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In most classical theories of formal semantics (Montague, 1974, Bar-
wise and Cooper, 1981, Keenan and Falz, 1985, Heim and Kratzer, 1998,
Peters and Westerståhl, 2006), the meaning of a sentence is identified
with its truth conditions. These are specified as functions from a do-
main of indices (possible worlds, contexts, situations, etc.) to the range
of Boolean values {0,1}. Inference is treated as a species of logical im-
plication, such that every valuation (or model) for which the premises
of an argument are true is one for which the conclusion is true.

While truth-conditional theories of meaning have offered important
insights into the semantics of natural languages, they have also missed
at least two central elements of the way in which humans interpret the
expressions of their language. First, these theories cannot accommodate
vagueness, which is a pervasive feature of natural languages. Speakers
take most sentences to be more or less true, monadic and relational
predicates to apply to a greater or lesser extent to n-tuples of objects,
adverbs to be approximately true of the events and situations denoted
by verb phrases, etc. A common response to this issue is to treat seman-
tic theory as a component of an idealised linguistic competence which
is categorical in nature. Vagueness is then relegated to performance
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and processing effects.1 In order to have any substance, this response
must provide a treatment of performance that permits one to predict
the observed properties of vagueness when it is combined with the pro-
posed theory of competence. To the best of our knowledge, no such
account has yet been constructed. In fact, it is reasonable to suggest
that vagueness and ambiguity promote information-theoretic efficiency
in communication (Piantadosi et al., 2011). If this is the case, then se-
mantic vagueness is integral to the design of natural language, and it
cannot be relegated to a side effect of performance factors.

Second, updating meaning to take account of new information is an
important aspect of interpretation. While dynamic semantic approaches
(Heim, 1982, Groenendijk and Stokhof, 1991, Kamp and Reyle, 1993,
Chierchia, 1995, Cann et al., 2009) capture certain aspects of this
process, and some are even amenable to computational implementa-
tion (Itegulov et al., 2018, Bernardy and Chatzikyriakidis, 2019a,b),
they are largely restricted to extending scope, binding, and co-reference
across sentences in discourse. They also tend to rely on the introduction
of special-purpose update mechanisms, which are added to the machin-
ery of classical semantic theories, to express these dynamic phenomena.

In this chapter we present Bayesian Inference Semantics (BIS). This
system assigns probability conditions to inferences, and it defines func-
tions for the typed constituents of sentences that generate these condi-
tions compositionally. This framework permits us to capture vagueness
through probability distributions for predicates, and the sentential as-
sertions that are constructed from them. Vagueness is, then, a core
property of expressions in our account. This allows us to provide natu-
ral representations of scalar adjectives and vague classifier terms, while
these are problematic for classical semantic theories. Using probability
distributions over the definitions of predicates also permits us to han-
dle the sorites paradox in a straightforward way. We sustain the fuzzy
boundaries of classifiers through these distributions, without invoking
sharp borders between objects to which classifier terms apply, and those
to which they do not.

BIS is designed to handle probabilistic inferences over a wide range
of syntactic constructions and semantic types. We illustrate these with
an inference test suite. The role of new information in updating the
interpretation of a sentence falls directly out of our Bayesian models
for estimating the probability values of the sentences in the premises
and the conclusions of an argument. We do not require special-purpose

1A similar problem arises in syntax, where the defence of classical binary accounts
of grammaticality rely heavily on the competence–performance distinction. See Lau
et al. (2017) for a critical discussion of this approach.
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update mechanisms, and we capture the effect of new information on
the interpretation of all major constituents of a sentence. The lexical
content of the premises of an argument specifies the priors of the con-
ditional probability in terms of which the posterior probability of the
conclusion is estimated. As information is added through new premises,
possibly modifying the lexical content of the premises, the probability
value of the conclusion changes.

Many classical formal semantic theories take the indices of interpre-
tive functions to be possible worlds of the sort used in Kripke frame
semantics (Montague, 1974). If these are understood as maximal worlds
in which every proposition of the language has a defined truth-value,
then they raise serious problems of representational tractability (Lap-
pin, 2015, 2018). Probability theorists also frequently talk about dis-
tributing probability over possible worlds (Halpern, 2017). In fact,
they restrict these worlds to the set of situations corresponding to
the outcomes for which probabilities are specified in a random vari-
able. The other events and situations required for a complete world are
marginalised out of the probability distribution. Therefore, we avoid
the intractability of representing full worlds by using the non-maximal
situations of probability theory.

Estimating the probability of a sentence involves reasoning under
uncertainty. The obvious question is, then, what is the source of un-
certainty that grounds our probabilistic semantics. Epistemicists like
Williamson (1994) use probability to model vagueness as uncertainty
about the boundary within which a predicate applies to the set of ob-
jects of which it is true. They posit the existence of such a boundary,
but take it to be unknown in the general case. Goodman and Lassiter
(2015), Lassiter and Goodman (2017) adopt a similar view in assuming
a contextually determined predicate boundary which hearers estimate
in interpreting the utterances of a particular speaker.

By contrast, Edgington (2001) and Lappin (2018) reject the exis-
tence of absolute boundaries for property terms, and take them to be
inherently indeterminate. Lappin (2018) regards the uncertainty that
generates vagueness to be the result of the language acquisition process
in which speakers learn to apply the predicates and other expressions of
their language to real-world situations under supervision of competent
speakers. When language learners use these terms in new situations
they generalise them by estimating the likelihood that a given predica-
tion holds, according to the competent speakers of the language. This
underdetermination of meaning can persist into mature language use.
It is an effect of semantic learning as a supervised process.

BIS is compatible with either of these accounts of vagueness. It spec-
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ifies a probability distribution over the boundaries of a property for a
set of objects in a property space. One could take this distribution
to be accessible to further constraints to the point that the bound-
ary becomes fully determinate. On this approach, enough information
about the world may resolve the probability of a predication to 1 or 0.
Alternatively, we could take the distribution to be resistant to such de-
termination. On that assumption, the boundary over which probability
is distributed becomes intrinsically unknowable, and hence it effectively
disappears. As both perspectives seem viable, we do not rule out either
of them here.

In a classical logic an inference is valid iff under every assignment
for which the conjunction of the premisses is evaluated as 1, the con-
clusion also receives the value 1. By contrast, a probabilistic semantics
takes the Boolean truth-values {0,1} to be limit points in a distribu-
tion of possible values [0,1]. Inferences receive conditional probabilities
P (Conclusion|Premisses) = p, where p is the the likelihood that the
conclusion holds, given that the premisses do.

In designing our sampling and evaluation procedures for BIS we have
sought to sustain classical validity as determined by first-order logic, as
well as valid inferences that depend on standard interpretations of non-
logical predicates. Our implementation is still under development, and
so we have not yet succeeded in capturing all of the classical inferences
in our test set.

In the work presented here we have relied on our collective judge-
ments to determine probabilities that our models assign to non-valid
inferences. These models are intended as a proof of concept for our
project. We anticipate that in future work we will use crowd sourcing
and systematic corpus analysis to obtain more robust data for specify-
ing the probability values of the inferences in our test set. We will also
experiment with deep learning methods to extract interpretations of
predicates and other expressions, in a way that provides reliable wide
coverage constraints for the models that we use to generate probabilities
for inferences.

A central feature of BIS is the uniform assignment of priors to par-
ticular lexical constituents. We do not introduce any lexeme-specific
knowledge.2 Clearly, to obtain priors which incorporate real-world
knowledge, properly grounded in speakers’ representations of meaning,
it is necessary to update these priors with suitable corpus-based rep-
resentations. This is possible in principle, but here we are presenting

2As always when using Bayesian modelling, the priors have an influence on the
behaviour of the system (§5.4).
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FIGURE 1: Phases in our system. Syntax is first interpreted as proba-
bilistic expressions. Such expressions can be given a precise mathemat-
ical semantics. They can also be evaluated approximately, using Monte
Carlo methods.

a “blank-state” system, with uniform priors, as a platform for experi-
menting with Bayesian semantics. Developing it into a wide-coverage
framework that generates the interpretation of naturally occurring sen-
tences by correctly predicting their probability conditions is a signifi-
cant research challenge. The ultimate viability of our proposed program
will depend upon meeting this challenge.

The core idea of BIS is that properties and entities are represented
as spaces consisting of points (discrete or continuous). These points can
be measured, and their density is computed by summation (the discrete
case) or integration (the continuous case). In general, the probability
of a predication is estimated by measuring the density of the relevant
entities in the property space corresponding to the predicate.

Our system, BIS, consists of several subsystems, shown schematically
in Fig. 1 (as labelled arrows) together with the intermediate represen-
tations that they use (in boxes). We describe and analyse each of these
components in the body of the chapter. To get a sense of the interme-
diate representations, and how the parts of the system are articulated,
we go through an example inference here, presented schematically.

Consider the following inference problem:
Most birds fly
A few birds fly

We wish to compute the probability
P (A few birds fly | Most birds fly)

and test if its value is closer to 1 than 0.
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The sentences are first parsed, yielding abstract syntax trees. In
practice we use the Grammatical Framework (GF) tool (Ranta, 2004),
but this is not essential to our account. Any parser which produces
syntactic structures compatible with Montague-style categories would
be suitable (see §5.1 for details). The parses that we obtain for the
premise and the hypothesis, respectively, are the following.

P = CltoS Pos (S1 (QNP most bird)(fly))

H = CltoS Pos (S1 (QNP aFew bird) (fly))

The abstract syntax is then translated to a representation language
which makes random variables explicit. It also makes their spaces ex-
plicit, and the measures thereof. Using these features, the probabilities
of all propositions of interest can be expressed precisely. This language,
and its notation is described in detail in §5.23. To generate these in-
termediate representations, we first must express our (lack of) prior
knowledge about the common nouns, verbs, etc. present in the prob-
lem. To do so we gather the lexical items and introduce them as random
variables in the appropriate spaces. The premise(s) are added as extra
conditions, obtained by a compositional semantics described in §5.3.
These conditions effectively update the distributions of the representa-
tions of lexical items, yielding a global space of situations ⌦.

⌦ = [bird : Pred

fly : Pred

p : measure([x : Ind; b : bird(x); f : fly(x)]) >

✓mmeasure([x : Ind; b : bird(x)])]

We are assuming here a proportion ✓m corresponding to the meaning
of “most” (see §5.3.3 for details). To make the language more concise,
we unify the language of spaces and the language of propositions. Ef-
fectively, we sample p over the space of proofs of the given proposition.
We leave the space of predicates Pred unspecified here. Possible choices
are spelled out in §5.3, but the reader can glance at Fig. 7 for a preview.

The truth value of the conclusion is expressed as a probability mea-
sure of a proposition over the whole space ⌦ that we just defined, with
a suitable proportion ✓f for “few”.

X = P!:⌦([x : Ind; b : !.bird(x); f : !.f ly(x)]) >

✓fmeasure([x : Ind; b : !.bird(x)])

3For the impatient, the notation x : T indicates that x is of type T ; The dot
notation x.f represents accessing field f in a record x. Record types are introduced
with brackets a around of a dictionary mapping fields to their types.
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The expression above can be turned into a mathematical term using the
semantics for spaces and probabilities (Definition 1). In our example,
the expression begins with integration over the spaces of predicates:

X

bird:Pred

X

fly:Pred

1(P ^Q)

1(P )

In fact, we are using here a generalisation of summation and integration,
but adopting the symbol

P
for this purpose (cf. §5.2). The conditions

P and Q are given by

P = measure([x : Ind; b : bird(x); f : fly(x)]) >

✓m ·measure([x : Ind; b : bird(x)])

Q = measure([x : Ind; b : bird(x); f : fly(x)]) >

✓f ·measure([x : Ind; b : bird(x)])

The integrations and measures are further expanded once Pred is made
concrete. We can see that P ^Q = P if ✓m > ✓f , and so in this simple
case, the integral evaluates to 1. Therefore, the inference is (stochasti-
cally) certain.

However, a more precise model would let ✓m or ✓f be random vari-
ables, modelling the epistemic or intrinsic uncertainty of the meaning
of the quantifiers. In such a model, the inference would evaluate to a
value in the [0,1] interval, depending on the exact choice of priors.

Unfortunately, for the vast majority of cases the integrals would
not be computable symbolically. In this kind of situation, one typically
resorts to simulated sampling, using Monte Carlo methods (see §5.2.3).
We follow this approach, and it is through sampling that we evaluate
integrals.4

Sections 5.1 to 5.3 detail the phases of our system, outlined above.
In §5.1, we define and illustrate the range of constructions that BIS
handles, including generalised quantifiers, scalar modifiers, and vague-
ness cases including the sorites cases, specifying a suitable syntax. We
also describe our method of parsing sentences in Ranta’s (2004) typed
Grammatical Framework (GF).

In §5.2 we construct a Logic with Measurable Spaces (LMS) to make
precise the notions of random variables over potentially complex spaces.
To ensure the compatibility with Montague semantics, it consists of a
typed logic. We support Bayesian reasoning by associating types with
probability densities. We define operators for measuring spaces, and

4We describe an important exception in §5.3.8.
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estimating the probabilities of propositions in terms of the volumes of
their relevant subareas.

In §5.2.3 we describe a Markov Chain Monte Carlo (MCMC) method
for sampling properties, and estimating the probability of a sentence.
Such methods have been used before in linguistic applications, for ex-
ample by Goodman and Stuhlmüller (2014). Even though all models
sample the density of property spaces to estimate the probability of a
predication, with Monte Carlo techniques certain models will converge
faster than others, depending on the geometric representations of prop-
erties and objects. In fact, under certain conditions explained in §5.2.3,
estimating probabilities may be computationally intractable. For this
reason we discuss two different classes of representation of individuals
and predicates. In particular, in §5.3.8 we consider casting properties as
boxes of uniform density. This allows us to compute their density sym-
bolically in some instances, avoiding intractability in several important
cases.

In Section 5.3, we present our Bayesian semantics for natural lan-
guage. A compositional semantics is specified for each GF parse struc-
ture assigned to a sentence. We describe our inference test suite in §5.4,
and we assess the extent to which BIS covers it.

Section 5.5 surveys related work in probabilistic semantics. Finally,
in §8.5 we offer our conclusions, and we indicate directions for future
work.

5.1 Scope: Phenomena and Grammar
The initial component in the sequence of semantic interpretation is

the GF parsing of a natural language expression. The parse trees satisfy
the homomorphism requirement of Montague (1970, 1974). They pro-
vide the domain for a compositional mapping to semantic types, which
are probabilistic in our system. We identify here a subset of syntactic
constructions suitable for our needs. We single out natural language
phenomena that play an important role in probabilistic inference. We
use GF to formulate a set of grammar rules that our parser applies
in order to generate the parse trees on which our rules of semantic
interpretation operate.

