𝜃) (w) ∗ e−C (u))𝛼 ★ 𝜆�.𝜂 (u)

L0 : u × 𝜋 → (𝜎 → r) → r

L0(u, 𝜃) = W ★ 𝜆w .observe(LuM〈w,𝜃 〉) ★ 𝜆�.𝜂 (w)

Note the di�erent types of L0 and L1.
31

RSA: a revised version

This can be improved!

Using contexts!

• The types of L0 and L1 can be made the same.
• Doing so allows distributions over world states and linguistic
parameters to be merged into one over contexts.

• Say the type of the context is some 𝜅 = 𝛼1 × ... × 𝛼n. . .

L1 : u → (𝜅 → r) → r

L1(u) = K ★ 𝜆𝜅.factor (PDFS1 (𝜅) (u)) ★ 𝜆�.𝜂 (𝜅)

S1 : 𝜅 → (u → r) → r

S1(𝜅) = U∗ ★ 𝜆u.factor (PDFL0 (u) (𝜅)𝛼) ★ 𝜆�.𝜂 (u)

L0 : u → (𝜅 → r) → r

L0(u) = K ★ 𝜆𝜅.observe(LuM𝜅) ★ 𝜆�.𝜂 (𝜅)

32

RSA: a revised version

This can be improved! Using contexts!

• The types of L0 and L1 can be made the same.
• Doing so allows distributions over world states and linguistic
parameters to be merged into one over contexts.

• Say the type of the context is some 𝜅 = 𝛼1 × ... × 𝛼n. . .

L1 : u → (𝜅 → r) → r

L1(u) = K ★ 𝜆𝜅.factor (PDFS1 (𝜅) (u)) ★ 𝜆�.𝜂 (𝜅)

S1 : 𝜅 → (u → r) → r

S1(𝜅) = U∗ ★ 𝜆u.factor (PDFL0 (u) (𝜅)𝛼) ★ 𝜆�.𝜂 (u)

L0 : u → (𝜅 → r) → r

L0(u) = K ★ 𝜆𝜅.observe(LuM𝜅) ★ 𝜆�.𝜂 (𝜅)

32

RSA: a revised version

This can be improved! Using contexts!

• The types of L0 and L1 can be made the same.

• Doing so allows distributions over world states and linguistic
parameters to be merged into one over contexts.

• Say the type of the context is some 𝜅 = 𝛼1 × ... × 𝛼n. . .

L1 : u → (𝜅 → r) → r

L1(u) = K ★ 𝜆𝜅.factor (PDFS1 (𝜅) (u)) ★ 𝜆�.𝜂 (𝜅)

S1 : 𝜅 → (u → r) → r

S1(𝜅) = U∗ ★ 𝜆u.factor (PDFL0 (u) (𝜅)𝛼) ★ 𝜆�.𝜂 (u)

L0 : u → (𝜅 → r) → r

L0(u) = K ★ 𝜆𝜅.observe(LuM𝜅) ★ 𝜆�.𝜂 (𝜅)

32

RSA: a revised version

This can be improved! Using contexts!

• The types of L0 and L1 can be made the same.
• Doing so allows distributions over world states and linguistic
parameters to be merged into one over contexts.

• Say the type of the context is some 𝜅 = 𝛼1 × ... × 𝛼n. . .

L1 : u → (𝜅 → r) → r

L1(u) = K ★ 𝜆𝜅.factor (PDFS1 (𝜅) (u)) ★ 𝜆�.𝜂 (𝜅)

S1 : 𝜅 → (u → r) → r

S1(𝜅) = U∗ ★ 𝜆u.factor (PDFL0 (u) (𝜅)𝛼) ★ 𝜆�.𝜂 (u)

L0 : u → (𝜅 → r) → r

L0(u) = K ★ 𝜆𝜅.observe(LuM𝜅) ★ 𝜆�.𝜂 (𝜅)

32

RSA: a revised version

This can be improved! Using contexts!

• The types of L0 and L1 can be made the same.
• Doing so allows distributions over world states and linguistic
parameters to be merged into one over contexts.

• Say the type of the context is some 𝜅 = 𝛼1 × ... × 𝛼n. . .

