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Introduction

What type of research questions do interpretability studies focus on?

• NLP: identification of linguistic phenomena captured in self-attention layers,
attention heads and neurons (Raganato and Tiedemann, 2018; Belinkov and
Glass, 2019; Vig and Belinkov, 2019; Voita et al., 2019; Rogers et al., 2020)

• CV: learning semantic information from pixels and image patches by tracking
attention across layers (Dosovitskiy et al., 2021; Caron et al., 2021)

• Language-and-Vision:

◦ Cao et al. (2020) probe pre-trained architectures for different vision-and-language
tasks

We need a better understanding of how structures within multi-modal transformers can
be linked with findings from cognitive science (for “true-er“ interpretability). In
addition, we need more information about (i) inductive biases in transformers, (ii) the
effects of features, tasks and model’s architecture on what is learned by the model.

3 / 26



Central Research Questions

1. What kind of knowledge is captured by different layers in image captioning
transformer?

2. Is there a progression of attended representations from low-level local relations to
high-level global dependencies? How does this relate to the hierarchical structure
of language and perception observed in humans (Tenenbaum et al., 2011)?

3. Does language affect vision, e.g. is conceptual linguistic knowledge implicitly
reflected in visual representations?
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Background: Model Architecture

Figure: The model takes objects extracted with F-RCNN and sends them to the self-attention
block; similarly, text is sent to its respective attention block. Later outputs from both
modality-specific self-attentions are fused and processed by cross-attention. Once the next
word is predicted, it is added to the textual input to keep generating until the END token is
produced.

5 / 26



Background: Incorporating Geometry
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Background: Learning from Object Detections

The model is expected to benefit from the conceptual knowledge of the objects, as
provided by the object extractor, pre-trained on human annotations of visual scenes.

7 / 26



Experiment I: Thematic Relatedness

Does our model learn to attend between thematically related objects?
We inspect attention against ground-truth object clusters.
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Analysis I: Thematic Relatedness

Does our model learn to attend between thematically related objects?
We inspect attention against ground-truth object clusters.
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Analysis I: Result

Earlier layers encode visual properties within thematic categories, whereas deeper layers
look beyond automatically identified thematic categories.
Why?

Cosine similarity on objects in different clusters: 0.50 for the same cluster, 0.31 for two
different clusters. Our model learns that semantic similarity entails visual similarity, as
observed in both humans (Rosch, 1975) and machines (Deselaers and Ferrari, 2011).

Deselaers and Ferrari (2011): distant elements are semantically less similar.
Q: Does our model associate distances between elements with their semantic
similarity? Is it able to infer that parts of the objects have to be geometrically close to
each other?
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Analysis II: Visual Proximity and Semantic Similarity
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Analysis II: Visual Proximity and Semantic Similarity
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Analysis II: Result

• In general, earlier layers and deeper layers capture different sources of information.

• Local relations between semantically similar objects are captured in the first layer,
less so in the last layer. These attention weights differ in terms of their strength.

• The model seems to understand that if two objects are close to each other, they
must be semantically similar, e.g. part-whole relations.

• At the same time, the model builds on local knowledge and learns to attend
between more distant objects, perhaps, whole objects, not their parts.

Q: How does attention entropy change between layers? Why would deeper layers be
much more confident (high attention)?
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Analysis III: Attention Entropy

1. attention converges to fewer objects in deeper layers

2. disperse and dissimilar in earlier layers vs. focused and concentrated in deeper
layers

Q: What are the reasons for lower attention entropy in deeper layers?
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Analysis IV: Visual Grounding

Result: The pragmatic nature of the task (knowledge from language) affects learning
in deeper layers since they often learn to mirror pairings of objects and noun phrases
that correspond to them.
Follow-Up Experiment: Looking for mappings between nouns and objects that would
correspond to a different, hypothetical description.
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Results of this Study
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Resembling Mammal Cognition
Hierarchical processing of visual information has been observed in mammals:

Figure: (Hubel and Wiesel, 1959): deeper cells build on simpler cells to process complex
patterns
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Resembling Human Cognition I

Ullman (1984): humans process visual information in sequential order, starting from
simpler relresentations and applying task-dependent rules at a later point.

Figure: For the first two images, we apply base routines, while for the third image we use visual
routines due to the complexity of the task.
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Find the green letter:
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Find the O:
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Find the green O:
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Resembling Human Cognition II

Ben-Yosef and Ullman (2018): humans differentiate between elements ’below’ objects
and ’after’. This ability allows us to frequently bring complex meaning to parts of the
objects.

Note: Context principle by Frege (’it is enough if the sentence as whole has meaning;
thereby also its parts obtain their meanings’) can be also observed in human vision and
computational vision (Geman et al., 2002).
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What did we learn?

• visual representations in image captioning transformer are structured hierarchically

• the observed hierarchy and structure can be linked with human way of processing
visual information: build more complex representations ’beyond’ objects based on
the knowledge ’before’ objects

• important factors that shape multi-modal learning: task pragmatics and model’s
architecture
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