Our abstract grammar (Fig. 2) consists of context-free rules, while
specific features of English syntax are specified in GF.

A context-free rule in the GF style is written from right to left, e.g.,
if X -> Y Z is context-free rule, in GF it would be encoded as a constant
R of type Y -> Z -> X, we we usually write as R : Y -> Z -> X. One
can see this as follows: R takes two arguments of type Y and Z and
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All,Most,Few,AFew,Every,GenericPl, Many : Quant;

Tall, Short: Adj;

ListenToOudMusic, TryHairTransplantTreatment, EnjoyTabouli : VP;

--polarity items--
Pos,Neg: Pol;

--common nouns and relative common nouns--
Linguist, BaldMan, ToupeeWearer, BasketballPlayer : CN;
Non : CN -> CN;
Qual : Adj -> CN -> CN;
THAT : RP;
MakeRCL: RP -> VP -> RCl;
MakepolarRS: Pol -> RCl -> RS;
RelativiseCN : CN -> RS -> CN;

PercentOf : Card -> CN -> NP;
Exactly, AtLeast, MoreThan : Card -> Quant;
QNP : Quant -> CN -> NP ;

--adverbs of frequency--
Never, Always, Rarely, Probably, Often, Frequently,
Occasionally, Generally, Regularly : VP -> AVP;

--Units of measure--
Centimeter, Foot : Unit;
Measure : Card -> Unit -> Adj -> VP;

--comparatives--
Equal, More, Less : CompOperator;
CanPlayChords : CompOperator -> Card -> VP;
ComparVP : CompOperator -> Adj -> NP -> VP;
MoreVP : CompOperator -> NP -> VP;

--sentences and clauses--
S1 : NP -> VP -> Cl;
CltoS : Pol -> Cl -> S;
If, But, And, or : S -> S -> S;
Not : S -> S;

FIGURE 2: Syntactic categories in our GF parses
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returns the result of type X. That is, the rule R builds an object of
type X from objects of type Y and Z. Below, we may call constants of
GF, e.g. R : Y -> Z -> X, as rules and as constants interchangeably.

We modify standard syntactic treatments of English to achieve a
more natural mapping between syntactic and semantic representations
for the phenomena that we are concerned with. We are not providing a
wide-coverage English grammar driven parser, but a proof of concept
system for probabilistic inference. For instance, our rule IsA : CN ->
VP allows us to parse “is a guitarist” as a VP, where “guitarist” is a
CN.

Most rules are simple and straightforward. Some of them enrich the
stylistic diversity of our constructions, such as relative clauses modify-
ing noun phrases. Also for stylistic diversity, we allow for multi-word
phrases to be taken as CNs or VPs. For instance “basketball player”
and “toupee wearer” are common nouns, while “enjoy tabouli” is a VP.

As Fig. 2 shows, our grammar has four kinds of constants to build
clauses and sentences. Two of them are for generating/parsing sentences
from sentences (discussed in §5.1.1). The rest of the rules we use to build
sentences from NPs, VPs, and polarity items. In particular, we build
a clause using the rule S1 : NP -> VP -> Cl. A sentence may have a
positive or negative polarity. We model that by taking a clause and a
polarity item, and build a sentence out of them, which is encoded by
the rule CltoS : Pol -> Cl -> S.

We list below the rules which are relevant for probabilistic reasoning,
and we illustrate them with examples, which form part of our test suite
(§5.4).

5.1.1 Logical connectives and polarities
Our test suite contains logically complex sentences built with logical
connectives, including conditionals. They are interesting mainly be-
cause of their semantic properties. On standard, logical approaches to
the interpretation of such sentences, the truth-conditional meanings of
connectives play the major role in defining the semantics of a complex
sentence. This corresponds to the rules If, But, etc. of type S -> S ->
S.

5.1.2 Universal quantification
Using the rule QNP : Quant -> CN -> NP, we produce a quantified
NP from a common noun and a quantifier. An important quantifier
is All, corresponding to universal quantification, which figures in the
usual Aristotelian syllogisms.

The test suite example T30 (p. 212) illustrates an inference that
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relies on the interpretation of the universal quantifier.

(T30) P1. All intermediate logic students are Stones fans.
P2. John is an intermediate logic student.
H. John is a Stones fan.
Label:Quantifier, FOL validity

In classical logic, universal statements such as “All As are Bs” are
interpreted as inclusion of subsets corresponding to the predicates A
and B. Because a system developed for probabilistic reasoning may
interpret the universal quantifier through a probabilistic approach to
set inclusion, it is useful to test chained quantifiers, as in Example T76
(p. 220).

(T76) P1. All violinists are musicians.
P2. All musicians read music.
H. All violinists read music.
Label:Quantifiers, FOL validity

5.1.3 Generalised quantifiers and generics
We have a wide range of quantifiers besides the universal, including
Few, and Most. We also support explicit percentages, using an ad hoc
rule PercentOf.

Generic plurals can be expressed in several ways (see e.g. the work
of Carlson (1982)), but, restricting ourselves to English, we use bare
plurals (GenericPl), as in Example T11 (p. 209).

(T11) P1. Turkish coffee drinkers frequently enjoy a shot of Arak.
P2. Most people that enjoy a shot of Arak also listen to classical

oud music.
H. Turkish coffee drinkers listen to classical oud music.
Label:Quantifier, Temporal Adverb

We also deal with instantiations of generalised quantifiers and gener-
ics, illustrated in Example T9 (p. 208).

(T9) P1. Stones fans often prefer The Doors to The Beatles.
P2. John is a Stones fan.
H. John prefers The Doors to The Beatles.
Label:Quantifier, FOL validity
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5.1.4 Modal Adverbs
Modal adverbs play an important role in probabilistic inference. Ad-
verbs of frequency such as Usually, Often, Never connect categorical
judgments to probabilistic ones.

(T6) P1. All basketball players are probably tall.
H. Most basketball players are tall.
Label:Quantifier, Modal Adverb

As an illustration, in the premise of T6 (p. 208), we have “all basket-
ball players are probably tall”, which gives rise to the hypothesis “most
basketball players are tall” because of probably. Otherwise, one would
infer the stronger hypothesis that all basketball players are tall.

Some adverbs can switch the polarity of an hypothesis when they
are applied to premises, as in Example T2 (p. 207).

(T2) P1. Prolog programmers are always intermediate logic students.
P2. Intermediate logic students rarely read music.
H. Prolog programmers don’t read music.
Label:Quantifier, Modal Adverb

In general, it is necessary to study cases with frequency adverbs
and quantifiers (including generics and generalised quantifiers) care-
fully, due to the complex interaction between the two. The semantic
content of the adverb, as we model it, is the same as that of a quan-
tifier (generalised or universal, depending on the modal adverb). Some
quantifiers may not be encoded in single lexical items (like “most" and
“few"), but require multi-word expressions that specify explicit numer-
ical values. We intend our general approach to be independent of the
details of the system that we build. Thus we take special care in de-
signing our test cases to ensure that they illustrate general semantic
patterns that any adequate probabilistic inference system must cap-
ture.

5.1.5 Gradation, Adjectives, and Comparatives
Many natural languages, including English, can derive comparative
forms from their respective positive forms (Klein, 1980). For example,
positive adjectives such as “tall” give rise to the comparative “taller”.
In our grammar, comparatives are supported by the rule ComparVP :
CompOperator -> Adj -> NP -> VP, where a CompOperator can be
Equal, More, or Less.
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(T15) P1. Mary is tall.
P2. John is taller than Mary.
H. John is tall.
Label:Comparative Adjective, Transitivity

This is relevant to probabilistic reasoning, because the presence of a
gradient of probability for the predicate (“John is tall” is more probable
than “Mary is tall”) corresponds to the applicability of the comparative
(“John is taller than Mary”).

5.1.6 Units of measure
We also experiment with units of measure. We study the ability of
the system to learn the relationship between observations expressed in
terms of measurable quantities and qualitative judgments. In order to
encode quantities, we need to add numbers to our grammar. We can
parse verb phrases such as “6 feet tall”.

We are interested in whether a system can learn the meaning of
an adjective from the premises which provide information about the
property corresponding to the adjective, expressed as degrees, with the
help of numerical information. Our test suite contains the following
example T38 (p. 213).

(T38) P1. Mary is 190 centimeters tall. Mary is tall.
P2. Molly is 184 centimeters tall. Molly is tall.
P3. Ruth is 180 centimeters tall. Ruth is tall.
P4. Helen is 178 centimeters tall. Helen is tall.
P5. Athena is 166 centimeters tall. Athena isn’t tall.
P6. Artemis is 157 centimeters tall. Artemis isn’t tall.
P7. Joanna is 160 centimeters tall. Joanna isn’t tall.
P8. Kate is 162 centimeters tall. Kate isn’t tall.
P9. Christine is 163 centimeters tall.
H. Christine isn’t tall.
Label:Quantifier, Modal Adverb

While T38 (p. 213) and T15 (p. 209) look similar, they illustrate
two different aspects of our system. T15 (p. 209) tests if it captures the
relation between “tall” and “taller”. T38 (p. 213) requires it to correctly
reflect the graded way in which the adjective “tall” applies to an object
(when it is true that a person/object is tall, and when it is not).

5.2 Logic with Measurable Spaces
In this section we describe a Logic with Measurable Spaces (LMS). LMS
is the representation language connecting parse structures to math-
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ematical expressions of probabilities. We will use it to compose the
meaning of inferences from the meaning of premises and hypotheses.
As a first approximation, one can see LMS as a precise formalisation of
informal notations used when manipulating logical expressions involv-
ing random variables. Readers familiar with these concepts can skip
this section on first reading. But it will be helpful for understanding
subsequent definitions.

LMS draws inspiration from several sources. Like descriptive logics,
it aims at making truth computable. It features Sigma spaces (akin
to Sigma types in Martin-Löf type-theory). It internalises the notion
of the cardinality of spaces, expressed here as measures of spaces, as
a tool for encoding the notion of event probability. Fox and Lappin
(2005) use the cardinality of predicate spaces in their semantic system,
for different purposes.

The syntax of LMS is comprised of two categories: spaces (ranged
over by metasyntactic variables A,B,C, etc.), and expressions (ranged
over by metasyntactic variables e or �, for Boolean expressions.)

For the purpose of this theory, we limit Boolean expressions to com-
parison between real-valued expressions (e1  e2) and conjunctions
thereof (� ^  ); as well as boolean variables Real-valued expressions
arise from variables, arithmetic operators (abstracted as op), and the
measures of spaces— discussed below. Additionally we have support
for pairs. We won’t construct pairs, but we can extract their first or
second components via the functions ⇡1 and ⇡2. The main objects of
interest are spaces. Every space has two aspects: an underlying support
type and a probability distribution over it. The types are formed by the
unit type, Booleans, reals, functions, and products.

In LMS, types are used as in a programming language, to verify that
nonsensical expressions are disallowed. We do not follow the tradition
of intuitionistic logic, in that we ignore the inhabitants of types. Specif-
ically, we do not consider types as propositions via the Curry-Howard
isomorphism. LMS does not include quantification over all types, nor
over all spaces. Instead, the densities of spaces are their logical content.
Before turning to density we give a brief overview of LMS typing and
its consequences. We use two judgments. First, the judgment � ` e : ⌧ ,
which is the standard typing judgment for terms in the simply typed
lambda calculus. We call Boolean-valued expressions propositions, so
if � ` � : Bool holds, it means that � is a proposition in context �.
Secondly, the judgment � ` A : Space� expresses that A is a space
over the ground type �, in a context �.

Because expressions are simply typed, they inherit the usual nor-
malisation properties of typed lamdba terms (Barendregt, 1992). Any
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Spaces:
A,B, . . . ::= IsTrue(�) filter space

| ⌃(x : A)B sigma space
| Distr(d) base distribution space
| {e |x : A} image of A under �x.e

Expressions:

�, , e ::= x variable
| k constants
| � ^  conjunction
| e1  e2comparision
| ⇡1(e) | ⇡2(e) projections
| op(ei) arithmetic operators
| ⇧ uninformative object
| measure(A) internalisation of measure

Types:
⌧,� ::= Unit

| Bool

| R
| ⌧ ! �

| ⌧ ⇥ �

FIGURE 3: Syntax of LMS
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� ` � : Bool

� ` IsTrue(�) : SpaceUnit

� ` A : Space ⌧ �, x : ⌧ ` B : Space�

� ` ⌃(x : A)B : Space (⌃(x : ⌧)�)

� ` ei : R
� ` Distr(d1[ei]) : SpaceR

�, x : ⌧ ` e : � � ` A : Space ⌧

� ` {e |x : A} : Space�

� ` e1 : ⌧ � ` e2 : �[e1/x]

� ` (e1, e2) : ⌧ ⇥ �

� ` e : ⌧ ⇥ �

� ` ⇡1(e) : ⌧
� ` e : ⌧ ⇥ �

� ` ⇡2(e) : �

� ` ⇧ : Unit
� ` � : Bool � `  : Bool

� ` � ^  : Bool

�, x : ⌧ ` e : �

� ` �x.e : ⌧ ! �

� ` e0 : ⌧ ! � � ` e1 : ⌧

� ` e0(e1) : �
� ` true : Bool

� ` false : Bool
� ` e : Bool

� ` 1(e) : R
� ` k : R

� ` ei : R
� ` op(ei) : R

FIGURE 4: Typing rules for LMS. In the above op stands for an arbi-
trary arithmetic operator of arbitrary arity, with ei being its operands.
Similarly, we list only one logical connective (^); others follow the same
pattern.

closed term of type R is a real number.
We now focus on spaces and distributions over them. We have four

basic space constructions:
1. Given a basic with n parameters d(x1, ..., xn), we have the space

Distr(d(e1, ..., en)) (each of the parameters can be assigned any
real-valued expression).

2. We can construct a space whose density is 1 when a proposition
� is true and 0 otherwise. It is written IsTrue(�).

3. We can construct sigma spaces. Given a space A and a space
B[x], we can write ⌃(x : A)B[x] for the the sigma space. The
support type for this sigma space is the pair of types which sup-
port respectively A and B[x]. The associated distribution is a
joint distribution. Indeed, the distribution associated with B can
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depend on the value x sampled from A.
4. We can take the image of a space A under a function f . This space

is written {f(x) |x : A}. (In fact, we generalise to, and allow, any
expression dependent on x instead of just f(x).)