L1 : u → (𝜅 → r) → r

L1(u) = K ★ 𝜆𝜅.factor (PDFS1 (𝜅) (u)) ★ 𝜆�.𝜂 (𝜅)

S1 : 𝜅 → (u → r) → r

S1(𝜅) = U∗ ★ 𝜆u.factor (PDFL0 (u) (𝜅)𝛼) ★ 𝜆�.𝜂 (u)

L0 : u → (𝜅 → r) → r

L0(u) = K ★ 𝜆𝜅.observe(LuM𝜅) ★ 𝜆�.𝜂 (𝜅)

32

RSA: a revised version

This can be improved! Using contexts!

• The types of L0 and L1 can be made the same.
• Doing so allows distributions over world states and linguistic
parameters to be merged into one over contexts.

• Say the type of the context is some 𝜅 = 𝛼1 × ... × 𝛼n. . .

L1 : u → (𝜅 → r) → r

L1(u) = K ★ 𝜆𝜅.factor (PDFS1 (𝜅) (u)) ★ 𝜆�.𝜂 (𝜅)

S1 : 𝜅 → (u → r) → r

S1(𝜅) = U∗ ★ 𝜆u.factor (PDFL0 (u) (𝜅)𝛼) ★ 𝜆�.𝜂 (u)

L0 : u → (𝜅 → r) → r

L0(u) = K ★ 𝜆𝜅.observe(LuM𝜅) ★ 𝜆�.𝜂 (𝜅)

32

RSA: a revised version

This can be improved! Using contexts!

• The types of L0 and L1 can be made the same.
• Doing so allows distributions over world states and linguistic
parameters to be merged into one over contexts.

• Say the type of the context is some 𝜅 = 𝛼1 × ... × 𝛼n. . .

L1 : u → (𝜅 → r) → r

L1(u) = K ★ 𝜆𝜅.factor (PDFS1 (𝜅) (u)) ★ 𝜆�.𝜂 (𝜅)

S1 : 𝜅 → (u → r) → r

S1(𝜅) = U∗ ★ 𝜆u.factor (PDFL0 (u) (𝜅)𝛼) ★ 𝜆�.𝜂 (u)

L0 : u → (𝜅 → r) → r

L0(u) = K ★ 𝜆𝜅.observe(LuM𝜅) ★ 𝜆�.𝜂 (𝜅)

32

RSA: a revised version

This can be improved! Using contexts!

• The types of L0 and L1 can be made the same.
• Doing so allows distributions over world states and linguistic
parameters to be merged into one over contexts.

• Say the type of the context is some 𝜅 = 𝛼1 × ... × 𝛼n. . .

L1 : u → (𝜅 → r) → r

L1(u) = K ★ 𝜆𝜅.factor (PDFS1 (𝜅) (u)) ★ 𝜆�.𝜂 (𝜅)

S1 : 𝜅 → (u → r) → r

S1(𝜅) = U∗ ★ 𝜆u.factor (PDFL0 (u) (𝜅)𝛼) ★ 𝜆�.𝜂 (u)

L0 : u → (𝜅 → r) → r

L0(u) = K ★ 𝜆𝜅.observe(LuM𝜅) ★ 𝜆�.𝜂 (𝜅)

32

RSA: a revised version

This can be improved! Using contexts!

• The types of L0 and L1 can be made the same.
• Doing so allows distributions over world states and linguistic
parameters to be merged into one over contexts.

• Say the type of the context is some 𝜅 = 𝛼1 × ... × 𝛼n. . .

L1 : u → (𝜅 → r) → r

L1(u) = K ★ 𝜆𝜅.factor (PDFS1 (𝜅) (u)) ★ 𝜆�.𝜂 (𝜅)

S1 : 𝜅 → (u → r) → r

S1(𝜅) = U∗ ★ 𝜆u.factor (PDFL0 (u) (𝜅)𝛼) ★ 𝜆�.𝜂 (u)

L0 : u → (𝜅 → r) → r

L0(u) = K ★ 𝜆𝜅.observe(LuM𝜅) ★ 𝜆�.𝜂 (𝜅)

32

RSA: a revised version

This can be improved! Using contexts!

• The types of L0 and L1 can be made the same.
• Doing so allows distributions over world states and linguistic
parameters to be merged into one over contexts.

