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Question Learnability Simplicity/Informativeness Conclusion

Explaining Semantic Universals

Question

What is the range of semantic variation in human languages?

That is: (with respect to meaning) Which out of all of the logically
possible languages that humans could speak, do they in fact speak?

Answer: cross-linguistically attested meanings are easier to learn than
unattested ones.

Answer: cross-linguistically attested meanings optimize a trade-off
between simplicity and informativeness.

Today: look at each of these answers. Discuss how to ’resolve’ (or
dissolve?) the tension.
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Explaining Universals

Natural Question

Why do the attested universals hold?

Answer 1: learnability (as fencing-in; to be rejected).
(Barwise and Cooper 1981; Keenan and Stavi 1986; Szabolcsi 2010)

The universals greatly restrict the search space that a language learner
must explore when learning the meanings of expressions. This makes it
easier (possible?) for them to learn such meanings from relatively small
input.

Compare: Poverty of the Stimulus argument for UG. (Chomsky 1980;
Pullum and Scholz 2002)
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Explaining Universals

Natural Question

Why do the attested universals hold?

Answer 1: learnability (as fencing-in; to be rejected).
(Barwise and Cooper 1981; Keenan and Stavi 1986; Szabolcsi 2010)

Answer must in a sense be true, but:

Restriction may not help much. (Piantadosi, Tenenbaum, and
Goodman 2013)

Does not explain which universals are attested.
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Explaining Universals

Natural Question

Why do the attested universals hold?

Answer 2: learnability (as temperature).
(hints in van Benthem 1987; Peters and Westerst̊ahl 2006)

Universals aid learnability because expressions satisfying the universals are
easier to learn than those that do not.
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The Goal

General Hypothesis

Semantic universals arise because expressions satisfying them are easier
to learn than those that do not.

Auxiliary assumption: Languages tend to lexicalize easier-to-learn
meanings.

Challenge: provide a model of learning according to which expressions
satisfying semantic universals are in fact easier to learn.
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Question Learnability Simplicity/Informativeness Conclusion

Determiners

Determiners:

Simple: every, some, few, most, five, . . .
Complex: all but five, fewer than three, at least eight or fewer than
five, . . .

Semantics:

All languages have NPs, whose semantic function is to express
generalized quantifiers. (Barwise and Cooper 1981)
Denote type 〈1, 1〉 generalized quantifiers: sets of models of the form
〈M,A,B〉 with A,B ⊆ M.
For example:

JeveryK = {〈M,A,B〉 : A ⊆ B}
JthreeK = {〈M,A,B〉 : |A ∩ B| ≥ 3}
JmostK = {〈M,A,B〉 : |A ∩ B| > |A \ B|}
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Monotonicity

Many Amsterdammers ride an omafiets to work.
⇒ Many Amsterdammers ride a bike to work.

So: ‘many’ is upward monotone.

Few Amsterdammers ride a bike to work.
⇒ Few Amsterdammers ride an omafiets to work.

So: ‘few’ is downward monotone.

At least 6 or at most 2 Amsterdammers ride an omafiets to work.
6⇒ (and 6⇐) At least 6 or at most 2 Amsterdammers ride a bike to
work.

So: ‘at least 6 or at most 2’ is not monotone.
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Monotonicity Universal

Q is upward monotone:
if 〈M,A,B〉 ∈ Q and B ⊆ B ′, then 〈M,A,B ′〉 ∈ Q

Q is downward monotone:
if 〈M,A,B〉 ∈ Q and B ′ ⊆ B, then 〈M,A,B ′〉 ∈ Q

Monotonicity Universal

All simple determiners are monotone.
(Barwise and Cooper 1981)
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Monotonicity: Results

Shane Steinert-Threlkeld and Jakub Szymanik, “Learnability and Semantic
Universals”, in Semantics & Pragmatics, http://dx.doi.org/10.3765/sp.12.4.

Code and data: https://github.com/shanest/quantifier-rnn-learning.
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Question Learnability Simplicity/Informativeness Conclusion

Quantity

At least three buildings at Science Park are blue.
There are exactly as many blue and non-blue buildings on El Camino
Real as at Science Park.
⇒ At least three buildings on El Camino Real are blue.

So: ‘at least three’ is quantitative.