These constructions are listed in Fig. 4.
Formally, we do not manipulate densities directly, thus avoiding the-

oretical difficulties, in particular for {f(x) |x : A}. Instead, we gener-
alise the notion of integration so that it does not just apply to distri-
butions, but to arbitrary spaces. For this purpose we use the symbolP

, as it is a natural extension of the summation operator.5

Definition 1 If � ` A : Space↵ and �, x : ↵ ` e : R, we defineP
x:A e (which can be read as the integral of e for x ranging over A),

by induction on A:
X

x:Distr(d)

e =

Z

R
PDF(d, x) · JeKdx

X

x:IsTrue(�)

e = 1(J�K) · Je[⇧/x]K

X

z:⌃(x:A)B

e =
X

x:A

X

y:B

e[(x, y)/z]

X

y:{e | x:A}

e2 =
X

x:A

e2[e/y]

Definition 2 (Evaluation of expressions) The value of an expression
e is written JeK and defined by induction on the structure of expres-
sions, as is standard in the lambda calculus. We know that evaluation
terminates because of our type-system. The only case that merits atten-
tion is the evaluation of measure(A), which is specified by the following
equation:

Jmeasure(A)K =
X

x:A

1

The expression
P

x:A 1 integrates over the whole space the constant
value 1, thus “counting” the elements of that space. Therefore it is
the measure of the space A. Overloading the notation, we also write
measure(A) for the measure of the space A as a meta-theoretical ex-
pression (not an LMS expression), with the same definition.

Definition 3 (Expected value) We define the expected value of e for a

5Technically, we define the integrator and the evaluation of expressions (the next
two definitions) by mutual induction on the structure of space and expressions.
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random variable x distributed in A as follows:

Ex:A(e) =

P
x:A e

measure(A)

Remark:

Ez:(⌃(x:A)B)(e) = Ex:A(Ey:B(e[(x, y)/z]))

Notation:

Ex0:A0,. . . ,xn:An(e) = Ex0:A0(. . . Exn:An(e))

Finally, we can define the probability of a proposition � over a ran-
dom variable x ranging in A as the proportion of (the measure of) the
space A where � holds.

Definition 4
Px:A(�) = Ex:A(1(�))

An equivalent definition is the following:

Px:A(�) =
measure(⌃(x : A)IsTrue(�))

measure(A)

In general, for probabilistic inference, we define a space of possible
situations ⌦, and evaluate the expected truth value of some proposition
� over this space. The space ⌦ typically has a complex structure.

We now verify that Px:A(�) satisfies the expected properties of prob-
abilities, starting with the following lemma:

Lemma 1
P

x:A is a linear operator:

(i)
P

x:A(k · t) = k ·
P

x:A t if k does not depend on x

(ii)
P

x:A(t+ u) =
P

x:A t+
P

x:A u

Proof. By induction on the structure of A. tu
When a space A has zero measure, the probabilities over it are un-

defined. Otherwise, the Kolmogorov laws of probability are respected.
It is easy to verify that any probability is positive, and that the prob-
ability of true is 1. The last law (in its finite variant) needs a bit more
work, and its proof follows.

Theorem 2 If � ^  = false, then

Px:A(� _  ) = Px:A(�) + Px:A( )
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Proof.

Ex:A(� _  ) =
X

x:A

1(� _  ) by def.

=
X

x:A

(1(�) + 1( )) because � ^  = false

=
X

x:A

1(�) +
X

x:A

1( ) by linearity of
X

x:A

= Ex:A(�) + Ex:A( ) by def.

The result is obtained by dividing by measure(A). tu
The property that probabilities are positive can be checked in a similar
way. The assumption of unit measure (Px:A(true) = 1) is a simple
consequence of the definition.

5.2.1 Dealing with equality
In some situations it is useful to use equality of real-valued expressions
(for example “John is as tall as Mary”). Perhaps the most obvious way
to encode equality between x and y is by using IsTrue(x = y). Assuming
that x and y are both taken in a space A of strictly positive measure,
we can naively write the space B of equal x and y as follows.

B = ⌃(x : A)⌃(y : A)IsTrue(x = y)

Unfortunately, the above definition is problematic, because x = y
is stochastically impossible for real-valued x and y.6 Consequently
measure(B) = 0. Therefore, when evaluating probabilities involving B,
one gets division by zero, and so the probabilities are undefined using
the definitions given above.
A theoretical approach We need to replace IsTrue(x = y) with an-
other space x ⌘ y, such that the density of x ⌘ y is zero when x 6= y,
but whose total measure is 1 (instead of 0). This can be done conceptu-
ally by increasing the density at the points where x = y. To do this, we
must first extend the language of spaces with the Factor(e) construc-
tion, which acts like IsTrue(�), where but e gives directly the factor to
be used in the integration (which can thus be greater than 1). That is:

X

x:Factor(e1)

e2 = Je1K · Je2[⇧/x]K

6Readers who are not familiar with this stochastic property can convince them-
selves informally that it holds by considering that getting x and y to be equal
requires an impossible alignment of infinite precision. We see this formally by car-
rying out the computation of integrals as defined above.
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To be sure, its typing rule is as follows:

� ` e : R
� ` Factor(e) : SpaceUnit

We can now come back to the problem of filtering a space by with
the equality x = y. We know to do this with Factor(), which multiplies
the integrand by a certain factor. We need to pick a sufficiently large
factor, so that integrating it over a 0-measure area produces the result
1. But we can only achieve this with an infinitely large factor.

One may think that no such space exists, but, fortunately, a space
of this kind has already been extensively studied. It is known as the
Dirac � function. Classically, � has a single parameter, and its density
is 0 when this parameter is nonzero. Its defining property is:

Z 1

�1
f(x)�(x) dx = f(0)

In terms of spaces, the same property becomes:
X

x:Distr(�)

t = t[0/x]

Hence we can define x ⌘ y to be for Factor(�(x� y)).
We can now compute the measure of our motivating example B:

measure(⌃(x : A)⌃(y : A)x ⌘ y)

=
X

x:A

X

y:A

X

p:Factor(�(y�x))

1

=
X

x:A

X

z:{y�x | x:A}

X

p:Factor(�(z))

1 by substitution

=
X

x:A

X

z:{y�x | x:A}

X

z:Distr(�)

1

=
X

x:A

X

z:{y�x | x:A}

1 by � property

=
X

x:A

X

y:A

1

=measure(A)2

We see that involving x ⌘ y does not make the measure of spaces 0,
and hence probabilites remain well-defined. Computing symbolic inte-
gration involving � is not possible in every case, but we refer the reader
to Shan and Ramsey (2017) for a generic method.
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A numerical approach Perhaps more disturbing than � not being
always computable, is the fact that it is not well suited to Monte Carlo
methods, which we describe in §5.2.3. We are faced with the same prob-
lem that we encountered originally. If we randomly sample any x and
y, and their numerical representations have a high resolution, then it
will be extremely rare that x = y, and the Monte-Carlo approximation
will not converge.

A possible solution to this problem is to increase the density in a
non-zero region around the points such that x = y, in a smooth fashion.
One way to do this is to take the density of the space x ⌘ y to be a
Gaussian curve of a suitably small standard deviation �7, and which
has its maximum at x = y:

1

�
p
2⇡

e�
1
2 (

x�y
� )2

Like all probability density functions, the Gaussian has density 1, and
we thereby avoid spaces of zero measure.

While this approach is satisfying, choosing a suitable value for �
is not always straightforward. If it is too small, then we fall into the
original pitfall: most of the time the density of the space will be too
small to contribute significantly to the integral. Conversely, if � is too
large, then we get an excessively imprecise result. Unless otherwise
stated, we have run our models with � = 1.

5.2.2 Record notation
When dealing with complex structures involving nested ⌃ spaces, the
expressions for projections become quickly inscrutable. For this rea-
son we use the record notation for such spaces and the corresponding
projections.

Definition 5 (Record spaces and projections) Formally, record spaces
are defined by translation to ⌃ spaces, as follows:

[x1 : A1; . . . ;xn : An] = ⌃(x1 : A1)⌃(x2 : A2). . . An

Additionally if e : [x1 : A1; . . . ;xn : An], then e.xi is a shorthand for
⇡1(⇡2(⇡2(. . . e))) (the number of repetitions of ⇡2 is the index of the
field in the record).

For similar reasons, we use a shorthand notation for the expected
value over several variables, defined as follows:

Ex0:A0,. . . ,xn:An(e) = Ex0:A0(. . . (Exn:An(e)))

7In fact, if f� is a Gaussian function with mean 0 and standard deviation �, then
�(x) = lim�!0 f�(x)
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5.2.3 Approximation via sampling
Unfortunately, in the majority of cases (with the notable exceptions
of those discussed in §5.3.8 and §5.3.4), the mathematical expressions
produced by the semantics given in §5.2 contain integrals which cannot
be evaluated symbolically. Hence, we are forced to resort to a numerical
approximation algorithm to evaluate them. We use a variant of Gibbs
sampling, which is itself an instance of a Markov Chain Monte Carlo
(MCMC) method. The algorithm that we use closely follows the one
described by Goodman and Stuhlmüller (2014).

All Monte Carlo methods are based on the same principle, which
can be outlined as follows. To evaluate Px:A(�[x]): 1. Sample a random
x in A; 2. Check if �[x] holds for a chosen value of x; 3. Repeat this
process a large number of times. The ratio of the number successes to
the number of tries converges to Px:A(�[x]) as the number of tries tends
to infinity.

In certain cases it is very hard to find any sample x : A. If (say) A
contains an IsTrue( ) space where  is satisfied one time in a million,
then it will be necessary to try a million samples until one try can
be counted. In our application, these kind of situations will happen
whenever 1. sets with many hypotheses are considered, 2. very strong
hypotheses are tested. For example, “99.9 percent of men walk” requires
such a precise arrangement of parameters that most samples will end
up being discarded when this condition is checked.

To mitigate this problem, MCMC methods do not sample elements
independently. Rather, each new sample x is based on a previous sam-
ple. Typically, only a single parameter is changed at every step. On
average, the next sample is chosen to be as probable as the previous
one, or more so. This way, the system is able to find many (probable)
samples. But samples can form (probably) disconnected regions in the
chain space, and thus certain configurations may end up being explored
more thoroughly than other, equally (or more) probable ones.

Ultimately, it is up to the designer of the underlying problem to
avoid the pitfalls of the approximation methods. Because the phrasing
of the hypotheses are infinitely variable for any natural language, we
cannot avoid these pitfalls entirely. However, certain semantic designs
will be more prone to problems than others. We discuss the issues that
these design questions raise in §5.4.4.

5.3 Probabilistic Compositional Semantics
Following Montague, our semantics assumes an assignment of syntactic
categories to types. These assignments are standard, except that we use
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real numbers for adjectival phrases, as we shall see in §5.3.2.
Pred = Ind ! Prop

AP = Ind ! R
V P = Ind ! Prop

NP = V P ! Prop

Quant = CN ! NP

Additionally, CNs are interpreted as spaces over individuals (CN =
Space Ind). Adjectival phrases are treated as scalars, and so they are
realised as real-valued functions.

While Montague leaves all types abstract, we instead use spaces.
That is, we give certain types a density. This is done for all categories
which can be quantified over, including individuals (Ind) and predicates
(Pred).

5.3.1 Predicates and Individuals
It is common in current work in computational linguistics to represent
words by points in a vector space. As an initial implementation of
this approach we define the density of this space through a Gaussian
distribution. The intuition behind this model is to take a simple prior
which does not assume any bias.8 Formally, the space of individuals is
taken to be a multi-variate normal distribution of dimension k, with k
sufficiently large, depending on the complexity of the problem at hand.

Ind = Normal(0, 1)k

Applying the idea that relationships between concepts can be cap-
tured by the dot product of their representations, we also represent
predicates with a vector in the same distribution. An individual is said
to satisfy a given predicate if the dot product of their representations
is above a given bias— a bias which also is part of the representa-
tion of the predicate. An example predicate is shown in Fig. 5. Perhaps
more vividly, one can represent predicates as a hyperplane— individuals
falling on one side of it are deemed to satisfy it. This idea is expressed
formally as follows:

Pred =
�
�x.d · x+ b > 0

�� d : Normal(0, 1)k, b : Normal(0, 1)
 

We sustain the property that predicates are Boolean-valued func-
tions (` Pred : Space (Rk ! Bool) in LMS), as demanded by Montague-

8In what follows, we will see that each orthogonal dimension of the vector space
can be used to represent an indepent property of the individual. Conversely, non-
orthogonal dimensions can be used to represent correlated properties.
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x

y

non-musician

musician

FIGURE 5: A representation of the predicate “musician” and its negation.
The line patterns indicate the corresponding subspaces.

style semantics.
Given these basic concepts, we can specify a compositional semantics

for simple phrases. In Montague semantics, the phrase “John is tall” is
represented as tall(john). Both the predicate tall and the individual
john remain unspecified in that there is no information available about
them beyond their types. But in our probabilistic semantics we can
quantify the uncertainty attached to john and tall by construing them
in their respective spaces instead of their bare types.

We can evaluate the expected truth value of tall(john). In this case,
the set of possible situations is:

⌦ = [john : Ind

tall : Pred]

We evaluate the probability of John being tall as follows:

E!:⌦(!.tall(!.john))

=
X

john:Ind

X

tall:Pred

1(tall(john))

=
X

john:Normal(0,1)k

X

b:Normal(0,1)

X

d:Normal(0,1)k

1(d · john+ b > 0)

=0.5

The computation of the integrals is done by a simple symmetry ar-
gument. In the absence of further information, our semantics estimates
that John has a 50% chance of being tall. This result is a direct con-
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x

y

�3

�2

�1 0 1 2

3

4

FIGURE 6: A possible representation of “tall”. Because tallness is com-
puted with a dot product, lines of equal tallness are parallel, and evenly
spaced as tallness increases. Individuals are deemed “tall” if their tall-
ness is positive, shown above as the hatched area.

sequence of the choice of priors that we have proposed. Other choices
are possible, depending on the domain of application.