• Say the type of the context is some 𝜅 = 𝛼1 × ... × 𝛼n. . .

L1 : u → (𝜅 → r) → r

L1(u) = K ★ 𝜆𝜅.factor (PDFS1 (𝜅) (u)) ★ 𝜆�.𝜂 (𝜅)

S1 : 𝜅 → (u → r) → r

S1(𝜅) = U∗ ★ 𝜆u.factor (PDFL0 (u) (𝜅)𝛼) ★ 𝜆�.𝜂 (u)

L0 : u → (𝜅 → r) → r

L0(u) = K ★ 𝜆𝜅.observe(LuM𝜅) ★ 𝜆�.𝜂 (𝜅)

32

RSA: a revised version

This can be improved! Using contexts!

• The types of L0 and L1 can be made the same.
• Doing so allows distributions over world states and linguistic
parameters to be merged into one over contexts.

• Say the type of the context is some 𝜅 = 𝛼1 × ... × 𝛼n. . .

L1 : u → (𝜅 → r) → r

L1(u) = K ★ 𝜆𝜅.factor (PDFS1 (𝜅) (u)) ★ 𝜆�.𝜂 (𝜅)

S1 : 𝜅 → (u → r) → r

S1(𝜅) = U∗ ★ 𝜆u.factor (PDFL0 (u) (𝜅)𝛼) ★ 𝜆�.𝜂 (u)

L0 : u → (𝜅 → r) → r

L0(u) = K ★ 𝜆𝜅.observe(LuM𝜅) ★ 𝜆�.𝜂 (𝜅)

32

RSA: a revised version

This can be improved! Using contexts!

• The types of L0 and L1 can be made the same.
• Doing so allows distributions over world states and linguistic
parameters to be merged into one over contexts.

• Say the type of the context is some 𝜅 = 𝛼1 × ... × 𝛼n. . .

L1 : u → (𝜅 → r) → r

L1(u) = K ★ 𝜆𝜅.factor (PDFS1 (𝜅) (u)) ★ 𝜆�.𝜂 (𝜅)

S1 : 𝜅 → (u → r) → r

S1(𝜅) = U∗ ★ 𝜆u.factor (PDFL0 (u) (𝜅)𝛼) ★ 𝜆�.𝜂 (u)

L0 : u → (𝜅 → r) → r

L0(u) = K ★ 𝜆𝜅.observe(LuM𝜅) ★ 𝜆�.𝜂 (𝜅)
32

Conclusion

Summing up

It is possible to have probabilistic semantics for natural language
that relies on the same machinery as used for logical
interpretations:

• typed 𝜆-calculus
• functional application

This semantics allows one to characterize:

• probability distributions over possible denotations
• probabilities for formulae (given some distribution over
contexts)

• Bayesian update (or marginalization)
• semantic learning, RSA models

. . . using the same logical language one uses to characterize
linguistic meanings.

33

Summing up

It is possible to have probabilistic semantics for natural language
that relies on the same machinery as used for logical
interpretations:

• typed 𝜆-calculus

• functional application

This semantics allows one to characterize:

• probability distributions over possible denotations
• probabilities for formulae (given some distribution over
contexts)

• Bayesian update (or marginalization)
• semantic learning, RSA models

. . . using the same logical language one uses to characterize
linguistic meanings.

33

Summing up

It is possible to have probabilistic semantics for natural language
that relies on the same machinery as used for logical
interpretations:

• typed 𝜆-calculus
• functional application

This semantics allows one to characterize:

• probability distributions over possible denotations
• probabilities for formulae (given some distribution over
contexts)

• Bayesian update (or marginalization)
• semantic learning, RSA models

. . . using the same logical language one uses to characterize
linguistic meanings.

33

Summing up

It is possible to have probabilistic semantics for natural language
that relies on the same machinery as used for logical
interpretations:

• typed 𝜆-calculus
• functional application

This semantics allows one to characterize:

• probability distributions over possible denotations
• probabilities for formulae (given some distribution over
contexts)

• Bayesian update (or marginalization)
• semantic learning, RSA models

. . . using the same logical language one uses to characterize
linguistic meanings.