The first three buildings at Science Park are blue.
There are exactly as many blue and non-blue buildings on El Camino
Real as at Science Park.
6⇒ The first three buildings on El Camino Real are blue.

So: ‘the first three’ is not quantitative.
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Quantity Universal

Q is quantitative:
if 〈M,A,B, . . . 〉 ∈ Q and A ∩ B,A \ B,B \ A,M \ (A ∪ B) have the
same cardinality (size) as their primed-counterparts, then
〈M ′,A′,B ′, . . . 〉 ∈ Q

Quantity Universal

All simple determiners are quantitative.
(Keenan and Stavi 1986; Peters and Westerst̊ahl 2006)
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Quantity: Results

Shane Steinert-Threlkeld and Jakub Szymanik, “Learnability and Semantic
Universals”, in Semantics & Pragmatics, http://dx.doi.org/10.3765/sp.12.4.

Code and data: https://github.com/shanest/quantifier-rnn-learning.
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Question Learnability Simplicity/Informativeness Conclusion

Conservativity

Many Amsterdammers ride an omafiets to work.
≡ Many Amsterdammers are Amsterdammers who ride an omafiets
to work.

So: ‘many’ is conservative.

Only Amsterdammers ride an omafiets to work.
6≡ Only Amsterdammers are Amsterdammers who ride an omafiets
to work.

So: ‘only’ is not conservative.
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Question Learnability Simplicity/Informativeness Conclusion

Conservativity Universal

Q is conservative:
〈M,A,B〉 ∈ Q if and only if 〈M,A,A ∩ B〉 ∈ Q

Conservativity Universal

All simple determiners are conservative.
(Barwise and Cooper 1981; Keenan and Stavi 1986)
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Conservativity: Results

Shane Steinert-Threlkeld and Jakub Szymanik, “Learnability and Semantic
Universals”, in Semantics & Pragmatics, http://dx.doi.org/10.3765/sp.12.4.

Code and data: https://github.com/shanest/quantifier-rnn-learning.
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Question Learnability Simplicity/Informativeness Conclusion

Conservativity: Discussion

The data generation does not ‘break the symmetry’ between A \ B
and B \ A.

Conservativity may be a syntactic/structural constraint, not a
constraint on the lexicon.
[See Fox 2002; Sportiche 2005; Romoli 2015]
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Quantifiers: Summary

D〈et,〈et,t〉〉

monotonequantitative
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Question Learnability Simplicity/Informativeness Conclusion

The Order of Color Terms

Berlin and Kay 1969; Regier, Kay, and Khetarpal 2007; Gibson et al. 2017
https://www.vox.com/videos/2017/5/16/15646500/color-pattern-language
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Question Learnability Simplicity/Informativeness Conclusion

Convexity

While natural languages vary in how many color terms they have and
which specific colors are denoted, it seems that all color terms denote
very ‘well-behaved’ regions of color space.

X is convex just in case if x , y ∈ X , then for every t ∈ (0, 1),

tx + (1− t)y ∈ X
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Question Learnability Simplicity/Informativeness Conclusion

Convexity universal

Convexity Universal

All color terms denote convex regions of color space.
(Gärdenfors 2014; Jäger 2010)
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Question Learnability Simplicity/Informativeness Conclusion

Partitioning CIE-L*a*b* Space

We generated 300 artificial color-naming systems by partitioning the CIELab color
space into distinct categories. CIELab approximates human color vision. It is
perceptually uniform, meaning that the distance in the space corresponds well with the
visually perceived color change.
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Example Partitions of 2D space
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Question Learnability Simplicity/Informativeness Conclusion

Degree of convexity

We measured the degree of convexity as the (weighted) average area of
the convex hull of each color that is covered by that color.
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Convexity: Results

Shane Steinert-Threlkeld and Jakub Szymanik, “Ease of learning explains semantic
universals”, in Cognition, https://doi.org/10.1016/j.cognition.2019.104076.

