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In this chapter we consider unsupervised learning from two perspectives. First,
we briefly look at its advantages and disadvantages as an engineering tech-
nique applied to large corpora in natural language processing. While super-
vised learning generally achieves greater accuracy with less data, unsupervised
learning offers significant savings in the intensive labour required for annotat-
ing text. Second, we discuss the possible relevance of unsupervised learning to
debates on the cognitive basis of human language acquisition. In this context
we explore the implications of recent work on grammar induction for poverty of
stimulus arguments that purport to motivate a strong bias model of language
learning, commonly formulated as a theory of Universal Grammar (UG). We
examine the second issue both as a problem in computational learning the-
ory, and with reference to empirical work on unsupervised Machine Learning
(ML) of syntactic structure. We compare two models of learning theory and
the place of unsupervised learning within each of them. Looking at recent
work on part of speech tagging and the recognition of syntactic structure, we
see how far unsupervised ML methods have come in acquiring different kinds
of grammatical knowledge from raw text.
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2 Alex Clark and Shalom Lappin

1 Overview

1.1 Machine Learning in Natural Language Processing and
Computational Linguistics

The machine learning methods presented in this Handbook have been applied
to a wide variety of problems in natural language processing. These range
from speech recognition (Renals, Chapter 16) through morphological analysis
(Goldsmith, Chapter 18) and syntactic parsing (Satta and Nederhof, Chapter
4), to the complex text and discourse understanding applications dealt with
in Part IV. ML has produced increasingly successful systems for handling a
large domain of natural language engineering tasks. When evaluating different
types of ML there are a variety of technological issues that arise, some of
which we will consider in the context of the distinction between supervised
and unsupervised learning procedures.

From an engineering perspective, the main issue to be addressed when
comparing the relative merits of supervised vs. unsupervised learning, for a
particular task, is the degree of accuracy that each method achieves in pro-
portion to the cost of resources that it requires. As we will see, characterizing
an optimal balance between accuracy and cost is not always straightforward.
It is necessary to consider a variety of factors in calculating both of the values
that determine this balance.

It is also interesting to consider if ML has implications for some of the
scientific questions that animate linguistics and cognitive science. Specifically,
it is worth asking if the success of ML methods in solving language engineering
problems illuminates the sorts of learning processes that humans could, in
principle, employ in acquiring knowledge of their language. Clearly the fact
that an ML procedure is able to efficiently acquire important elements of
human grammatical knowledge from corpora does not, in itself, show that
human learning operates according to this procedure. However, to the extent
that grammar induction through domain general learning methods succeeds
on the basis of evidence of the kind available to children, we achieve insight
into the computational credibility of such methods as models of language
acquisition.

1.2 Grammar Induction as a Machine Learning Problem

A machine learning system implements a learning algorithm whose output is a
function from a domain of input samples to a range of output values. We divide
a corpus of examples into a training and a test set. The learning algorithm
is specified in conjunction with a model of the phenomenon to be learned.
This model defines the space of possible hypotheses that the algorithm can
generate from the input data. When the values of the model’s parameters are
determined through training of the algorithm on the test set, an element of the
hypothesis space is selected. In the case of grammar induction the algorithm
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Unsupervised Learning and Grammar Induction 3

learns from the training data to construct a parser that assigns descriptions of
syntactic structure to input strings from the test data. It provides a learning
procedure for acquiring a grammar that parses new strings in the corpus.

If we have a gold standard of correct parses in a corpus, then it is possible
to compute the percentage of correct parses that the algorithm produces when
tested on an unseen subpart of this corpus. A more common procedure for
scoring an ML algorithm on a test set is to evaluate its performance for recall
and precision.!

The recall of a parsing algorithm A4 is the percentage of brackets of the
test set that it correctly identifies, where these brackets specify the constituent
tree structure of each sentence in the set. A’s precision is the percentage of
the brackets that it returns which correspond to those in the gold standard.
A unified score for A, known as an F-score, can be computed as an average
of its recall and its precision.