Common Nouns We express common nouns not as predicates, but
as spaces. This is similar to the idea of representing nouns as types
rather than predicates (Ranta, 1994, Luo, 2012, Chatzikyriakidis and
Luo, 2017)). As for predicates, the space of spaces is too large to be
sampled, and so we take the space of common nouns to be a restriction
on the space of individuals to a random predicate:

CN = {⌃(x : Ind)(p(x)) | p : Pred}

5.3.2 Graded adjectives

Our system supports scalar predicates and comparatives. We use real-
valued functions for adjectival phrases:

` A : Space (Ind ! R)
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A graded predicate can be easily converted to a regular one with the
following function, in the simply typed lambda calculus:

is : A ! Pred

is = �g.�x.g(x) > 0

Comparatives can be defined as the comparison of such measures:
more : A ! A ! Bool

more = �g.�x.�y.g(x) > g(y)

So far, we have merely considered the sign of the real-valued expres-
sion b + d · x as the applicability of a predicate. But it can instead be
interpreted as a degree to which the individual x satisfies the property
characterised by (b, d). We can specify the space of adjectival phrases
by

A =
�
�x.d · x+ b

�� d : Normal(0, 1)k, b : Normal(0, 1)
 

The situation is depicted graphically in Fig. 6.
With these formal instruments we can describe simple probabilistic

inference problems in detail. For example, what can we infer about
the tallness of John from the observation “John is taller than Mary",
expressed as the following space:

⌦ = [john : Ind

mary : Ind

tall : A

p1 : IsTrue(more(tall, john,mary))]

This space is a subspace comprised of two individuals and a gradable
adjective, such that one of the individual (john) is higher on the scale
than the other. We can then evaluate the probability of the sentence
“john is tall” if “john is taller than mary”, which is, by definition:

E!:⌦(is(!.tall,!.john))

Using LMS semantics, it is equal to:
R
!:⌦ 1(()is(!.tall,!.john))R

!:⌦ 1

Even in this relatively simple case, computing the integrals symbol-
ically is intractable. However, with MCMC sampling, we can get the
approximation 0.662.

5.3.3 Generalised quantifiers
We turn to generalised quantifiers. We need them to interpret sentences
such as “most birds fly" compositionally. On a standard reading, “most"
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is a constraint on the ratio between the cardinality of sets:

most(cn, vp) =
#{x : cn(x) ^ vp(x)}

#{x : cn(x)} > ✓ (5.37)

for a suitable threshold ✓. Alternatively, to avoid possible division by 0
and allow for vacuously true quantification, we have

most(cn, vp) = #{x : cn(x) ^ vp(x)} > ✓ #{x : cn(x)}. (5.38)

In our framework, we replace set cardinalities with measures of spaces:

most(cn, vp) = measure(⌃(x : cn)IsTrue(vp(x))) > ✓measure(cn)
(5.39)

The latter equality is a valid proposition in our probabilistic logic,
because space measures are themselves well-formed expressions.

As a first approximation, we can let ✓ be a constant. For example,
if “most” is meant in to designate a large portion of the population,
this threshold will have a value close to one, let us say 0.9. (This is
what we do when running our tests, for simplicity.) Other generalised
quantifiers can be defined in the same way with a different value for ✓.
In our examples we define many with ✓ = 0.75. However, it is possible,
in fact desirable, to sample ✓ from a suitable distribution, so that its
posterior would depend on linguistic and contextual observations.9

Now consider the following inference. “If many logicians are musi-
cians, then it is likely that any given logician is a musician”. We model
the relevant possible situations as follows:

⌦ = [musician : Pred

logician : IndSubset

p1 : IsTrue(many logicianmusician)]

Given the premises, the estimate for the conclusion is

E!:⌦,x:Ind;p2:logician(x)(!.musicianx) =̃ 0.887

The model considers all possible parameter values (vectors/biases)
for musicians and logicians. Then, it discards those such that

Ey:Ind,p:IsTrue(logician(y))(1(musician(y)))  ✓

9A particularly useful prior to use for ✓ is the Beta(↵,�) distribution, which
corresponds to having made ↵ + � observations (↵ negative ones and � positive
ones). This way we can control the initial value of as the ratio of positive over
total obervations �/(↵ + �). We can also control how much ✓ is sensitive to new
observations: the greater the sum ↵+ � the less the threshold will be influenced by
new observations.
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Interestingly, because the models that we are building implement
generalised quantifiers through correlation of predicates, we get ‘in-
verse’ correlation as well. Therefore, assuming that “many logicians are
musicians", in the absence of further information, and given an individ-
ual x that is a musician, we predict a high probability for logician(x).

E!:⌦,x:Ind;p2:musician(x)(!.logicianx) =̃ 0.566

The model’s assumptions can be augmented with the hypothesis
that most individuals are not logicians. This lowers the probability of
a random musician being a logician appropriately.

⌦ = [musician : Pred

logician : Pred

p0 : most anything (not � logician)
p1 : IsTrue(many logicianmusician)]

In this case

E!:⌦,x:Ind;p2:musician(x)(!.logician(x)) =̃ 0.12

Now consider a more complex inference involving three predicates
and four propositions. Assume that

1. Most animals do not fly.
2. Most birds fly.
3. Every bird is an animal.

Can we conclude that “most animals are not birds”? We model the
possible situations as follows:

⌦ = [animal : Pred

bird : Pred

fly : Pred

p1 : (most animal(not � fly))
p2 : (every bird animal)

p3 : most bird fly]

The evaluation of the conclusion that we obtain is

E!:⌦(most!.animal(not � !.bird)) =̃ 0.773

This result holds by virtue of the fact that only models similar to
the one pictured in Fig. 7 conform to the premises. One way to satisfy
“Every bird is an animal” is to assume that “animal” holds for every
individual, because this is compatible with all hypotheses. Then “Most
animals don’t fly” implies that the “fly” predicate has a large (negative)
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bird

fly

1

1

FIGURE 7: A probable configuration for the predicates in the bird exam-
ple. We ignore the “animal” predicate, which can be assumed to hold
for every individual. The grey area suggests the density of arbitrary
individuals, a 2-dimensional Gaussian distribution in this case. Birds
lie in the areas with a horizontal (and hatch) patterned areas. Flying
individuals are in the vertical (and hatch) patterned areas. Note that
the density of individuals in the “bird” area is small compared to that
in the intersection (crosshatched area). In this model, the observations
“Most individuals are not birds”, “most individuals don’t fly” and “Most
birds fly” hold together.
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bias. Finally, “Most birds fly” can be satisfied only if “fly” is highly
correlated with “bird” (the predicate vectors have similar angles), and if
the bias of “bird” is even more negative than that of “fly”. Consequently,
“bird” also has a large negative bias, and the conclusion holds.

5.3.4 Comparatives and quantifiers
Using an MCMC method to compute expected values inside the com-
putation of an expected value (itself using MCMC) is expensive. It
beneficial to consider techniques which can alleviate these costs. One
such technique involves the combination of generalised quantifiers and
comparatives.

Consider the phrase: “Socrates is wiser than most men”. On a
straightforward application of our method, as described so far, MCMC
sampling proceeds to:

1. sample the predicate “man”;
2. sample “wise” as a gradable predicate;
3. sample “socrates”;
4. sample n men, and verify that that Socrates is wiser than ✓n of

them, with n large
On this procedure, a step in the Markov Chain of the sampler will

always run the expensive last step of sampling n men. Consequently,
the evaluations of conclusions exemplifying this construction typically
do not converge in reasonable time.

One way to speed up the computation is to use quantiles to directly
evaluate comparisons with generalised quantifiers, defined as follows.
Definition 6 If ` A : Space (Ind ! R), we define

x = Quantile ✓A iff. measure(⌃(y : A)(y < x)) = ✓measure(A)

Theorem 3 If the (generalised) quantifier q is associated with a thresh-
old ✓, we can show that:

q cn (�y.more g x y) = g(y) � Quantile ✓ {g(x) |x : cn}

This revision of the expression containing generalised quantifiers sig-
nificantly improves computational cost, when running a sampler. On
the left-hand-side of the equal sign in Theorem 3, one needs to do
an inner evaluation of the condition every time a new y is sampled
(‘socrates’ in our example), while, on the right-hand-side, this is not
necessary. Indeed, the quantile depends only on g and cn, but not on
y. With this optimisation, MCMC converges on examples such as the
one above.
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5.3.5 Comparatives and subsectivity

It is common to classify adjectives according to several of their inferen-
tial properties. Subsective adjectives in this classification are adjectives
like skilful, big, small (Kamp, 2013, Partee, 2007). Subsective adjec-
tives denote properties which are contingent on the noun class that
they modify. For instance, a skilful surgeon is someone who is skilful
as a surgeon, but not necessarily skilful in general. Subsectivity has in-
teresting interactions with gradability. Gradable subsective adjectives
involve a grade parameter which is class-dependent. For something to
be considered a small elephant in a given context, we take a different
threshold than when assessing whether an animal is small as a mouse.
The interpretations of comparative forms of these adjectives should
encode these properties.

We express a gradable subsective adjectival phrase “small elephant”
as “smaller than most elephants”, thus reducing this phrase to the case
studied in §5.3.4. We obtain

subsective g cn y = g(y) � Quantile ✓ {g(x) |x : cn}

for a suitable threshold ✓.

5.3.6 Semantic Learning

Bayesian models are updated to accommodate new observations. This
gives rise to learning. We have seen that our framework takes account
of data provided in the form of qualitative statements, including those
containing generalised quantifiers. We can also accommodate informa-
tion provided in sequence of observed situations. Consider the following
series of statements:

. Mary is 190 centimeters tall.

. Mary is tall.

. Kate is 162 centimeters tall.

. Kate isn’t tall.

. Christine is 178 centimeters tall.

The possible situations corresponding to them can be captured as
follows:
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⌦ = [mary : Ind

pM : tallness(mary) ⌘ centimeters(190)

qM : IsTrue(tall(mary))

kate : Ind

pK : tallness(kate) ⌘ centimeters(162)

qK : IsTrue(not(tall(kate)))

christine : Ind

pC : tallness(christine) ⌘ centimeters(178)

]

The definition of centimeters is given in §5.3.7. At this stage it is
sufficient to assume that this definition correctly maps a measure in
centimeters to a degree of tallness, as outlined in §5.3.2. Also, we use
the equality (⌘) space to deal with equality, as discussed in §5.2.1.

Given these assumptions, we can estimate the probability of Chris-
tine being tall:

P!:⌦(tall(christine))

⌦ gives a density for the threshold of tallness which corresponds to the
criterion of “tall”. Hence the system learns dynamically, via a number
of observations, the meaning of the adjective “tall”10.

5.3.7 Units of measure
BIS supports reasoning with units of measure, as in “John is 6 feet tall”.
To interpret such sentences, we relate heights expressed as numbers
to the notion of “tallness”, (i.e. the grade associated with the “tall”
adjective).

We treat “feet” similarly to other units of measure (as in“John is 180
cm tall”). The interpretation of measure words captures the scaling that
they impose. We introduce an additional layer of meaning, which en-
sures that all units of measure are interpreted a priori in the same way.
Each unit of measure u is represented by three parameters, ↵u,�u, �u,
each drawn from a normal distribution. The transformation from de-
gree to numerical value is given by the expression tu(x) = �ux↵ux+�u .
The numbers provided in the input (“6”, “180”) are then compared with
the transformed measure predicates corresponding to the adjective. (In

10It can only learn the meaning within the bounds of this model. Here, this is not
simply the threshold for tallness, as in the model of Lassiter and Goodman (2017).
Rather, it find a direction in the space of individuals which corresponds to height,
and a threshold along this dimension.
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our example tfeet(john · vtall) = 6.) This allows BIS to simultaneously
infer posterior distributions for individuals, graded predicates and units
of measure.

5.3.8 Uniform boxes
As we have seen in the case of generalised quantifiers, one must often
compute the measure of a subset of individuals satisfying some predi-
cate. The form for such an expression is

measure(⌃(x : Ind)(IsTrue(p(x)))) =
X

x:Ind

1(p(x))

Because individuals are elements in a high-dimensional space, if the
density of individuals p(x) is non-trivial, the above integral is often not
computable symbolically. This is the case, for example, if individuals
receive a Gaussian distribution. Instead the integral must be approxi-
mated numerically, typically through a Monte Carlo method.

Another option for the space of predicates is to use boxes, which
are cuboids whose faces are orthogonal to the axes of the underlying
Euclidean space. We take the density of individuals in this framework
to be uniform.

Ind = Uniform(�1, 1)k

Pred =
�
8i.||xi � ci|| < di

�� c : Uniform(�1, 1)k, d : Beta(1, 4)
 

Here the computation can proceed symbolically. If we assume, for
simplicity, that the box fits in the (-1,1) cuboid, we can compute the
volume of a common noun defined by ci and di as follows:

measure(⌃(x : Ind)(IsTrue(8i.||xi � ci|| < di)))

=measure(⌃(x : Ind)(
^

i

IsTrue(||xi � ci|| < di)))

=
Y

i

measure(⌃(xi : Uniform(�1, 1))(IsTrue(||xi � ci|| < di)))

=
Y

i

di

Thanks to this symbolic estimation of predicative density the treat-
ment of (generalised) quantifiers is computationally much cheaper
with the box-based model of predicates and individuals than with
the Gaussian-based technique. We show in Fig. 8 how the situation
depicted in Fig. 7 is adapted to this new model.
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fly

bird

1

1

FIGURE 8: A probable configuration for the predicates in the bird exam-
ple, now with box-predicates and a uniform distribution of individuals.

Graded adjectives
Like the Gaussian-based model, the box-based model supports graded
predicates by forming a grade g such that the corresponding non-graded
predicate holds when g(x) > 0, and the area where this predicate holds
(⌃(x : Ind)gx > 0) forms a box. We define the grade of a property
defined by a center c and and width d for the individual x as s(x, c, d).
The space for graded adjectives A is

s(x, c, d) = 1�max

⇢
||xi � ci||

di

���� i 2 [1..n]

�

A =
�
�x.s(x, c, d)

�� c : Uniform(�1, 1)k, d : Beta(1, 4)
 

This model has the additional convenient property that the space
⌃(x : Ind)gx > ↵ is a (possibly empty) box for every ↵. A corollary
is that the predicate “more (�y. s(y,c,d)) x” is a box for every c, d and
x. Consequently, generalised quantifiers over these expressions can also
be computed efficiently.

We remark that the maximal degree of satisfaction with this model
is 1. This property can be used in practice in models which make the
absolute satisfaction grade a feature of natural language sentences.