Code and data: https://github.com/shanest/color-learning.
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Question Learnability Simplicity/Informativeness Conclusion

Convexity: Commonality Analysis

Variable R2 ∆R2

conn 0.180 0.0003
smooth 0.008 0.0365

degree of convexity 0.505 0.3726
conn · smooth 0.054 0.0019

min size 0.014 0.0000
max size 0.001 0.0000

median size 0.000 0.0007
min / max 0.043 0.0014
max − min 0.000 0.0000

Shane Steinert-Threlkeld and Jakub Szymanik, “Ease of learning explains semantic
universals”, in Cognition, https://doi.org/10.1016/j.cognition.2019.104076.

Code and data: https://github.com/shanest/color-learning.
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Question Learnability Simplicity/Informativeness Conclusion

Controlling for Linear Separability

Variable R2 ∆R2

degree of convexity 0.505 0.1288
linear separability 0.418 0.0005

Shane Steinert-Threlkeld and Jakub Szymanik, “Ease of learning explains semantic
universals”, in Cognition, https://doi.org/10.1016/j.cognition.2019.104076.

Code and data: https://github.com/shanest/color-learning.
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Cluster Analysis

Shane Steinert-Threlkeld and Jakub Szymanik, “Ease of learning explains semantic
universals”, in Cognition, https://doi.org/10.1016/j.cognition.2019.104076.

Code and data: https://github.com/shanest/color-learning.
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Colors: Summary

Dcolor

convex
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Types of Clause-Embedding Predicates

Carlos believes that Amsterdam is the capital of the Netherlands.
# Carlos believes where Amsterdam is.

# Carlos wonders that Amsterdam is the capital of the Netherlands.
Carlos wonders where Amsterdam is.

Carlos knows that Amsterdam is the capital of the Netherlands.
Carlos knows where Amsterdam is.
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Types of Predicates

type declarative interrogative example

rogative x X ‘wonder’
anti-rogative X x ‘believe’

responsive X X ‘know’

Lahiri 2002; Theiler, Roelofsen, and Aloni 2018; Uegaki 2018
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Veridicality

Maria knows that the canal has 7 bridges.
 The canal has 7 bridges.

So: ‘know’ is veridical with respect to declarative complements.

Maria knows how many bridges the canal has.
The canal has 7 bridges.
 Maria knows that the canal has 7 bridges.

So: ‘know’ is veridical with respect to interrogative complements.
So: ‘know’ is veridically uniform.
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Veridicality

Maria is certain that the canal has 7 bridges.
6 The canal has 7 bridges.

So: ‘be certain’ is not veridical with respect to declarative complements.

Maria is certain about how many bridges the canal has.
The canal has 7 bridges.
6 Maria is certain that the canal has 7 bridges.

So: ‘be certain’ is not veridical with respect to interrogative
complements.
So: ‘be certain’ is veridically uniform.
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The Veridical Uniformity Thesis

Veridical Uniformity Universal

All responsive predicates are veridically uniform.
(Spector and Egré 2015; Theiler, Roelofsen, and Aloni 2018)
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Four Responsive Predicates

Veridical
Predicate Lexical Entry: λPT .λp〈s,t〉.λae .∀w ∈ p : . . . Declarative Interrogative

know w ∈ doxa
w ∈ P X X

wondows w ∈ doxa
w ⊆ info(P) and doxa

w ∩ q 6= ∅ ∀q ∈ alt(P) X x
knopinion w ∈ doxa

w and (doxa
w ∈ P or doxa

w ∈ ¬¬P) x X
be certain doxa

w ∈ P x x

Table: Four predicates, exemplifying the possible profiles of veridicality.

The semantics are given in terms of inquisitive semantics (Ciardelli,
Groenendijk, and Roelofsen 2018).
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Veridical Uniformity: Results

Shane Steinert-Threlkeld, “An Explanation of the Veridical Uniformity Universal”, in
Journal of Semantics, https://doi.org/10.1093/jos/ffz019.

Code and data: https://github.com/shanest/responsive-verbs.
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Responsive Predicates: Summary

Dresponsive

veridically uniform
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Interim Summary

Ease of learning, measured as the speed of convergence of NNs, can
explain the presence of linguistic universals in various semantic domains,
including both function and content words.