The choice of parameters and their possible values defines a bias for the
language model by imposing prior constraints on the set of learnable hy-
potheses. All learning requires some sort of bias to restrict the set of possible
hypotheses for the phenomenon to be learned. This bias can express strong
assumptions about the nature of the domain of learning. Alternatively, it can
define comparatively weak domain-specific constraints, with learning driven
primarily by domain-general procedures and conditions.

One way of formalising a learning bias is as a prior probability distribution
on the elements of the hypothesis space that favours some hypotheses as more
likely than others. The paradigm of Bayesian learning in cognitive science
implements this approach.2 The simplicity and compactness measure that
Perfors et al. (2006) use is an example of a very general prior. We can describe
this measure as follows.

Let D be data, and H a hypothesis. Maximum likelihood chooses the H
which makes the D most likely (the maximum probability value of D given
H):

(1) argmax i (P(D|H)).

Posterior probability is proportional to the prior probability times the
likelihood.

(2) P(H|D) oc P(H)P(D|H)

The maximum a posteriori approach chooses the H which maximises the
posterior probability:

(3) argmax y(P(H)P(D|H))
! See, Chapter 20, Information Extraction, Section 3.4, this volume, and Jurafsky &
Martin (2009) p. 455 for discussions of recall, precision, and weighted F-measures.

2 See Manning & Schiitze (1999) for a discussion of Bayesian inference and the role
of Bayesian reasoning about probability in statistical NLP.
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The bias of the model is explicitly represented in the prior P(H). Perfors
et al. (2006) define this prior to give higher values to grammars whose rule
sets are of smaller cardinality, and whose rules are formulated with fewer
non-terminal symbols.

1.3 Supervised Learning

When the samples of the training set are annotated with the classifications
and structures that the learning algorithm is intended to produce as output
for the test set, then learning is described as supervised. Grammar induction
that is supervised involves training an ML system on a corpus annotated
with the parse structures that correspond to a gold standard of correct parse
descriptions. The learning algorithm infers a function for assigning appropriate
parse output to input sentences on the basis of a training set of sentence
argument-parse value pairs.

As an example of supervised grammar induction consider the learning of a
A Probabilistic Context-Free Grammar (PCFG).? Such a grammar conditions
the probability of a child non-terminal sequence on that of the parent non-
terminal. Each of its Context-Free Grammar (CFG) rules N — X;...X,
expands a non-terminal N into a sequence Xj...X, of non-terminal and
terminal symbols, and the rule is assigned a probability value. The grammar
provides conditional probabilities of the form P(X; ... X, | N) for each non-
terminal N and sequence X ... X, of items from the set of non-terminals and
the vocabulary of terminals in the grammar. It also specifies a probability
distribution over the label of the root of the tree Ps(N). For a PCFG G,
the conditional probabilities P(X;...X,, | N) correspond to probabilistic
parameters that govern the expansion of a node in a parse tree according to
a corresponding Context-Free rule N — X5 ... X, in G.

The probabilistic parameter values of a PCFG can be learned from a parse
annotated training corpus by computing the frequency of CFG rules instan-
tiated in the corpus, in accordance with a Mazximum Likelihood Estimation
(MLE) condition.

o St

where ¢(R) = the number of occurrences of a rule R in the annotated
COTPUS.

In practice, MLE does not perform as well as more sophisticated estimation
methods based on distribution-free techniques (see Collins (2005)).