Relative clauses
Boxes are closed under intersections. Thus if we use the expression
P ^ Q to denote the intersection of the predicates P and Q, we have
(P ^Q)li = max(P l

i , Q
l
i) and (P ^Q)hi = min(Ph

i , Q
h
i ). The centre and

the width of the box ((P ^Q)c and (P ^Q)d respectively) are recovered
using the usual formula.
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5.4 Test suite
We have constructed a test suite to illustrate BIS’ coverage. We have
done this, rather than adopting any of the existing test suites for in-
ference, because none of the latter (e.g. the FraCaS test suite (Cooper
et al., 1996), RTE (Dagan et al., 2006), or SNLI (Bowman et al., 2015))
are designed to assess probabilistic inference. These test suites rarely
exhibit probabilistic (or quantitative) reasoning via generalised quanti-
fiers (most, etc.), or adverbs (frequently, probably, etc.). They also do
not deal with semantic learning.

Our test suite contains 84 examples, provided in §5.7. Each has one
or more premises followed by a hypothesis (conclusion). Examples are
annotated with respect to the semantic phenomena that occur in the
inference. The phenomena were chosen because of their importance for
semantic frameworks designed to handle probabilistic reasoning. While
most examples in the test suite involve probabilistic reasoning, others
are classically valid entailments.

Our models estimate the likelihood of an inference as the conditional
probability of the conclusion, given the premises. The latter impose
restrictions on the models generated to evaluate the conclusion.

The test suite is comprised of examples that are, in effect, generalised
Aristotelian syllogisms. It additionally involves monotonic reasoning,
probability, gradation, comparatives, and the relation of comparatives
to adjectives. The latter phenomena are not taken up in traditional
logical frameworks. To design examples with probabilistic inferences,
we focus on semantic phenomena in natural language that introduce
uncertainty into predicative judgments. For now, we limit the scope of
our work to English. See §5.1 for the syntactic constructions that we
associate with the examples in our test set.

Moreover, we annotate our examples with the following tags:. FOL Validity. Entailment. Probable Inference. Improbable Inference. Contradiction. FOL Contradiction
The first three tags fall into positive categories of entailment whereas

the last three are their negative scale counterparts. Our choice of these
tags is motivated by the fact that we believe that it is beneficial to
test a system on classical, Aristotelian syllogisms. Since they involve
quantifiers (exists and every), we want to be able to test how success-
ful our system is in handling those, classical cases. But at the same
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time, we want to also consider cases of entailment where the sentences
cannot adequately be accounted within FOL. For example, one may
have probabilistic elements in the proposition p1 and thus goes beyond
FOL. In our test suite we want cases where we have clear entailment
involving p1, which cannot be encoded using the FOL syntax (e.g. p1
entails p1 cannot be encoded by FOL but it is true entailment).

Furthermore, we have Probable Inference and its negative counter-
part, Improbable Inference. Many of our examples fall into these cat-
egories (due to the nature of our test suite). In particular, generalized
quantifiers give rise to such inferences, which are not true entailments in
logical sense, but qualify for probable inferences (or improbable ones).

There are several reasons for choosing this approach rather than
labelling the examples with expected values in the range [0, 1]. First,
the probability estimates are only numerical approximations, and so an
exact value cannot be relied upon. Secondly, the output values are sen-
sitive to the details of the chosen priors (e.g. thresholds for generalised
quantifiers (“many”, “most”, etc.). In particular, we want to assess two
different sets of priors based on different geometric configurations.

5.4.1 Principles for evaluation
There are no commonly accepted principles for evaluating the perfor-
mance of a probabilistic inferencing system. For the purposes of the
present chapter, we evaluate the performance of our models using the
following general principles.

1. FOL validity & Entailment: An example tagged with one of
these labels is counted as correctly evaluated if the model calcu-
lates the probability of the conclusion given the premises to be
greater than 0.99. Symbolically, this is expressed as the condi-
tion p(conclusion|premises) > 0.99. Hence, the difference between
FOL validity and entailment is treated as qualitative rather than
quantitative.

2. Probable inference: Such an example is counted as correctly eval-
uated if the model calculates the probability of the conclusion
given the premises to be consistently greater than the probabil-
ity of the conclusion as calculated without any premises. In other
words, if the premises consistently raise the probability of the con-
clusion. If p(conclusion) < 1, this can be symbolically expressed
as the condition

p(conclusion|premises) > p(conclusion).

3. Improbable inference: Such an example is correctly evaluated if
the premises lower the probability of the conclusion, as com-
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pared to the probability of the conclusion without any premises.
If p(conclusion) > 0 this can be expressed by

p(conclusion|premises) < p(conclusion).

4. FOL contradiction & Contradiction: p(conclusion|premises) <
0.01

5.4.2 Unclear examples
Some examples in the testsuite are tagged by the special label “Unclear”.
These are examples where the priors are inadvertently not sufficiently
specified in the premises, and the evaluation therefore only depends
on the priors of the model. These priors may well differ from the real-
world priors, as well as between the two models. The examples of this
kind, even if they may be probable inferences in the real world, are not
instances of generally acceptable argument forms since substituting one
predicate for another across the premises and conclusion may yield an
inference with a radically different probability. To illustrate this effect,
we compare two of the unclear examples.

(T83) P1. many logicians are musicians.
P2. john is a musician.
H. john is a logician.
Label: unclear, quantifier

According to Bayes’ theorem, the posterior probability p(logician|musician)
of the conclusion can be calculated by

p(logician|musician) =
p(musician|logician)

p(logician)
p(musician).

The prior p(musician|logician) is specified by P1, but the remaining
factors are entirely dependent on the model’s priors. That is, the rel-
ative frequency of logicians and musicians across the domain impact
the posterior probability, and also whether the posterior probability is
higher or lower than the prior probability p(logician). To judge whether
this inference should be counted as a probable inference, or as some-
thing else, we need access to the priors of the model, or to real-world
knowledge about the proportion of logicians and musicians over the
population.

Now consider the related example T84:

(T84) P1. many logicians are musicians.
P2. most people aren’t logicians.
P3. john is a musician.
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H. john is a logician.
Label: unclear, quantifiers

Here, we add an extra premise: the real-world knowledge that lo-
gicians are few. This fixes the prior p(logician), but p(musician) is
still dependent on the model’s priors. Indeed, we can now see the ef-
fect of the different priors of our two models. In the Gaussian model,
p(musician) =̃ 0.5, and the example evaluates to =̃ 0.1, which is much
lower than chance. By contrast, in the box model p(musician) =̃ 0.15,
and the example evaluates to =̃ 0.18, a value somewhat greater than
chance.

Since these examples depend on the priors of different predicates,
it is not generally possible to assign them a tag assessing the strength
of the inference. Since there then is nothing to compare the models’
outputs to, the 13 unclear examples of the testsuite are excluded from
the evaluation, leaving 71 examples where we have assessed the strength
of the inference. The full list of unclear examples is: T4, T5, T14, T39,
T40, T49–T52, T71, T79, T83, T84.

5.4.3 Evaluation of the system using the test suite
To assess the coverage and efficiency of both our Gaussian and our box
models, we performed a sample run of each model across the whole
test suite. The examples are run sequentially, with a 30 second timeout
(triggered if no sample could be found in the space of situations de-
scribed by the premises). The timeout was chosen so as to make most
of the examples converge within the allotted time.11 In overall perfor-
mance the box model is superior to the Gaussian model in speed. This
is illustrated by the fact that the box model yields an accurate output
for example T11 (p. 209) about four times faster than the Gaussian.

Among the 71 tagged examples in the test suite, there are nine ex-
amples that current system does not cover. These are examples T7,
T12, T17, T43–T46, T56, and T60. The phenomena that these exam-
ples exhibit include inherently binary predicates, and expressions like
“kind of”. Example T62 is also not handled, because it is designed to
test three-valued probabilistic logic, which is out of scope here.

According to the principles presented above, the Gaussian model
gives correct estimates for 50 of the 71 tagged examples, corresponding
to an accuracy of about 70%. The box model fares somewhat better,

11Four examples (T4, T41, T48, T51) require substantially more time to converge
in the box model. A factor 10 increase is rarely sufficient. Example T52 fails to
converge within any reasonable timespan in the box model. The same holds for
example T18 in the Gaussian model.
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correctly estimating 54 (76%) of the examples. We stress that, because
the number of examples is small, these accuracy rates give only a rough
indication of the system’s performance across a wide range of phenom-
ena. We offer error analyses in the next section.12

For an illustration of how our models represent vagueness, and how
to evaluate examples containing vague predicates, consider example
T61.

(T61) P1. Mary is 190 centimeters tall.
P2. Mary is tall.
P3. Kate is 162 centimeters tall.
P4. Kate isn’t tall.
P5. Christine is 185 centimeters tall.
H. Christine is tall.
Label:probable inference, positive adjectives, vague-

ness

In the sample run, the Gaussian model returns 1. This is unexpected,
because ’tall’ is a vague predicate, and there is no a priori reason to
regard someone with a height of 185cm as tall. In fact this result is
an artefact of the sampling method. In any given run, a threshold for
tallness is sampled, and in this run, that threshold is below 185cm.

In a probabilistic setting it is important to consider the average over
a larger number of runs. With 100 runs (where the average starts to
converge) we get results in the range 0.80–0.90. It is illuminating to
compare this with a run for T70 (p. 219), where premise P5 above
is replaced with “Christine is 179 centimeters tall”. Averaged over 100
runs, the results are in the range 0.70–0.80. This suggests an incre-
mental effect on the likelihood of a predication. The closer Christine’s
height is to that of a person who is clearly tall, the more likely is it that
she is tall. A similar effect is observed with the box model, but not as
sharply.

BIS generally works well on propositionally valid inferences. It also
performs well with examples containing generalised quantifiers, modal
adverbs, percentage determiners, and comparatives, when the num-
ber of predicates in the premises and conclusion is relatively small.
The problematic examples are those with a combination of generalised
quantifiers and 3 or more predicates. Also examples where the system

12Our code and a working version of BIS is available publicly at this URL:https://
github.com/GU-CLASP/Bayesian-Inference-Semantics-for-Natural-Language . It
can be run with either of the two models that we have described here. We in-
vite interested reader to experiment with the system to get a sense of its capacity
and its limitations.

https://github.com/GU-CLASP/Bayesian-Inference-Semantics-for-Natural-Language
https://github.com/GU-CLASP/Bayesian-Inference-Semantics-for-Natural-Language
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has to relate the applicability of a gradable predicate to a particular
unit of measurement can raise difficulties.

5.4.4 Error analysis
Example T57 (p. 217) shows how transitivity might fail in the Gaussian
model. For that example, the Gaussian model returns a very low score,
0.11, while the box model succeeds with 0.85. The reason for this is
that the generic plural in expressions like “if you ..., then you ...” is
interpreted as involving a certain degree of inclusion of the predicates
in question. But A and B overlapping to a certain degree, and B and C
overlapping to the same degree implies little concerning the degree of
overlap between A and C. A similar effect is observed in example T79
(p. 221), and this effect is also likely to cause the failure of T63 (p. 218)
and T68 (p. 219). By contrast, the box model interprets inclusion of A
in B by placing the box for A strictly inside the boundaries of B. This
is easier to obtain, by sampling the dimensions for the box A within
the box B.

Example T18 (p. 210) illustrates another kind of error. Here, the
Gaussian model fails to produce an output, while the box model gives
an expected high value. Indeed, the Gaussian model fails to evaluate
even the second premise “Most linguists that know formal language
theory dislike experimental work” on its own. This suggests that this
premise is stochastically hard to satisfy in the geometry of the Gaussian
model, and that sampling fails.

A third kind of error involves relating units of measurement to pred-
icates and to other units of measurement. Both models struggle with
some cases of this kind, such as T37–38, T41, and T72–T74.

(T74) P1. kate is 190 centimeters tall.
P2. kate is tall.
P3. helen is 180 centimeters tall.
P4. helen isn’t tall.
P5. christine is 190 centimeters tall.
H. christine is tall.
Label: entailment, vagueness

For this example, both the Gaussian and the Box model return scores
around 0.90 (averaged over 100 runs). While these are high scores, the
example is tagged as an entailment, and for the evaluation to count
as a success we would want a score even closer to 1. Note that the
incremental effect pointed out in connection to example T61 (p. 218)
remains: if we change Christine’s height to 191 cm, the score increases
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to 0.95, and at 195 cm the score is consistently 0.99 in both models.
This suggests that our model fail to correctly correlate the units of
measurement to the vague predicate associated with them.

Finally, T20 (p. 210) is an outlier, exhibiting odd behaviour in both
models. In the Gaussian model we consistently get a value of around
0.95. The box model, gives probability of around 0.40. Both are con-
sistently lower than the unconditioned probability of the conclusion,
but the example is tagged as a probable inference. One probable cause
for this failure is that an easy way of satifying the premises is to make
the first predicate (guitarist) very small and the third predicate (prefer
The Doors to the Beatles) very large. Then it becomes hard to find a
guitarist, and even harder to find one that doesn’t prefer The Doors to
the Beatles. Another reason could be that the box model is bounded
by the unit box, while the Gaussian one is unbounded. This is likely to
have an impact on the properties of the space covered by the different
predicates.

As a conclusion, a system like BIS has many components, and it
is essential to exercise it on many examples to convince oneself of its
correctness. Yet, due to the sensitivity to the priors, and the imprecision
of Gibbs sampling for certain models, constructing and running tests
is more an art than a science. Despite these difficulties, we feel that
our test suite is a success: precisely, it highlights the strengths of the
system (robustness to generalised quantifiers, relation between gradable
adjectives) and its weaknesses, which we have listed above.

5.5 Related work
5.5.1 Distributing Probability Over Possible Worlds
Van Eijck and Lappin (2012) propose a theory in which probability is
distributed over the set of possible worlds. The probability of a sentence
is the sum of the probability values of the worlds in which it is true. Our
work seeks to work out some of the the ideas presented by van Eijck
and Lappin (2012). Specifically, we restrict possible worlds to concrete
spaces, in the form of priors. This makes it possible to model them as
possible situations in the sense of the bounded sets of outcomes corre-
sponding to the distributions of random variables. In contrast van Eijck
and Lappin (2012) do not take account of priors. They assign proba-
bility to maximal worlds, leaving it unclear how these distributions are
computed.

Van Eijck and Lappin also suggest an account of semantic learning
which seems to require the wholistic acquisition of all the classifier
predicates in a language in a correlated way.
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Our system avoids these problems. Our models sample only the in-
dividuals and properties (vector dimensions) required to estimate the
probability of a given set of statements. Learning is achieved by repre-
senting external inputs (Bayesian evidence) as a filter over spaces.

5.5.2 Probabilistic Type Theory
Cooper et al. (2014, 2015) propose a compositional semantics within a
probabilistic type theory (ProbTTR). On their approach, the probabil-
ity of a sentence is a judgment on the likelihood that a given situation
is of a particular type, specified in terms of ProbTTR. They also sketch
a Bayesian treatment of semantic learning.