Are there other explanations? If so, how to choose between them?
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Simplicity/Informativeness Trade-off

Kemp, Xu, and Regier 2018

49



Question Learnability Simplicity/Informativeness Conclusion

Simplicity/Informativeness: Definitions

Cognitive cost:
Minimal description length in a ‘language of thought’ (or something
similar)

Communicative cost:
Ease with which a Sender can convey an intended meaning to a
Receiver using the language (Lewis 1969; Skyrms 2010)
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Simplicity/Informativeness: Kinship

Kemp and Regier 2012
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Complexity of Quantifiers

Boolean Set-Theoretic Numeric

∧, ∨, ¬ ∩,∪,⊂, | · | /,+,−, >,=,%

Table: The operators in the grammar for generating quantifiers.
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Informativeness of Quantifiers

I (L) :=
∑

M

P(M)
∑
Q∈L

P(Q|M)
∑

M′∈Q

P(M′|Q) · u(M′,M)

u(M′,M) =
1

1 + d(M′,M)

where d(M′,M) =
∑

X∈A\B,A∩B,B\A,M\(A∪B)

max{0, |X | − |X ′|}
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Experiment Set-up

1 For each num of words n ∈ {1, . . . , 10}, generate 8000 languages:

Choose m ≤ n uniformly at random
Sample m quantifiers from quasi-natural set (Keenan and Paperno
2012; Paperno and Keenan 2017):

1 generalized existential
2 generalized intersective
3 proportional

All w/ minimal formulas w/ ≤ 12 operators

2 For each language, measure distance to the Pareto frontier

Estimated the true Pareto front using an evolutionary algorithm
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Main Results

βnaturalness = −0.3

Shane Steinert-Threlkeld, “Quantifiers in natural language optimize the

simplicity/informativeness tradeoff”, in Amsterdam Colloquium 57
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Experiment 2: Degrees of Semantic Universals

Key idea: use information theory to measure degrees of the various
semantic universals.

Do artificial languages with higher degrees lie closer to the Pareto
frontier?
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Degree of Monotonicity

1Q(M) = 1 iff M ∈ Q

1
�
Q (M) = 1 iff ∃M′ � M s.t. M′ ∈ Q

mon(Q) :=
I (1Q;1�Q )

H(1Q)

=
H(1Q)− H(1Q|1�Q )

H(1Q)

= 1−
H(1Q | 1�Q )

H(1Q)

Note: different variables than 1
�
Q for other universals. Final degree:

average across A/B arguments of maximum of upward/downward
degrees.
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Results: Degree of Monotonicity

ρ = −0.0590 (boostrapped CI: [−0.07460891,−0.04257208])

Shane Steinert-Threlkeld, “Quantifiers in Natural Language: Efficient Communication

and Degrees of Semantic Universals”, under review 60



Question Learnability Simplicity/Informativeness Conclusion

Results: Degree of Conservativity

ρ = 0.0725 (bootstrapped CI: [0.0565, 0.0883])

Shane Steinert-Threlkeld, “Quantifiers in Natural Language: Efficient Communication

and Degrees of Semantic Universals”, under review 61
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Quantifiers: Summary

More natural languages are more optimal

Among a random sample of languages, degrees of monotonicity and
conservativity are not strongly correlated with optimality

Possibly: universals are an epiphenomenon of the more fundamental
pressure for communication

Todo: test with other sampling procedures
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Indefinite Pronouns

Indefinite pronouns in English: someone, anyone, no one, ...

Why indefinite pronouns?

1 Rare domain of function words for which rich cross-linguistic
data-set is available.

2 There are numerous semantic universals in this domain that are to
be explained.

64
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Universals for Indefinites

65
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Meaning Space

(1) Specific known flavor [the indefinite pronoun refers to a specific
individual that the interlocutors can uniquely identify]:
Someone managed to mess this up — we all know who!

(2) Specific unknown flavor [the indefinite pronoun refers to a
specific individual that the interlocutors cannot uniquely identify]:
I heard that someone failed, but I don’t know who.

(3) Non-specific flavor [the indefinite pronoun is interpreted as an
existential quantifier over some domain of possible referents, not
referring to a specific individual]:
You should probably talk to someone else about this too.

(4) Negative polarity flavor [the indefinite pronoun is interpreted as
an existential quantifier over a widened domain of possible
referents]:
Less than three companies hired anyone this year.

(5) Free choice flavor [the indefinite pronoun is interpreted as a
wide-scope universal quantifier over some domain of possible
referents]:
You can hire almost anyone here: most of them great.