3 See Manning & Schiitze (1999) and Jurafsky & Martin (2009) for accounts of
Probabilistic Context-Free Grammars and Lexicalized Probabilistic Context-Free
Grammars as language models for supervised grammar induction.
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It is possible to significantly improve the performance of a PCFG by adding
additional bias to the language model that it defines. Collins (1999) constructs
a Lexicalized Probabilistic Context-Free Grammar (LPCFG) in which the
probabilities of the CFG rules are conditioned on lexical heads of the phrases
that non-terminal symbols represent. In Collins’ LPCFG non-terminals are re-
placed by non-terminal/head pairs. The probability distributions of the model
are of the form Ps(N/h) and P(Xy/hy---H/h--- X, /hy | N/h) (where H is
the category of the head of the phrase that expands N) . Collins’ LPCFG
achieves an F-measure performance of approximately 88%. Charniak & John-
son (2005) present a LPCFG with an F-score of approximately 91%.

Rather than encoding a particular categorical bias into his language model
by excluding certain Context-Free rules, Collins allows all such rules. He in-
corporates bias by adjusting the prior distribution of probabilities over all
lexicalized CFG rules. The model imposes the requirements that (i) sentences
have hierarchical constituent structure, (ii) constituents have heads that se-
lect for their siblings, and (iii) this selection is determined by the head words
of the siblings.

The bias that Collins, and Charniak and Johnson specify for their respec-
tive LPCFGs do not express the complex syntactic parameters that have been
proposed as elements of a strong bias view of Universal Grammar (UG). So,
for example, these models do not contain a parameter for head-complement
directionality. However, they still learn the correct generalizations concerning
head-complement order. The bias of a statistical parsing model has implica-
tions for the theory of UG. It expresses the prior constraints on the hypothesis
space required for a particular learning procedure to achieve effective grammar
induction from the input data that the corpus supplies.

1.4 Unsupervised Learning

In unsupervised learning we do not annotate the training corpus with the
structures or properties that the learning algorithm is intended to produce
as its output values. Rather, the algorithm is provided with the data alone,
and must learn some interesting structure through identifying distributional
patterns and clustering properties of more basic features in the training data.
In a machine learning sense, the most basic task of unsupervised learning is
density estimation, which in NLP generally involves language modeling (see
Chapter 3, Statistical Language Modelling, this volume).

In the case of grammar induction, we are interested in recovering phrases
and hierarchical constituent structure, which could be used either for language
modeling, machine translation, or other NLP tasks.

We will also briefly consider semi-supervised learning (see Abney (2007)).
This approach recognizes that in reality there will only be limited amounts
of annotated data, and yet such data can be extremely useful when combined
with much larger amounts of unannotated data.
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2 Computational Learning Theory

One way of gaining insight into the problem of unsupervised learning is
through theoretical analysis. While supervised learning has been the subject of
detailed theoretical investigation that has yielded the design of efficient classi-
fication algorithms (Vapnik (1998)), unsupervised learning of language offers
a different kind of challenge. The initial formulations of the problem, most
notably by Gold (1967), suggested that it is fundamentally intractable. Sub-
sequent accounts within the PAC (Probably Approximately Correct) learning
framework (Valiant (1984), Kearns & Vazirani (1994)) appeared to confirm
this conclusion. As a result, while there have been numerous attempts over
the years to learn grammars from raw data, very few have been informed
by theoretical learning models. Instead, these efforts have relied primarily
on heuristics. The very earliest attempts at unsupervised grammar-induction
(Lamb (1961)) lacked any theoretical underpinnings, and most current work
in this area continues to pursue a non-theoretical, heuristic approach.

In our view, the theoretical problems have been misunderstood, and, in
some cases, not properly formulated. Learnability results depend on quite sub-
tle details of the formalisms. Small changes in the modeling assumptions can
produce radically different results. In this section, we will review some of the
competing theoretical models for unsupervised learning of natural languages,
and draw conclusions that depart substantially from the received wisdom of
the field. Our goal is to use formal methods to illuminate the nature of learning
through realistic assumptions. If the model trivializes the learning problem so
that anything is learnable, then it is vacuous. Conversely, if it rules out ef-
ficient learning where we know that learning takes places, then it is clearly
misguided.

