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1. Introduction
We consider the extent to which different deep neural net-
work (DNN) configurations can learn syntactic relations,
by taking up Linzen et al.’s (2016) work on subject-verb
agreement with LSTM RNNs. We test their methods on a
much larger corpus than they used: a ∼24 million exam-
ple part of the WaCky corpus (Baroni et al., 2009), instead
of their ∼1.35 million example corpus, both drawn from
Wikipedia. We experiment with several different DNN ar-
chitectures (LSTM RNNs, GRUs, and CNNs), and alterna-
tive parameter settings for these systems. We also try out
our own unsupervised DNN language model. Our results
are broadly compatible with those that Linzen et al. report.
However, we discovered some interesting, and in some
cases, surprising features of DNNs and language models in
their performance of the agreement learning task. In par-
ticular, we found that DNNs require large vocabularies to
form substantive lexical embeddings in order to learn struc-
tural patterns. This finding has significant consequences
for our understanding of the way in which DNNs represent
syntactic information.
As Linzen et al. observe, the agreement task increases in
difficulty in relation to the length of the sequence of NPs
with the wrong number feature that occur between a sub-
ject and the verb that it controls. They refer to such inter-
vening NPs as attractors.

(1a) The students submit a final project to complete the course.
(b) The students enrolled in the program submit a final project

to complete the course.
(c) The students enrolled in the program in the Department

submit a final project to complete the course.
(d) The students enrolled in the program in the Department

where my colleague teaches submit a final project to com-
plete the course.

Our main objective in the work that we report here is
to explore the capabilities, and the limitations of DNNs
for learning complex syntactic relations which depend on
structural properties of sentences.
We used methods similar to Linzen et al.’s to test several
DNN models on a much larger corpus. We experimented
with different DNN architectures, and with alternative val-
ues for the following parameters: (i) ratio of training to
testing as a partition of the corpus, (ii) number of hidden
units (memory size), (iii) vocabulary size (iv) number of
layers, (v) dropout rate, and (vi) lexical embedding dimen-
sion size.
In addition we applied our own language model to the
number prediction task, testing two distinct methods of
predicting verb number from the model’s probability dis-
tribution.
Specifically, by working with different vocabulary sizes,
lexical encodings, and embedding sizes we discovered
that our supervised DNN models learn agreement patterns
more effectively from rich word embeddings than from ab-
stract syntactically annotated input. We also found that our
models required larger amounts of training relative to test-
ing than Linzen et al. describe for their system, in order
to reach the performance that they report. Increasing the
values of hyperparameters generally improves accuracy, al-
though after a point, overfitting is observed. Changing
an individual hyperparameter does not create dramatic ef-
fects, but the global effect of hypeparameter optimisation is
significant.
Finally, we were able to construct a language model with
significantly better (unsupervised) prediction. Yet, our
model is much smaller than the Google LM. All of our su-
pervised DNNs outperformed our language model on the
number prediction task.

2. Results
Except for the final graph, the y-axis gives the accuracy of
agreement prediction rate, and the x-axis the number of
NP attractors. Unless otherwise indicated, results are for
a benchmark LSTM RNN with one layer of 150 units, no
dropout, lexical embeddings of dimension 50, and training
on 90% of the corpus.
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2 layers of 1350 units, dropout rate 0.1, vocabulary size 100k,
training on 90%, and lexical embedding dimension size 150
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The solid blue line represents our (supervised) benchmark LSTM
RNN.
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3. Discussion
It could be that an RNN with a more structured memory
that incorporates the equivalent of a stack for encoding
the beginning of a dependency and a pop mechanism for
releasing it later in a sequence (Grefenstette et al., 2015)
would yield even better results. In general, there is consid-
erable room for exploring alternative architectures before
drawing strong conclusions on the capabilities of the entire
class of DNNs for learning syntactic relations.
One of our most striking results is that training DNNs on
data that is lexically impoverished, but highlights the syn-
tactic elements between which a relation is to be acquired
does not facilitate learning, but degrades it. DNNs learn
better from data populated by richer lexical sequences. This
suggests that DNNs are not efficient at picking up abstract
syntactic patterns when they are explicitly marked in the
data. Instead they extract them incrementally from lexical
embeddings through recognition of their distributional reg-
ularities. It is also possible that they use the lexical semantic
cues that larger vocabularies introduce to determine agree-
ment preferences for a verb.
It is interesting to note that some recent work in neu-
rolinguistics indicates that syntactic knowledge is dis-
tributed through different language centres in the brain,
and closely integrated with lexical-semantic representa-
tions (Blank et al., 2016). This lexically encoded and dis-
tributed way of representing syntactic information is con-
sistent with the role of rich lexical embeddings in DNN syn-
tactic learning.
Finally our results show that a language model can achieve
not entirely unreasonable results on the number agreement
prediction task, if an appropriate method is applied for
comparing the conditional probabilities of alternative num-
ber markings on verbs.

4. Conclusions and Future Work
Our experimental results strengthen Linzen et al.’s conclu-
sion that DNNs are able to learn long distance syntactic re-
lations to a fairly high degree of accuracy, across extended
complex sequences of potentially distracting phrases. We
also found that accuracy in the supervised version of this
task scales with the amount of training data used, and with
the size of the lexical embedding vocabulary.
Performance improves with an increase in the number of
hidden units. This effect may be even more pronounced
when tracking more complex syntactic relations with mul-
tiple features. This is a question that we will explore in fu-
ture work.
We also found that it is possible to obtain reasonable results
with unsupervised learning through a comparatively small
language model, when we use a targeted procedure for pre-
dicting verb number. The performance of this model, with
this procedure, significantly exceeds that of the two models
that Linzen et al. present.
One of our main concerns will be to explore syntactic de-
pendencies involving several agreement features. In lan-
guages in which gender, and person, as well as number
are morphologically realised on verbs the agreement pre-
diction task is more difficult. It requires accuracy across
three feature dimensions rather than one. Testing DNNs on
agreement in such languages will provide a better sense of
their capacity to learn and represent syntactic information.
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