Cooper et al.’s semantics is not implemented, and so it is not entirely
clear how probabilities for sentences are computed in their system. They
do not offer an explicit treatment of vagueness or probabilistic inference.

In this work, we also extend types to support a probabilistic seman-
tics, but we do not consider the probability that a given object inhabits
a type. In fact, because we often use continuous spaces, this value will
typically be 0. Instead we assign a density to the types, which allows
us to estimate the expected values of a proposition over such spaces.

5.5.3 A Philosophical Account
Sutton (2017) uses a Bayesian view of probability to support a resolu-
tion of classical philosophical problems of vagueness in degree predica-
tion. His treatment of these problems is insightful, and it seems to be
generally compatible with our implemented semantics. However, it op-
erates at a philosophical level of abstraction, and so a clear comparison
is not possible.

5.5.4 Rational Speech Act Theory
Goodman and Lassiter (2015), Lassiter and Goodman (2017) imple-
ment a probabilistic semantics and pragmatics, using the WebPPL
probabilistic programming language. They regard the probability of
a declarative sentence as the most highly valued interpretation that a
hearer assigns to the utterance of a speaker in a specified context.

On this approach, speakers express unambiguous meanings in spec-
ified contexts through their utterances, and hearers estimate the like-
lihood of distinct interpretations as corresponding to those that the
speaker intends to convey. Their account requires the existence of a
univocal, non-vague speaker meaning that hearers seek to identify by
distributing probability among alternative readings.

The Goodman–Lassiter account requires the specification of consid-
erable amounts of real-world knowledge and lexical information in order
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to support pragmatic inference. It appears to require the existence of
a univocal, non-vague speaker’s meaning that hearers estimate as the
most likely one among competing readings.

On the other hand, and building on work by Sutton (2017), Cooper
et al. (2015), we propose that the conditional probability of a predica-
tion expresses the likelihood that an idealised competent speaker of the
language would apply the predicate to the argument, given the identi-
fied features of the object. By doing so, there is no need to assume the
existence of a sharply delimited non-probabilistic reading for a predi-
cation that hearers attempt to converge on by assessing the probability
of alternative readings. All predication consists in applying a classifier
to new instances on the basis of supervised learning. We do not posit a
contextually dependent cut-off boundary for graded predicates, but we
suggest an integrated approach to graded and non-graded predication
on which both types of property terms allow for vague borders.

Further advantages of our account include a probabilistic treatment
of generalised quantifiers, which includes higher-order quantifiers like
most, and a basic theory of semantic learning that is a straightfor-
ward extension of our sampling procedures for computing the marginal
probability of a sentence in a model.

Goodman and Lassiter adopt a classical Montagovian treatment of
generalised quantifiers, and their framework has limited coverage of
syntactic and semantic structures. They also do not offer a theory of
semantic learning.

Regardless, it is possible to integrate pragmatic elements in the se-
mantics by building a rational speech act model on top of the models
that we present here, following the method of Grove and Bernardy
(2021), Grove et al. (2021).

5.5.5 Compositional Bayesian Semantics

The design of BIS is inspired by the Bayesian compositional semantic
framework proposed by Bernardy et al. (2018). But BIS differs from
this framework in a number of important respects. First, it has a com-
prehensive syntax–semantics interface through GF parsing. Secondly,
it is intended to cover inference in a systematic way, including logically
valid, as well as probabilistic arguments. Third, BIS has considerably
wider coverage than the framework of Bernardy et al. (2018). It is con-
structed in such a way as to permit straightforward extension to new
types of sentence structure and inference patterns.
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5.5.6 Variational Inference
Emerson and Copestake (2017a,b) provide a probabilistic model in or-
der to identify ‘features’ of objects in terms of the properties that apply
to those objects. They develop their account as a graphical probabilistic
model. They also interpret universal and existential quantifiers from a
probabilistic perspective. “As are Bs” is represented as the conditional
probability of B, given A, for all elements of the space, which is equal
to the sum (or integral) over all elements. To compute this probabil-
ity, they make use of variational inference for graphical probabilistic
models.

5.5.7 Probabilistic Syllogisms
Pfeifer and colleagues (Pfeifer and Sanfilippo, 2018, Pfeifer, 2013, Gilio
et al., 2015) study inference in a probabilistic setting by estimating the
probability of the conclusion, given the probabilities of the premises.
They employ the notion of p-validity defined by Adams (1998). To be p-
valid the uncertainty of a conclusion in an inference should not increase
the cumulative uncertainties of its premises.

Their approach differs from ours in several ways. The main one is
that we build a model (using Bayesian updating of priors) where the
premises hold, and then we estimate the probability of the hypothesis
in this model. By contrast, they provide an analytic estimation of the
conclusion, given its premises. They require that certain constraints on
conditional probabilities hold. Conditional probabilities are primitives
for modelling an implication (“if A then B”). This allows them to avoid
problems in estimating A ! B when A is false. On our account we take
“if...then...” statements to be cases of material implication (A ! B =
¬A _B), instead of conditional probabilities.

Pfeifer and colleagues use conditional probability as a pivot. They
apply a 3-valued logical system. For two events A and B, the condi-
tional event A|B is true if A ^ B is true, false if A ^ ¬B is true, and
unspecified if B is false. In future work we will explore the interpreta-
tion of the “if...then...” construction as a conditional probability, and
we may incorporate Pfeifer and colleagues’ insights into our semantics.

As Suppes (1966) remarks, statistical syllogisms require a specific
formulation in order to be well defined as probabilistic problems. Pfeifer
and colleagues (Pfeifer and Sanfilippo, 2018, Pfeifer, 2013, Gilio et al.,
2015) propose to add, for certain cases, several restrictions on classical,
Aristotelian syllogisms, so that they become more informative from a
probabilistic perspective. We handle these cases through priors, which
Pfeifer and Sanfilippo (2018), Pfeifer (2013), Gilio et al. (2015) do not
make use of. The fact that we do not require additional restrictions for
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these examples motivates our prior driven approach. Note that in our
account, this result also extends to non-classical syllogisms.

5.5.8 Probabilistic Programming Languages
Through LMS we describe types and an associated density of predicate
spaces. This provides an alternative to probabilistic programming lan-
guages (Goodman et al., 2008, Borgström et al., 2013, Goodman and
Stuhlmüller, 2014). These languages do not describe spaces as such.
They specify functions that generate element of a certain type.

LMS offers several advantages. First, probabilistic programming lan-
guages generally do not (natively) allow the option of running an infer-
ence within another inference. LMS does this straightforwardly with the
measure(e) expression. Secondly, the semantics of LMS is more straight-
forward than that of a probabilistic programming language. LMS does
not allow sampling within expressions. Only spaces can refer to other
spaces. Borgström et al. (2013) provides an instance of a probabilis-
tic programming language equipped with a formal semantics. Third,
constructing spaces is very similar to constructing types and logical
formulas. We hope that LMS can be a useful tool for linguists who are
familiar with the interpretation of natural language expressions through
mapping of type theories (or similar logical systems).

In practice, LMS is implemented in a similar way to some prob-
abilistic programming languages, by MCMC methods such as Gibbs
sampling.

5.5.9 Modelling Predicates as Boxes
Boxes in Euclidean spaces are simple objects, and they have already
been used for the geometric representation of predicates. Vilnis et al.
(2018) apply boxes to encode WordNet lexical entries (unary predi-
cates) in order to predict hypernyms. Like us, they take the distribu-
tion in the vector space to be uniform. The probability of a predicate is
defined as the volume of the corresponding box. In our work, we use a
Bayesian model. It is best suited to represent a small number of pred-
icates, and to fully capture the uncertainty of the boundary for each
box. Vilnis et al. (2018) opt for a neural network to learn a large num-
ber of box positions. This is appropriate, given that their data set is
the complete WordNet hypernym hierarchy. Their model converges on
a single mapping of predicates to precise box boundaries, rather than
to a distribution over such mappings.

We have not yet tested the box representation of words proposed
by Vilnis et al. (2018) for our task, but we plan to do so in future
work. As our approach applies Bayesian sampling, we need to modify
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the sizes of certain boxes to deal with a data set of this kind. Because
their representations are learned for the purpose of detecting WordNet
hypernymy, they do not need to contain additional lexical information
not relevant to this task.

5.6 Discussion and Conclusion
5.6.1 Test suite improvements
There are several directions in which the current test suite can be de-
veloped. First, we can extend its breadth, with a larger data set of
examples. This may allow the system to learn representations for lex-
ical items (assuming that the representation of lexical items persist
throughout the test suite.) Additionally, such an expanded test suite
will provide the basis for deep-learning models. We intend to use crowd-
source annotation for data collection.

We will also improve the test set qualitatively. We will identify new
factors driving probabilistic inference, and we will extend the test suite
with examples of these factors.

We have currently tagged each example with the main factors that
they exhibit. We will revise these labels to produce a more rigorous
and complete system for classifying inference types. This will facilitate
crowd-sourced annotation.

It will also be useful to develop a partial order over examples ac-
cording to the complexity of the phenomena that they exhibit. If we
have a typology and a complexity hierarchy over examples, we will be
in a better position to identify the sources of peculiar behaviour in our
inference system.

5.6.2 Vagueness and the sorites paradox
Our system gracefully handles vague predicates. Vagueness is intro-
duced through random variables which can occur within such proposi-
tions. When evaluating any proposition in a random context, we inte-
grate over this random space, and can obtain any number within the
interval [0,1] for an expected truth value. This is the core of probabilis-
tic inference.

This approach formalises the widespread intuition that sentences
are, in the general case, more or less true (or false). This indeterminacy
arises whenever a distribution is sampled. Clear-cut paradigm cases of
predicate (non-)satisfaction are, of course, still available. The proposi-
tion tallnessj+k > tallnessj , will be true even though tallnessj is not
fixed.

Our system is robust for the sorites paradox. In our system, a set of
grains becomes a heap when their number is greater than some given
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large (real) number. This number is given some indeterminacy by sam-
pling it in a suitable distribution. Hence there is a “soft” transition
between a small set of grains and a heap as this number increases.

5.6.3 Treatment of conditionals

Classically, conditional statements of the form “if A, then B” are in-
terpreted as logical implication (A ! B) (also called material impli-
cation). Probability theory affords another possible interpretation: the
probability of the event expressed by B depending on that expressed
by A. If A ! B is taken as an inference problem, then we adopt the
natural probabilistic interpretation. In contrast, we choose the material
conditional treatment of conditionals, when the conditional is embed-
ded in one of the premises.

This choice is perhaps counterintuitive. To motivate it, consider the
sentence: “if John is ill, he will not attend the meeting.”.

Taking the sentence as a probabilistic inference, we compute the
probability

P (john attend the meeting|john ill)

The probability will depend on our prior knowledge about john and
illness, specifically, the dependence between them. However, if the
same sentence is found in a premise, it is understood by discarding
all the situations in which john is simultaneously ill and attend-
ing the meeting. This is done by adding the expression john ill !
john attend the meeting to the record of possible situations, effectively
performing a Bayesian update on the distributional meaning of the
lexical items.

We can contrast with categorical systems. There, instead of a
Bayesian update, one records facts about the free variables mentioned
in the conditional. When there are no such free variables, we find our-
selves in a linguistic difficulty. One possibility is that the antecedent
(‘John is ill’) is true, and it plays no role. The statement as a whole is
thus wasteful, violating the Gricean maxims of quantity. The other pos-
sibility is that the antecedent is false, and then we have a counterfactual
statement, which poses significant problems of its own.

In a probabilistic system the situation is more straightforward. As
long as there are prior possible situations which are either compati-
ble or incompatible with the hypothesis, the statement is informative,
rather than a genuine counterfactual. In classical systems variables are
either completely free or fixed, whereas probabilistic systems allow for
intermediate situations.
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Counterfactuals We can understand counterfactuals as locally-fictional
stories. We suspend disbelief for the scope of the conditional. Classi-
cally, for example in a Montagovian system (Montague, 1970, 1974),
we remove some hypothesis from the context. In probabilistic systems
we are allowed the possibility of adding uncertainty to the variables
mentioned in the conditional. If they were completely fixed, they could
become random again. One can quantify the suspension of disbelief,
rather than enforcing it categorically.

5.6.4 Mixed methods
There is a long tradition of using logic to interpret natural language.
One way to see the present chapter is as departure from this tradi-
tion through the use of Bayesian models, which Goodman and Lassiter
(2015) pioneered.

In contrast, we do not advocate a purely Bayesian semantics. Thanks
to the symbolic evaluation of probabilities, it is possible to mix quan-
tification over spaces, if prior/evidence is best modelled using distri-
butions, with quantification over (non-probabilistic) types, when ev-
idence is best modelled using traditional logical formulas (like in the
case where no information about distributions is available, and we must
assume that all possible cases are equally likely).

To implement these methods we need to reason about the relative
measures of spaces symbolically, and this typically requires creative
thought. We do not have access to a symbolic calculator that can auto-
matically decide propositions involving non-trivial symbolic integrals.