As we have noted, the field of grammatical inference owes its origins
to Gold (1967). In his paper Gold presents a number of different learning
paradigms. We limit ourselves to the one in which the learner must acquire a
language class only from positive data. As has been pointed out before, this
model suffers from a number of serious shortcomings.* On one hand, it fails to
place restrictions on the learner that are necessary to achieve rapid learning
within the available resources of time and computation. On the other hand,
it imposes excessively stringent limitations on learning by requiring that lan-
guages be acquired under far more difficult circumstances than those which
children have to deal with.

We will discuss one of these problems briefly to give a sense of what is in-
volved. In the Gold paradigm the learner is provided with an infinite sequence
of examples. His/Her model requires the learner to make correct grammatical-
ity judgements after making only a finite number of errors. The learner must

4 See Lappin & Shieber (2007) and Clark (2001), Chapter 4 for discussions of some
of the problematic assumptions in Gold’s Identification in the Limit learning
paradigm.
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do this for every possible presentation of the language. A presentation is char-
acterized so that every string in the language (every grammatical sentence)
appears at least once in the data, and no ungrammatical sentences are in-
cluded. These are the minimum requirements for a presentation to fully exhibit
a particular language (rather than others). But on reflection this paradigm
makes absurd demands on human learning. The learner is obliged to acquire
a language on every presentation, even when the sequence of data samples
are chosen by an infinitely powerful adversary, with knowledge of the internal
structure of the learner, who is designing the presentation in order to make
learning maximally difficult. This situation does not correspond to the one in
which children normally acquire their language. They are generally exposed to
helpfully organized sequences of sentences from supportive adults interested
in facilitating learning. It is instructive to work through the proof of Gold’s
most celebrated result, that no supra-finite language class is identifiable in
the limit, to see the crucial role that unconstrained presentations of data play
in this proof.®

Conversely, because sample presentations are not restricted, Gold cannot
constrain either the speed or the complexity of the learning process (although
subsequent researchers have tried to add restrictions to control these proper-
ties, such as Pitt (1989) and de la Higuera (1997)).

In the Gold model, there are two important positive results. The first is is
that the class of all finite languages is learnable. The second is that any finite
class of languages is learnable. The first class is infinite, but its members are
all finite. The second is finite, but one or more of its elements can be infinite.
Both of these result use fairly trivial learning algorithms.

To learn the class of all finite languages the learner uses rote learning. It
does not need to generalise at all, but it can simply memorise the examples
that it has seen. At each point, the learner returns the maximally conservative
hypothesis that the language it is learning consists of only those sentences
that it has already seen. It is easy to see that this very simple process of
enumeration allows for only a finite number of errors, where the number of
errors is bounded by the size of the language.

To learn a finite class of languages from a presentation the learner proceeds
as follows. The learner has access to a hypothesis space of all the languages
in the class, where these languages are arranged in a superset hierarchy. The
smallest language appears at the lowest point of the hierarchy and the largest
at the top. As we noted, every data presentation consists of the strings of a
language containing at least one appearance of each string. When a learner
encounters a sentence in a presentation, he/she deletes from the hypothesis
hierarchy any language that does not contain that sentence. He/she returns
the first language (hence the smallest) that is compatible with the strings of

5 A supra-finite class includes all finite languages and at least one infinite language.
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the presentation. It is easy to see that as the presentation approaches the
limit, the learner will return the correct language for the data.

Gold proves a negative result to the effect that no supra-finite language
class can be learned in the limit from positive data samples presented arbi-
trarily from a corpus. However, he also demonstrate that with negative as well
as positive evidence the class of primitive recursive languages can be learned
in the limit. This class includes the set of Context-Sensitive languages as a
proper subset. In this Gold learning paradigm negative evidence is provided
by an informant who acts as a decision procedure, telling the learner for each
data sample presented whether it is in the language to be learned, or in its
complement set.