(6) Negative indefinite flavor [the indefinite pronoun is interpreted
as a negated existential quantifier over some domain of possible
referents]:
Who went to the party? No one.
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Main Results

Milica Denić, Shane Steinert-Threlkeld, Jakub Szymanik “Complexity/informativeness

tradeoff in the domain of indefinite pronouns”, in Proceedings of SALT
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Results: Experiment 2

Milica Denić, Shane Steinert-Threlkeld, Jakub Szymanik “Complexity/informativeness

tradeoff in the domain of indefinite pronouns”, in Proceedings of SALT
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Modals: Universals

The target: expressions like many English auxiliaries (may, must, can,
. . . ) used to express the relation of a clause to non-actual worlds.

Modals can be ambiguous in their flavor:

epistemic deontic · · ·

weak X X
strong

Table: English may

Modals can be ambiguous along their force:

epistemic deontic · · ·

weak X
strong X

Table: St’át’imcets -ka (Rullmann, Matthewson, and Davis 2008)
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Modals: Universals

On the basis of a detailed study of 6 typologically unrelated languages,
Nauze (2008) proposes:

Single Axis of Variability

A modal may be ambiguous in either force or flavor, but not both.

This rules out hypothetical modals like mought:

epistemic deontic · · ·

weak X
strong X

Table: Hypothetical mought

Vander Klok (2013), as reported by Matthewson (2016): within the
root/epistemic domain, a modal system may have elements ambiguous
along one or the other dimension, but not some modals ambiguous in one
and some the other.
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Complexity of Modals

Language of Thought: basic propositional language, with atoms for each
force and for each flavor.

Shortest formula: write DNF for a modal meaning, apply algorithm
generalized from Feldman (2001) to minimize.

Modal Meaning representation Shortest Formula in LOT Complexity (# of atoms)

may
e d c t

∃ X X
∀

∃ ∧ (e ∨ d) 3

mought
e d c t

∃ X
∀ X

(∃ ∧ e) ∨ (∀ ∧ d) 4

notcirc
e d c t

∃ X X X
∀ X X X

c 1
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Informativeness of Modals

I (L) :=
∑

M

P(M)
∑
m∈L

P(m|M)
∑

M′∈m
P(M′|m) · u(M′,M)

u(M′,M) = 0.5 · 1force(M)=force(M′) + 0.5 · 1flavor(M)=flavor(M′)
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Modals: Main Results

Nathaniel Imel and Shane Steinert-Threlkeld, “Modals in natural langauge optimize

the simplicity/informativeness trade-off”, forthcoming in Proceedings of SALT 74
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Explaining Universals

Why do semantic universals arise?

(I) Because expressions satisfying them are easier to learn.

(II) Because languages optimize a trade-off between simplicity and
informativeness.

General questions:

Are these explanations in competition with each other?

How can we adjudicate between them?
(Especially in the presence of other pressures exerting their influence
on linguistic structure)

Tangentially related: can these inform model / dataset building for
plausible biases in NLP systems?

One idea: using tools from language evolution: does one, but not the
other, increase as languages evolve (in simulation, and in the lab)?
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Extensions

Does CONS arise from a biased linguistic distribution?
Mhasawade et al. 2018: NO

Generalizing the learnability experiments

Iterated learning with neural agents produces monotone quantifiers
Carcassi, Steinert-Threlkeld, and Szymanik 2021

Do the degrees of universals aid learnability in a Bayesian setting?
[D. Johnson CLMS thesis suggests not]

More domains
cf Uegaki; Enguehard and Spector on logical vocabulary

Better cross-linguistic data (forthcoming modal database)

Open source tool for doing efficiency analyses (ALTK)

Information-bottleneck analyses in these domains / full comparison
thereof
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Other Things We’re Working On

Emergent communication:

Under what conditions do artificial agents learn to speak human-like
languages (e.g. compositional, with functional vocabulary)?

Using these tools for real NLP tasks: ongoing work on unsupervised
machine translation.

