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Motivations (1/3): Spatial Language In Image Descriptions
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There is a teddy bear partially under a go cart.
Figure: VisualGenome 2318741
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Motivations (1/3): Spatial Language In Image Descriptions
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Syntactic and linguistic features
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Motivations (2/3): Processes of Grounding and Compositionality
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Two kinds of processes and representations:
e Bottom-up: data-driven / recognizing objects.

e Top-down: expectation-driven / recognizing relations.

¢ How to integrate both in one system?




Motivation (3/3): Deep Neural Networks Paradigm
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Aims and Questions
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e Aims:

¢ To integrate top-down spatial knowledge in recurrent language model.
¢ To investigate grounding of image descriptions in feature representations.
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e Aims:

¢ To integrate top-down spatial knowledge in recurrent language model.

o To investigate grounding of image descriptions in feature representations.
e Questions:

o What kinds of top-down spatial knowledge improves generation?
¢ How does each feature contribute to generating image descriptions?
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Aims and Questions
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e Aims:

¢ To integrate top-down spatial knowledge in recurrent language model.

o To investigate grounding of image descriptions in feature representations.
e Questions:

o What kinds of top-down spatial knowledge improves generation?

© How does each feature contribute to generating image descriptions?
e Top-down spatial knowledge:

¢ Localisation
¢ Semantic roles
¢ Relational spatial features
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Methodology

Build comparable neural networks with spatial knowledge:
e Change spatial attention module.

e Enrich representations with spatial knowledge.
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Methodology

UNIVERSITY OF
GOTHENBURG

Build comparable neural networks with spatial knowledge:
e Change spatial attention module.
e Enrich representations with spatial knowledge.
Experiments:
e Compare models’ performance (loss / perplexity).

e Inspect contribution of features in word generation.
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Baseline (1): Bottom-up Encoder-Decoder (simple)

ResNet50
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Baseline (2): Bottom-up Spatial Attention (bu49) &
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Method (1): Top-down localisation (1/2)
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Method (1): Top-down localisation (2/2)
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Method (2): Top-down role assignment @
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Method (3): Vectorizing Spatial Configurations (1/2)
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Method (3): Vectorizing Spatial Configurations (2/2) @
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Method (3): Vectorizing Spatial Configurations (2/2) @
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Method (3): Vectorizing Spatial Configurations (2/2)
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Experiments: Dataset
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Dataset:

VisualGenome (Krishna et al., 2017)

108K Images.

(obj1, rel, obj>) — token sequence (up to 15 tokens).

1.6 million examples (15 unique descriptions for each image)




Experiments: Dataset
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Dataset:
e VisualGenome (Krishna et al., 2017)
e 108K Images.
o (obji, rel, objp) — token sequence (up to 15 tokens).

1.6 million examples (15 unique descriptions for each image)

Training:

Training on 95% of images

Experiment on 5% (80K descriptions)




Experiments: Overall Performance

<Overall>
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Figure: Cross-entropy loss of different model configurations on evaluation data.
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Experiments: Qualitative Examples (Beam Search)
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( “bat", “over”, “shoulder")

( "hood", “above”, “oven”)
simple player simple window
bu49 man wearing shirt bud9 pot on stove
td bat !" hand td oven has door
td order bat in hand td order vent above sink
td order + VisKE  bat in hand

td order + VisKE  cabinet has door
Figure: From VisualGenome: 24120511 24132822

IHerholz (2005): CC BY-SA 2.0. et
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Experiments: near, inside @
Role assighment effect:

X roles are predictable. (objects predict context and their own roles)
s-features effect:

X geometric features are not in 2D dimension.
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Experiments: above, below
Role assignment:
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V' above and below are more geometric (not predictable from objects alone).

s-features effect:

X below is not frequent in training.
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Experiments: left, right

Role assignment and s-features effect:

X left, right are not frequent in training.

left right
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Experiments: Features Contributions
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Magnitude of each feature after applying attentions:
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Experiments: Examples of features contributions
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Experiments: Examples of features contributions
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Experiments: Feature contribution based on spatial roles
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Experiments: Feature contribution based on token’s order

Mo sp Normalized-Avg B VisKE
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Summary
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We
v’ integrated semantic structures as top-down knowledge in Recurrent LM.
v' compared three groups of top-down spatial knowledge:
e Localisation (bounding boxes)

e Role Assignment (TRAGET-LANDMARK)
e Spatial Configuration (s-features)

v" measured their effect in model performance.

v’ inspected the feature contributions for different semantic roles.
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Conclusions
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e Overall top-down knowledge lead to better generation (perplexity measures).

Localisation has the strongest effect.

Effects of role assignment seems to be dependent on the relations:

X more functional / predictable roles (e.g. inside)
v/ more geometric relations (e.g. above, below)
X rare relations (e.g. left, right)

e The effects of s-features are small.
— It is depends on semantic roles assignments.

Contextual embeddings are the most attended features.
— Its contribution is increasing along the sequence.

<

Corpus bias (image compositions)

<

Task bias (image descriptions are not made to locate objects; i.e. left, right)
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Thank you!

Source code and demo
http://bit.1ly/36ixFfR

=

27/30


http://bit.ly/36ixFfR
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