The view of learnability for language classes that is associated with Gold’s
theorems have provided one of the motivations for the Principles and Param-
eters (P&P) view of UG.S If the relevant formal results concerning grammar
induction are those just cited and we assume that children do not have access
to negative evidence, then, given that they do generalise, one might conclude
that they can only effectively acquire their grammar if there is a finite number
of possible human languages. This would seem to follow from Gold’s learnabil-
ity results, and the assumptions that (i) natural languages are infinite, and (ii)
children do not have access to negative evidence. The assertion that the class
of natural languages is finite follows from the P&P claim that UG contains a
finite set of parameters, with a finite set of values, ideally binary (Chomsky
(1981)). While both advocates and critics of linguistic nativism have, for the
most part, agreed in the past that negative data does not play a significant
role in language acquisition, this issue has become increasingly controversial
in recent years.”

In fact the assumption that effective learning requires a finite hypothe-
sis space of possible grammars is incorrect. There are many positive results
even within the Gold paradigm which establish that infinite classes of infinite
languages are learnable with some non trivial algorithms (Angluin & Laird
(1988), Clark & Eyraud (2007)).

It is important to keep in mind that because the Gold paradigm does not
accurately reflect the situation of the child learner, any conclusions we draw
from it are not likely to be reliable. Rather than trying to repair it by adding
various constraints on presentations and polynomial bounds on the amount
of possible computation, generating samples by a fixed distribution, etc., we

6 See, for example Crain & Thornton (1998) for arguments to the effect that because
the class of natural languages is unlearnable from positive evidence only, a rich
innate UG must be posited to explain human language acquisition.

7 See, for example, Saxton (1997) and Chouinard & Clark (2003) for psycholinguis-
tic research supporting the widespread availability and effectiveness of negative
evidence in child grammar induction. See also Clark & Lappin (2009) for a pro-
posal on how indirect negative evidence can be stochastically modelled within a
PAC framework.
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take a different approach. We will construct a model based on the actual facts
of language learning, rather than first starting with a model and then trying
to force it onto the facts. We shall end up with a model that resembles that
of Valiant (1984), but which departs from it in several key respects.

We start with some standard assumptions. The objects being learned are
languages, which will normally be infinite objects, and these will be rep-
resented by finite systems. These systems can be thought of as grammars,
though they might be encoded in another kind of formalism. The learner is
provided with some information about the language. In the most basic case
this will be examples of sentences in the language, though other sources of
information may be considered. We assume that the learner is provided with
the information one piece at a time, in a sequence of steps, and that at each
step the learner either selects a hypothesis in the form of a representation
of the language, or he/she abstains in the early phases of the algorithm. We
say that the learner has successfully learned the language if, as the amount
of data increases, the hypothesis converges (in a sense to be made precise) to
the correct language.

This very rough outline provides a framework within which we can con-
struct particular models of learning, through specifying precisely details like
the classes of representations and languages, the sorts of information that the
learner is provided with, the definition of convergence, and additional con-
straints one might want to place on the learner. Obviously, in order to achieve
computational tractability we will need to make certain simplifying assump-
tions. In some cases, these assumptions will make learning more difficult, while
in others they may make it easier. It is important to monitor these assump-
tions closely when interpreting the formal properties of each model We need
to emphasize that learning does, of course, occur in the real world. Therefore,
if our model predicts that learning is impossible, it is clearly wrong.

We now proceed to develop this framework by making appropriate choices
for the components that we have indicated. The first and most critical one to
consider is the class of languages (or representations of them). This class cor-
responds to the set of possible grammars from which the child must select the
grammar of his/her language. We know that it must include all of the attested
natural languages, and presumably all languages that differ from them only
through lexical changes, and other minor differences. The key questions are
the following. How much larger can this class be while remaining effectively
learnable? What are the defining properties of this class that determine its
learnability?