33

Summing up

It is possible to have probabilistic semantics for natural language
that relies on the same machinery as used for logical
interpretations:

• typed 𝜆-calculus
• functional application

This semantics allows one to characterize:

• probability distributions over possible denotations
• probabilities for formulae (given some distribution over
contexts)

• Bayesian update (or marginalization)
• semantic learning, RSA models

. . . using the same logical language one uses to characterize
linguistic meanings.

33

Summing up

It is possible to have probabilistic semantics for natural language
that relies on the same machinery as used for logical
interpretations:

• typed 𝜆-calculus
• functional application

This semantics allows one to characterize:

• probability distributions over possible denotations

• probabilities for formulae (given some distribution over
contexts)

• Bayesian update (or marginalization)
• semantic learning, RSA models

. . . using the same logical language one uses to characterize
linguistic meanings.

33

Summing up

It is possible to have probabilistic semantics for natural language
that relies on the same machinery as used for logical
interpretations:

• typed 𝜆-calculus
• functional application

This semantics allows one to characterize:

• probability distributions over possible denotations
• probabilities for formulae (given some distribution over
contexts)

• Bayesian update (or marginalization)
• semantic learning, RSA models

. . . using the same logical language one uses to characterize
linguistic meanings.

33

Summing up

It is possible to have probabilistic semantics for natural language
that relies on the same machinery as used for logical
interpretations:

• typed 𝜆-calculus
• functional application

This semantics allows one to characterize:

• probability distributions over possible denotations
• probabilities for formulae (given some distribution over
contexts)

• Bayesian update (or marginalization)

• semantic learning, RSA models

. . . using the same logical language one uses to characterize
linguistic meanings.

33

Summing up

It is possible to have probabilistic semantics for natural language
that relies on the same machinery as used for logical
interpretations:

• typed 𝜆-calculus
• functional application

This semantics allows one to characterize:

• probability distributions over possible denotations
• probabilities for formulae (given some distribution over
contexts)

• Bayesian update (or marginalization)
• semantic learning, RSA models

. . . using the same logical language one uses to characterize
linguistic meanings.

33

Summing up

It is possible to have probabilistic semantics for natural language
that relies on the same machinery as used for logical
interpretations:

• typed 𝜆-calculus
• functional application

This semantics allows one to characterize:

• probability distributions over possible denotations
• probabilities for formulae (given some distribution over
contexts)

• Bayesian update (or marginalization)
• semantic learning, RSA models

. . . using the same logical language one uses to characterize
linguistic meanings.

33

Summing up

It is possible to have probabilistic semantics for natural language
that relies on the same machinery as used for logical
interpretations:

• typed 𝜆-calculus
• functional application

This semantics allows one to characterize:

• probability distributions over possible denotations
• probabilities for formulae (given some distribution over
contexts)

• Bayesian update (or marginalization)
• semantic learning, RSA models

. . . using the same logical language one uses to characterize
linguistic meanings. 33

References i

References

Goodman, Noah D., and Michael C. Frank. 2016. Pragmatic
Language Interpretation as Probabilistic Inference. Trends in
Cognitive Sciences 20:818–829.

Goodman, Noah D., Vikash K. Mansinghka, Daniel Roy, Keith
Bonawitz, and Joshua B. Tenenbaum. 2008. Church: a language
for generative models. In Proceedings of the Twenty-Fourth
Conference on Uncertainty in Artificial Intelligence, UAI’08,
220–229. Arlington, Virginia, USA: AUAI Press.

34

References ii

Goodman, Noah D., and Andreas Stuhlmüller. 2013. Knowledge and
Implicature: Modeling Language Understanding as Social
Cognition. Topics in Cognitive Science 5:173–184.

Lassiter, Daniel, and Noah D. Goodman. 2013. Context, scale
structure, and statistics in the interpretation of positive-form
adjectives. Semantics and Linguistic Theory 23:587–610. Number:
0.

Lassiter, Daniel, and Noah D. Goodman. 2017. Adjectival vagueness
in a Bayesian model of interpretation. Synthese 194:3801–3836.

35

	Introduction
	Formal semantics
	The traditional interpretation
	The probabilistic interpretation
	Probabilistic programs
	Bayesian inference
	Conclusion
	References