5.6.5 Summary
In this chapter we have presented a Bayesian Inference Semantics sys-
tem which captures probabilistic inferences through uniform priors for
lexical items. It uses Bayesian modelling to capture informational up-
dates. BIS is fully compositional, in the sense that the probability con-
ditions of a sentence are calculated through functions corresponding
to their syntactic constituents. We achieve probabilistic interpretations
by assigning measurable spaces to both objects and properties. Esti-
mating the probability of a predication reduces to measuring the den-
sity of the relevant objects in the space of the predicate’s property.
We have further experimented with two models of priors: semi-spaces
of Gausian distributions, and boxes of uniform density in which den-
sity is made easier to compute by symbolic simplifications. The system
supports a wide range of phenomena, which includes generalised quan-
tifiers, modal adverbs, scalar modifiers, and vagueness. BIS captures
intermediate or vague cases of predication, corresponding to the uncer-
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tain intuitions speakers have in those cases. Our account also handles
the sorites paradox. BIS is evaluated on a test suite constructed for
probabilistic inference. We hope that the work that we present here
will stimulate discussion and further work on the role of probability in
the semantics of natural language.
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5.7 Appendix: Test Suite

(T1) P1. every violinist is a musician.
P2. musicians generally read music.
H. if john is a violinist, then john reads music.
Label: probable inference, quantifier, modal adverb

(T2) P1. prolog programmers are always intermediate logic students.
P2. intermediate logic students rarely read music.
H. prolog programmers don’t read music.
Label: probable inference, quantifier, modal adverb

(T3) P1. many bald men are toupee wearers.
P2. toupee wearers always try hair transplant treatment.
P3. john is a bald man.
H. john tries hair transplant treatment.
Label: probable inference, quantifier, modal adverb

(T4) P1. john is a basketball player.
P2. basketball players are usually taller than non basketball

players.
H. john is taller than most people.
Label: unclear (world knowledge), comparative adjec-

tive, modal adverb
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(T5) P1. john is a short basketball player.
P2. basketball players are usually less short than non basketball

players.
H. john is short.
Label: unclear (world knowledge), comparative adjec-

tive, modal adverb, subsectivity

(T6) P1. all basketball players are probably tall.
H. most basketball players are tall.
Label: probable inference, quantifier, modal adverb

(T7) P1. 40 percent of prolog programmers read music.
P2. violinists don’t like prolog programmers that read music.
H. violinists don’t like most prolog programmers.
Label: improbable inference, percentage determiner,

modal adverb, negation, binary predicate

(T8) P1. prolog programmers definitely use tail recursion.
P2. many logicians are prolog programmers.
H. logicians use tail recursion.
Label: probable inference, quantifier, modal adverb

(T9) P1. stones fans often prefer the doors to the beatles.
P2. john is a stones fan.
H. john prefers the doors to the beatles.
Label: probable inference, quantifier, temporal adverb

(T10) P1. if you play for the leafs, then you are probably traded from
the canadiens.

P2. if you are traded from the canadiens, then you often play
in the montreal forum.

P3. john plays for the leafs.
H. john plays in the montreal forum.
Label: probable inference, quantifier, modal adverb,

temporal adverb
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(T11) P1. turkish coffee drinkers frequently enjoy a shot of arak.
P2. most people that enjoy a shot of arak also listen to classical

oud music.
H. turkish coffee drinkers listen to classical oud music.
Label: probable inference, quantifier, temporal ad-

verb

(T12) P1. if you regularly eat humus, then you also enjoy tabouli.
P2. most people that enjoy tabouli insist on having mint tea

with food.
H. if you eat humus, then you insist on having mint tea with

food.
Label: probable inference, quantifier, temporal ad-

verb

(T13) P1. cricket players rarely hit a home run.
P2. mary hits a home run.
H. mary isn’t a cricket player.
Label: probable inference, quantifier, temporal ad-

verb, negation

(T14) P1. many jazz guitarists can play more than 100 chords.
P2. few violinists can play more than 10 chords.
P3. john can play more than 80 chords.
H. john is a jazz guitarist.
Label: unclear, quantifiers

(T15) P1. mary is tall.
P2. john is taller than mary.
H. john is tall.
Label: entailment, comparative adjective, transitivity

(T16) P1. mary isn’t tall.
P2. mary is taller than john.
H. john isn’t tall.
Label: entailment, comparative adjective, transitivity
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(T17) P1. john is always as punctual as mary.
P2. sam is usually more punctual than john.
H. sam is more punctual than mary.
Label: probable inference, quantifier, modal/temporal

adverb

(T18) P1. many linguists know formal language theory.
P2. most linguists that know formal language theory dislike

experimental work.
H. many linguists dislike experimental work.
Label: probable inference, quantifier

(T19) P1. most conservatives don’t usually support free university ed-
ucation.

P2. john supports free university education.
H. john isn’t a conservative.
Label: probable inference, quantifier, modal/temporal

adverb, negation

(T20) P1. if you are a guitarist, then you are probably a stones fan.
P2. if you are a stones fan, then you generally prefer the doors

to the beatles.
H. it is not the case that every person that doesn’t prefer the

doors to the beatles is a person that isn’t a guitarist.
Label: probable inference, modal adverbs, quantifies,

relative clause, negation, conditional, comment:
because the negation is in the relative clause, it
acts with a narrow scope, see also 21 for wide
scope

(T21) P1. if you are a guitarist, then you are probably a stones fan.
P2. if you are a stones fan, then you generally prefer the doors

to the beatles.
H. every person that doesn’t prefer the doors to the beatles

isn’t a guitarist.
Label: probable inference, modal adverbs, quantifies,

relative clause, negation, conditional
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(T22) P1. 80 percent of basketball players are tall.
H. basketball players are probably tall.
Label: probable inference, percentage determiner, modal

adverb

(T23) P1. 80 percent of basketball players are tall.
H. few basketball players aren’t tall.
Label: probable inference, percentage determiner, nega-

tion

(T24) P1. prolog programmers definitely use tail recursion.
P2. logicians are frequently prolog programmers.
H. logicians probably use tail recursion.
Label: probable inference, quantifier, modal adverb

(T25) P1. john is tall.
P2. all guitarists are logicians.
H. john is tall and all guitarists are logicians.
Label: fol validity, conjunction

(T26) P1. john is tall.
P2. all guitarists are logicians.
H. john is tall.
Label: fol validity, weakening

(T27) P1. john is taller than mary.
H. john is tall.
Label: probable inference, comparative adjective

(T28) P1. john is taller than mary.
P2. mary is taller than sam.
H. john is taller than molly.
Label: probable inference, comparative adjective, tran-

sitivity
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(T29) P1. john is taller than mary.
P2. sam is taller than mary.
P3. kate is taller than christine.
H. kate is taller than john.
Label: probable inference, comparative adjective

(T30) P1. all intermediate logic students are stones fans.
P2. john is an intermediate logic student.
H. john is a stones fan.
Label: fol validity, quantifier

(T31) P1. john is a guitarist.
P2. most guitarists aren’t logicians.
H. john isn’t a logician.
Label: probable inference, negation, modus ponens

(T32) P1. john is a logician.
P2. most guitarists aren’t logicians.
H. john isn’t a guitarist.
Label: probable inference, negation, modus tollens

(T33) H. it is not the case that john is taller than most people.
Label: probable inference, law of great numbers (ob-

ject), negation

(T34) H. a few people are shorter than john.
Label: probable inference, law of great numbers (sub-

ject)

(T35) H. it is not the case that few people are shorter than john.
Label: probable inference, law of great numbers (sub-

ject), negation

(T36) P1. john isn’t a guitarist.
H. it is not the case that john is a guitarist.
Label: fol validity, wide-scope negation



Bayesian Inference Semantics for Natural Language / 213

(T37) P1. mary is 190 centimeters tall.
P2. mary is tall.
P3. molly is 184 centimeters tall.
P4. molly is tall.
P5. ruth is 180 centimeters tall.
P6. ruth is tall.
P7. helen is 178 centimeters tall.
P8. helen is tall.
P9. athena is 166 centimeters tall.
P10. athena isn’t tall.
P11. artemis is 157 centimeters tall.
P12. artemis isn’t tall.
P13. joanna is 160 centimeters tall.
P14. joanna isn’t tall.
P15. kate is 162 centimeters tall.
P16. kate isn’t tall.
P17. christine is 178 centimeters tall.
H. christine is tall.
Label: entailment, positive adjectives, vagueness

(T38) P1. mary is 189 centimeters tall.
P2. mary is tall.
P3. molly is 184 centimeters tall.
P4. molly is tall.
P5. ruth is 180 centimeters tall.
P6. ruth is tall.
P7. helen is 178 centimeters tall.
P8. helen is tall.
P9. athena is 166 centimeters tall.
P10. athena isn’t tall.
P11. artemis is 157 centimeters tall.
P12. artemis isn’t tall.
P13. joanna is 160 centimeters tall.
P14. joanna isn’t tall.
P15. kate is 162 centimeters tall.
P16. kate isn’t tall.
P17. christine is 163 centimeters tall.
H. christine isn’t tall.
Label: entailment, positive adjectives, vagueness
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(T39) P1. many jazz guitarists can play more than 2 chords.
P2. few violinists can play more than 1 chord.
P3. john can play more than 2 chords.
H. john is a jazz guitarist.
Label: unclear, quantifiers

(T40) P1. many jazz guitarists can play more than 5 chords.
P2. few violinists can play more than 2 chords.
P3. john can play more than 4 chords.
H. john is a jazz guitarist.
Label: unclear, quantifiers

(T41) P1. john is 180 centimeters tall.
P2. john is 6 foot tall.
P3. mary is 6 foot tall.
H. mary is 180 centimeters tall.
Label: entailment, comparative, measure

(T42) P1. mary is 190 centimeters tall.
P2. mary is tall.
P3. molly is 184 centimeters tall.
P4. molly is tall.
P5. ruth is 180 centimeters tall.
P6. ruth is tall.
P7. helen is 178 centimeters tall.
P8. helen is tall.
P9. athena is 166 centimeters tall.
P10. athena isn’t tall.
P11. artemis is 157 centimeters tall.
P12. artemis isn’t tall.
P13. joanna is 160 centimeters tall.
P14. joanna isn’t tall.
P15. kate is 162 centimeters tall.
P16. kate isn’t tall.
P17. christine is 171 centimeters tall.
H. ( it is not the case that christine is tall ) and ( it is not the

case that christine isn’t tall ).
Label: fol contradiction, positive adjectives, vague-

ness
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(T43) P1. john is taller than mary.
P2. john is 185 centimeters tall.
P3. mary is 5 foot tall.
H. 185 centimeters is more than 5 foot.
Label: entailment, comparative, measure

(T44) P1. john is taller than mary.
P2. mary is 5 foot tall.
H. john is more than 5 foot tall.
Label: entailment, comparative, measure

(T45) P1. john is a guitarist.
P2. guitarists are kind of musicians.
H. john is a musician.
Label: probable inference, generalised vagueness, noun

modifier

(T46) P1. john is a guitarist.
P2. guitarists are pretty much musicians.
H. john is a musician.
Label: probable inference, generalised vagueness, noun

modifier

(T47) P1. john is a basketball player.
P2. basketball players are tall.
H. john is taller than 50 percent of people.
Label: probable inference, comparative adjective, modal

adverb, percentage determiner

(T48) P1. many jazz guitarists can play more than 100 chords.
P2. few violinists can play more than 10 chords.
P3. john can play more than 80 chords.
H. john isn’t a violinist.
Label: probable inference, quantifiers
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(T49) P1. many jazz guitarists can play more than 100 chords.
P2. few violinists can play more than 10 chords.
P3. john can play less than 15 chords.
H. john is a violinist.
Label: unclear, quantifiers

(T50) P1. many jazz guitarists can play more than 100 chords.
P2. few violinists can play more than 10 chords.
P3. john can play more than 90 chords.
H. john is a jazz guitarist.
Label: unclear, quantifiers

(T51) P1. jazz guitarists are musicians.
P2. violinists are musicians.
P3. john is a musician.
P4. many jazz guitarists can play more than 100 chords.
P5. few violinists can play more than 10 chords.
P6. john can play more than 90 chords.
H. john is a jazz guitarist.
Label: unclear, quantifiers

(T52) P1. jazz guitarists are musicians.
P2. violinists are musicians.
P3. john is a musician.
P4. musicians can play more than 1 chord.
P5. many jazz guitarists can play more than 100 chords.
P6. few violinists can play more than 10 chords.
P7. john can play more than 90 chords.
H. john is a jazz guitarist.
Label: unclear, quantifiers

(T53) P1. john is a basketball player.
P2. basketball players are taller than most non basketball play-

ers.
H. john is taller than most non basketball players.
Label: probable inference, comparative adjective, modal

adverb
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(T54) P1. few people are basketball players.
P2. basketball players are taller than most non basketball play-

ers.
P3. john is a basketball player.
H. john is taller than most people.
Label: probable inference, comparative adjective, modal

adverb

(T55) P1. 99 percent of people are non basketball players.
P2. basketball players are taller than most non basketball play-

ers.
P3. john is a basketball player.
H. john is taller than most people.
Label: probable inference, comparative adjective, modal

adverb, percentage determiner

(T56) P1. if you regularly eat humus, then you also enjoy tabouli.
P2. people that enjoy tabouli insist on having mint tea with

food.
H. if you regularly eat humus, then you insist on having mint

tea with food.
Label: probable inference, quantifier, temporal ad-

verb

(T57) P1. if you eat humus, then you also enjoy tabouli.
P2. people that enjoy tabouli insist on having mint tea with

food.
H. if you eat humus, then you insist on having mint tea with

food.
Label: probable inference, transitivity of implication,

comment: doesn’t work with planes, because the
generic plural isn’t transitive even combined
with optimized universal

(T58) P1. if you eat humus, then you also enjoy tabouli.
P2. john eats humus.
H. john enjoys tabouli.
Label: probable inference, modus ponens
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(T59) P1. if you eat humus, then you also enjoy tabouli.
P2. people that enjoy tabouli insist on having mint tea with

food.
H. if john eats humus, then john insists on having mint tea

with food.
Label: probable inference, transitivity of implication

(T60) P1. if you regularly eat humus, then you also enjoy tabouli.
P2. people that enjoy tabouli insist on having mint tea with

food.
H. if john regularly eats humus, then john insists on having

mint tea with food.
Label: probable inference, transitivity of implication

(T61) P1. mary is 190 centimeters tall.
P2. mary is tall.
P3. kate is 162 centimeters tall.
P4. kate isn’t tall.
P5. christine is 185 centimeters tall.
H. christine is tall.
Label: probable inference, positive adjectives, vague-

ness

(T62) P1. few people are musicians.
P2. few people are non musicians.
H. ( it is not the case that john is a musician ) and ( it is not

the case that john is a non musician ).
Label: fol contradiction, comparative adjective, grey

area

(T63) P1. john is tall.
P2. few guitarists are logicians.
H. john is tall and few guitarists are logicians.
Label: fol validity, conjunction, quantifiers

(T64) P1. john is tall.
P2. john is a musician.
H. john is tall and john is a musician.
Label: fol validity, conjunction
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(T65) P1. all guitarists are probably logicians.
H. most guitarists are logicians.
Label: probable inference, quantifiers, modal adverb

(T66) P1. all guitarists are logicians.
H. all guitarists are probably logicians.
Label: entailment, quantifier, modal adverb

(T67) P1. few guitarists are logicians.
H. all guitarists are logicians.
Label: contradiction, quantifiers

(T68) P1. all guitarists are probably logicians.
H. all guitarists are probably logicians.
Label: fol validity, quantifier, modal adverb

(T69) P1. all guitarists are logicians.
H. all guitarists are logicians.
Label: fol validity, quantifier

(T70) P1. mary is 190 centimeters tall.
P2. mary is tall.
P3. kate is 162 centimeters tall.
P4. kate isn’t tall.
P5. christine is 179 centimeters tall.
H. christine is tall.
Label: probable inference, positive adjectives, vague-

ness

(T71) P1. mary is 190 centimeters tall.
P2. mary is tall.
P3. kate is 188 centimeters tall.
P4. kate isn’t tall.
P5. christine is 189 centimeters tall.
H. it is not the case that christine isn’t tall.
Label: unclear, negative adjectives, vagueness



220 / Bernardy et al.