Interpretability / analysis:

LMs use monotonicity to assess NPI licensing (Jumelet et al 2021;
Lapastora et al ongoing)

Some parts-of-speech (but not others) are represented similarly
cross-linguistically in multilingual models (Shapiro et al 2021)

Representations of semantically similar tokens are more similar
cross-linguistically [Shivin Thukral; ongoing]
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Other Things We’re Working On

Multilingual human/machine processing:

Bilingual alignment transfers to multilingual alignment for
unsupervised bitext mining [Tien and S-T 2022]

Masked segmental language modeling [Downey et al 2021; 2022]

Learning to translate by learning to communicate (i.e. EC
fine-tuning of multilingual pretrained models) [S-T et al 2022; +
active / ongoing]

Artificial language learning at scale: which linguistic features are
easiest to learn (as a function of native languages) [Shapiro, ongoing]
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The End

Thank you! Thoughts?
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RNNs
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Long Short-Term Memory Network

σ σ tanh σ

×

×

+

tanh

×

ht−1

ct−1 ct

xt

ft

it ĉt
ot

ht

ht

Hochreiter and Schmidhuber 1997
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Quantifier Input

∈ A? ∈ B? xi

o1 X X
[
1 0 0 0 0 1

]
o2 X x

[
0 1 0 0 0 1

]
o3 x X

[
0 0 1 0 0 1

]
o4 X X

[
1 0 0 0 0 1

]
o5 x x

[
0 0 0 1 0 1

]
xi : ith input to LSTM

First four dimensions: where in the model is oi

Last two dimensions: label for quantifier.
Quantifiers: ‘every’ and ‘some’ (two total)
This example: Q = ‘some’

True label y =
[
1 0

]
, because sentence is True.
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Responsive Predicate Input

Suppose W = {w1,w2,w3}, and we are considering an example with
Q = {{w1} , {w2,w3}}.

world encoded

w1

[
1 0 0

]
w2

[
0 1 1

]
w3

[
0 1 1

]
We concatenate all of the following together:

Encoding of each world

A label for the predicate (e.g.
[
0 1 0 0

]
)

A label for the world of evaluation (e.g.
[
0 0 1

]
)
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Confusion Matrices

all know be-certain knopinion wondows
label 1 0 1 0 1 0 1 0 1 0

1 15412.2 1176.4 3881.1 261.7 3878.5 240.8 3843.0 349.2 3809.6 324.7
0 587.8 14823.7 118.9 3738.3 121.6 3759.2 156.9 3650.9 190.4 3675.3

Table: Average confusion matrix across all 60 trials, in total and by verb. The
rows are predicted truth-value, and the columns the actual truth value.
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Distributions by Verb

Figure: Distributions (Gaussian kernel density estimates) of the true/false
positives/negatives by verb.
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Accuracy by Semantic Properties of Input

factor value know be-certain knopinion wondows

complement
declarative 0.983 0.986 0.954 0.983

interrogative 0.923 0.924 0.921 0.841

w ∈ doxa
w

1 0.964 0.957 0.954 0.947
0 0.919 0.953 0.887 0.924

doxa
w ∈ P

1 0.961 0.966 0.949 0.947
0 0.945 0.943 0.929 0.922

Table: Accuracy by verb and various semantic features of the input, aggregated
across all trials.
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Algorithm for Generating Color Systems

Algorithm 1 Generate an artificial color system

Parameters: temp (t), conn (c), initial ball size (b)
Inputs: a set X , distance measure d , number of categories N

unlabeled← X ; labeledi ← ∅ (∀i ∈ {1, . . . ,N})
Choose x1, . . . , xN uniformly at random from X
for i = 1, . . . ,N do

labeledi += xi ; pop(xi ,unlabeled)
for all x ∈ NearestNeighbors(xi , b) do

labeledi += x ; pop(x ,unlabeled)
end for

end for
while unlabeled 6= ∅ do

di ← 1/(minx′∈labeledi d(x , x ′))1/4

pi ← edi/t/
∑

j e
dj/t

Choose label i with probability pi
labeledi += x ; pop(x ,unlabeled)

end while
for i = 1, . . . ,N, ordered by increasing size of labeledi do

Mi ← ConvexHull(labeledi ) \ labeledi

Ri ← ClosestPoints(Mi , labeledi , c · |Mi |)
for all x ∈ Ri do

labeledi += x ; pop(x , cell(x))
end for

end for
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