(T72) P1. mary is 190 centimeters tall.
P2. mary is tall.
P3. kate is 189 centimeters tall.
P4. kate isn’t tall.
P5. christine is 188 centimeters tall.
H. christine isn’t tall.
Label: entailment, positive adjectives, vagueness

(T73) P1. mary is 190 centimeters tall.
P2. mary is tall.
P3. kate is 180 centimeters tall.
P4. kate is tall.
P5. helen is 170 centimeters tall.
P6. helen isn’t tall.
P7. christine is 165 centimeters tall.
H. christine isn’t tall.
Label: entailment, negative adjectives, vagueness

(T74) P1. kate is 190 centimeters tall.
P2. kate is tall.
P3. helen is 180 centimeters tall.
P4. helen isn’t tall.
P5. christine is 190 centimeters tall.
H. christine is tall.
Label: entailment, vagueness

(T75) P1. few people are basketball players.
P2. basketball players are taller than most non basketball play-

ers.
P3. john is a basketball player.
H. john is taller than many people.
Label: probable inference, comparative adjective, modal

adverb

(T76) P1. all violinists are musicians.
P2. all musicians read music.
H. all violinists read music.
Label: fol validity, quantifiers
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(T77) P1. all violinists are musicians.
P2. all musicians read music.
H. 99 percent of violinists read music.
Label: entailment, quantifiers, percentage determiner

(T78) P1. every guitarist is a logician.
P2. if every guitarist is a logician, then every musician reads

music.
P3. john is a musician.
H. john reads music.
Label: fol validity, implication, quantifier

(T79) P1. john is a basketball player.
P2. basketball players are taller than non basketball players.
H. john is taller than 80 percent of people.
Label: unclear, comparative adjective, modal adverb,

percentage determiner

(T80) P1. most animals don’t fly.
P2. most birds fly.
P3. every bird is an animal.
H. most animals aren’t birds.
Label: probable inference, quantifiers

(T81) P1. most birds fly.
H. a few birds fly.
Label: entailment, quantifiers

(T82) P1. many logicians are musicians.
P2. john is a logician.
H. john is a musician.
Label: probable inference, quantifier

(T83) P1. many logicians are musicians.
P2. john is a musician.
H. john is a logician.
Label: unclear, quantifier
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(T84) P1. many logicians are musicians.
P2. most people aren’t logicians.
P3. john is a musician.
H. john is a logician.
Label: unclear, quantifiers

References
Adams, Ernest. 1998. A Primer of Probability Logic. Stanford: CSLI Publi-

cations.
Barendregt, Hendrik Pieter. 1992. Lambda calculi with types. Handbook of

logic in computer science 2:117–309.
Barwise, J. and R. Cooper. 1981. Generalised quantifiers and natural lan-

guage. Linguistics and Philosophy 4:159–219.
Bernardy, Jean-Philippe, Rasmus Blanck, Stergios Chatzikyriakidis, and

Shalom Lappin. 2018. A compositional Bayesian semantics for natural
language. In Proceedings of the International Workshop on Language, Cog-
nition and Computational Models, COLING 2018, Santa Fe, New Mexico,
pages 1–11.

Bernardy, Jean-Philippe and Stergios Chatzikyriakidis. 2019a. A computa-
tional treatment of anaphora and its algorithmic implementation. Ms,
University of Gothenburg .

Bernardy, Jean-Philippe and Stergios Chatzikyriakidis. 2019b. A wide-
coverage symbolic natural language inference system. In Proceedings of
the 22nd Nordic Conference on Computational Linguistics. ACL.

Borgström, Johannes, Andrew D. Gordon, Michael Greenberg, James Mar-
getson, and Jurgen Van Gael. 2013. Measure transformer semantics for
Bayesian machine learning. Logical Methods in Computer Science 9:1–39.

Bowman, Samuel R, Gabor Angeli, Christopher Potts, and Christopher D
Manning. 2015. A large annotated corpus for learning natural language
inference. In Proceedings of EMNLP , pages 632–642.

Cann, Ronnie, Ruth Kempson, and Eleni Gregoromichelaki. 2009. Semantics:
An Introduction to Meaning in Language. ISBN 9780521819626.

Carlson, Greg N. 1982. Generic terms and generic sentences. Journal of
Philosophical Logic 11(2):145–181.

Chatzikyriakidis, S. and Z. Luo. 2017. On the interpretation of com-
mon nouns: Types versus predicates. In Modern Perspectives in Type-
Theoretical Semantics, pages 43–70. Springer.

Chierchia, Gennaro. 1995. Dynamics of Meaning: Anaphora, Presupposition,
and the Theory of Grammar . University of Chicago Press.

Cooper, R., D. Crouch, J. van Eijck, C. Fox, J. van Genabith, J. Jaspars,
H. Kamp, D. Milward, M. Pinkal, M. Poesio, and S. Pulman. 1996. Using
the framework. Technical report LRE 62-051r, The FraCaS consortium.
ftp://ftp.cogsci.ed.ac.uk/pub/FRACAS/del16.ps.gz.

ftp://ftp.cogsci.ed.ac.uk/pub/FRACAS/del16.ps.gz


References / 223

Cooper, R., S. Dobnik, S. Lappin, and S. Larsson. 2014. A probabilistic rich
type theory for semantic interpretation. In Proceedings of the EACL 2014
Workshop on Type Theory and Natural Language Semantics (TTNLS),
pages 72–79. Gothenburg, Sweden: Association of Computational Linguis-
tics.

Cooper, R., S. Dobnik, S. Lappin, and S. Larsson. 2015. Probabilistic type
theory and natural language semantics. Linguistic Issues in Language
Technology 10:1–43.

Dagan, Ido, Oren Glickman, and Bernardo Magnini. 2006. The PASCAL
recognising textual entailment challenge. In Machine learning challenges.
Evaluating predictive uncertainty, visual object classification, and recognis-
ing tectual entailment , pages 177–190. Springer.

Edgington, Dorothy. 2001. The philosophical problem of vagueness. Legal
Theory 7(4):371–378.

Emerson, Guy and Ann Copestake. 2017a. Semantic composition via prob-
abilistic model theory. In IWCS 2017 - 12th International Conference on
Computational Semantics - Long papers.

Emerson, Guy and Ann Copestake. 2017b. Variational inference for logical
inference. CoRR abs/1709.00224.

Fox, Chris and Shalom Lappin. 2005. Foundations of Intensional Semantics.
Blackwell.

Gilio, Angelo, Niki Pfeifer, and Giuseppe Sanfilippo. 2015. Transitive rea-
soning with imprecise probabilities. In S. Destercke and T. Denoeux, eds.,
Symbolic and Quantitative Approaches to Reasoning with Uncertainty ,
pages 95–105. Cham: Springer International Publishing. ISBN 978-3-319-
20807-7.

Goodman, Noah and Daniel Lassiter. 2015. Probabilistic semantics and prag-
matics: Uncertainty in language and thought. In S. Lappin and C. Fox,
eds., The Handbook of Contemporary Semantic Theory, Second Edition,
pages 655–686. Malden, Oxford: Wiley-Blackwell.

Goodman, Noah, V. K. Mansinghka, D. Roy, K. Bonawitz, and J. Tenen-
baum. 2008. Church: a language for generative models. In Proceedings
of the 24th Conference Uncertainty in Artificial Intelligence (UAI), pages
220–229.

Goodman, Noah and Andreas Stuhlmüller. 2014. The Design and Implemen-
tation of Probabilistic Programming Languages. http://dippl.org. Ac-
cessed: 2018-4-17.

Groenendijk, Jeroen and Martin Stokhof. 1991. Dynamic predicate logic.
Linguistics and Philosophy 14(1):39–100.

Grove, Julian and Jean-Philippe Bernardy. 2021. Probabilistic compositional
semantics, purely. In Proceedings of LENLS18 .

Grove, Julian, Jean-Philippe Bernardy, and Stergios Chatzikyriakidis. 2021.
From compositional semantics to bayesian pragmatics via logical inference.
In Proceedings of Natural Logic meets Machine Learning 2021 .

http://dippl.org


224 / Bernardy et al.

Halpern, Joseph Y. 2017. Reasoning About Uncertainty . Cambridge, MA,
USA: MIT Press.

Heim, Irene. 1982. The Semantics of Definite and Indefinite Noun Phrases.
Ph.D. thesis, UMass Amherst.

Heim, Irene and Angelika Kratzer. 1998. Semantics in Generative Grammar .
Blackwell.

Itegulov, Daniyar, Ekaterina Lebedeva, and Bruno Woltzenlogel Paleo. 2018.
Sensala: A dynamic semantics system for natural language processing. In
Proceedings of the 27th International Conference on Computational Lin-
guistics: System Demonstrations, pages 123–127.

Kamp, Hans. 2013. Two theories about adjectives. In Meaning and the
Dynamics of Interpretation, pages 225–261. Brill.

Kamp, Hans and Uwe Reyle. 1993. From Discourse to Logic. Dordrecht:
Kluwer Academic Publishers.

Keenan, Edward and L.M. Falz. 1985. Boolean Semantics for Natural Lan-
guage. Berlin, New York: Springer.

Klein, Ewan. 1980. A semantics for positive and comparative adjectives.
Linguistics and Philosophy 4(1):1–45.

Lappin, Shalom. 2015. Curry typing, polymorphism, and fine-grained inten-
sionality. In S. Lappin and C. Fox, eds., The Handbook of Contemporary
Semantic Theory, Second Edition, pages 408–428. Malden, MA and Ox-
ford: Wiley-Blackwell.

Lappin, Shalom. 2018. Towards a computationally viable framework for se-
mantic representation. In Proceedings of the Symposium on Logic and
Algorithms in Computational Linguistics 2018 , pages 47–63. Stockholm
University, DiVA Portal for digital publications.

Lassiter, Daniel and Noah Goodman. 2017. Adjectival vagueness in a
Bayesian model of interpretation. Synthese 194:3801–3836.

Lau, Jey Han, Alexander Clark, and Shalom Lappin. 2017. Grammaticality,
acceptability, and probability: A probabilistic view of linguistic knowledge.
Cognitive Science 41(5):1202–1241.

Luo, Z. 2012. Common nouns as types. In D. Bechet and A. Dikovsky, eds.,
Logical Aspects of Computational Linguistics (LACL’2012). LNCS 7351 .

Montague, Richard. 1970. English as a formal language. In B. V. et al., ed.,
Linguaggi nella Societa e nella Tecnica.

Montague, Richard. 1974. The proper treatment of quantification in ordinary
english. In R. Thomason, ed., Formal Philosophy . New Haven: Yale UP.

Partee, Barbara H. 2007. Compositionality and coercion in semantics: The
dynamics of adjective meaning. Cognitive foundations of interpretation
pages 145–161.

Peters, Stanley and Dag Westerståhl. 2006. Quantifiers in Language and
Logic. Oxford University Press UK.

Pfeifer, Niki. 2013. The new psychology of reasoning: A mental probability
logical perspective. Thinking & Reasoning 19(3-4):329–345.



References / 225

Pfeifer, Niki and Giuseppe Sanfilippo. 2018. Probabilistic semantics for cate-
gorical syllogisms of figure II. In D. Ciucci, G. Pasi, and B. Vantaggi, eds.,
Scalable Uncertainty Management , pages 196–211. Springer International
Publishing. ISBN 978-3-030-00461-3.

Piantadosi, Steven, Harry Tily, and Edward Gibson. 2011. Word lengths
are optimized for efficient communication. Proceedings of the National
Academy of Sciences of the United States of America 108:3526–9.

Ranta, Aarne. 1994. Type-Theoretical Grammar . Oxford University Press.
Ranta, Aarne. 2004. Grammatical framework. Journal of Functional Pro-

gramming 14(2):145–189.
Shan, Chung-chieh and Norman Ramsey. 2017. Exact bayesian inference

by symbolic disintegration. In Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL, pages 130–
144.

Suppes, Patrick. 1966. Probabilistic inference and the concept of total ev-
idence. In J. Hintikka and P. Suppes, eds., Aspects of Inductive Logic,
vol. 43 of Studies in Logic and the Foundations of Mathematics, pages
49–65. Elsevier.

Sutton, Peter R. 2017. Probabilistic approaches to vagueness and semantic
competency. Erkenntnis .

van Eijck, Jan and Shalom Lappin. 2012. Probabilistic semantics for natu-
ral language. In Z. Christoff, P. Galeazzi, N. Gierasimszuk, A. Marcoci,
and S. Smets, eds., Logic and Interactive Rationality (LIRA), Volume 2 .
University of Amsterdam: ILLC.

Vilnis, Luke, Xiang Li, Shikhar Murty, and Andrew McCallum. 2018. Prob-
abilistic embedding of knowledge graphs with box lattice measures. In
Proceedings of the 56th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages 263–272. Association
for Computational Linguistics.

Williamson, Timothy. 1994. Vagueness. Routledge.


	Introduction
	Computational Morphology
	Christo Kirov and Richard Sproat
	Something Old, Something New: Grammar-based CCG Parsing with Transformer Models
	Stephen Clark
	Probabilistic Lexical Semantics: From Gaussian Embeddings to Bernoulli Fields
	Guy Emerson
	The origins of vagueness
	Peter Sutton
	Bayesian Inference Semantics for Natural Language
	Jean-Philippe Bernardy, Rasmus Blanck, Stergios Chatzikyriakidis, Shalom Lappin and Aleksandre Maskharashvili
	Probabilistic pragmatics: A dialogical perspective
	Bill Noble, Vladislav Maraev, and Ellen Breitholtz
	Neuro-computation for Language processing
	Vidya Somashekarappa
	Learning Language Games Probabilistically: From Crying to Compositionality
	Robin Cooper, Jonathan Ginzburg and Staffan Larsson
	Distributional Semantics for Situated Spatial Language? Functional, Geometric and Perceptual Perspectives
	John D. Kelleher and Simon Dobnik
	Action coordination and learning in dialogue
	Arash Eshghi, Christine Howes, and Eleni Gregoromichelaki
	Reanalysis, probability, and the faculty of language
	Asad B. Sayeed
	Contributors
	Glossary