We assume for the moment that the learner is provided only with positive
examples. There are three possibilities to consider. First, the samples are pro-
vided by an adversary, as in Gold’s model. Second, the samples are presented
randomly. Under standard assumptions we can say that they are generated
independently and identically from some fixed distribution. Third, the sam-
ples are produced helpfully, by a teacher trying to assist the learner (Goldman
& Mathias (1996)). While this last possibility may seem the most plausible, it

Page: 9 job: clark-lappin macro: handbook.cls date/time: 1-Apr-2009/16:59



10 Alex Clark and Shalom Lappin

is difficult to formalise in a way that does not trivialise the learning problem.
Therefore, we will choose the random option as a reasonable model.

We observe that the child learns rapidly, in the sense that languages are
complex objects, yet the amount of data which the child requires is only in
the range of tens of millions of words. Hence we require the learner to learn
in a time that is polynomially bounded in the size of the representation being
learned, and we constrain the learner to be efficient, in that the computation
it requires is bounded also by a polynomial function for the amount of data
it sees.®.

As for convergence, in the real world we generally do not see exact iden-
tification of a correct hypothesis: indeed we cannot directly observe the hy-
potheses. Instead we find that disagreements on grammaticality judgements
are infrequent among members of a speech community. Generational differ-
ences do, of course, emerge as languages change. As a convergence criterion
we can require that the probability of disagreement between the learner and
the adult grammar tend to zero as it sees more data, and this must happen
rapidly.

These conditions naturally yield a version of the PAC learning paradigm.
In this framework a hypothesis (such as a grammar) is learned to within
a range of error, represented by a constant €, and a range of probability,
expressed by a constant §, in relation to the size of a data sample. An algorithm
A PAC-learns a class of representations for languages R, if and only if,

(i) there is a polynomial ¢, such that
(a) for every R € R, which defines a language L
(b) every probability distribution D on the samples of the data, and
(c) every €,6 > 0,

(ii) whenever A sees a number of examples greater than ¢(1/e,1/4, |R|),
(a) it returns a hypothesis H such that,
(b) with probability greater than 1 — ¢,
(¢) the error of the hypothesis Pp((H — L)U (L — H)) < ¢, and

(iii) A runs in polynomial time in the total size of the examples seen.

These conditions require that learning is rapid for any language, that com-
plex languages take more time than simple ones, but that the growth in time
for learning in proportion to complexity of the language is slow.

Note that for a realistic model it is important to incorporate this depen-
dency of learning time on language complexity, as removing it leads to the
absurd conclusion that a rote learner cannot acquire finite languages. Thus
for the class of finite grammars, where the representation is just a list of the
grammatical sentences, it is unrealistic to expect the learner to be able to
learn any list, no matter how long, in a fixed amount of time. A rote learner

8 See Chapter 2, Complexity, this volume for the relevant notions of complexity
and efficiency of computation
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can learn lists of a restricted size within a reasonable time, but will require
more time to learn longer lists. Thus it is reasonable, and standard in the
machine learning literature, to allow the number of samples, as expressed by
the polynomial ¢, to depend on the size of the representation |R].

A standard PAC-model is distribution free, which entails that learning is
equally rapid for all possible probability distributions on the data. From a
mathematical perspective, this assumption is very convenient, and it forms
the basis for the VC (Vapnik-Chervonenkis) theory of learnability (Vapnik
(1998)). However, it is unrealistic. The samples to which a child is exposed are
generated by people in his/her environment who speak the language he/she is
acquiring. The distributions of samples in the Primary Linguistic Data (PLD)
are not selected to make learning difficult, but rather to help it proceed.”
Clearly, the distribution of the samples must depend on the language being
learned: French children hear different sentences from English ones.

Many researchers (Li & Vitédnyi (1991)) have noted that the distribution
free assumption of the classical PAC framework is harsh, but yields powerful
techniques. This approach may be mathematically desirable, and it might pro-
vide improvements over other estimation methods (Collins (2005)). However,
if we require learnability for any distribution, we find that learning becomes
intractably hard. By contrast, if we restrict the class of distributions in some
way, for example to simple distributions (Li & Vitdnyi (1991); Denis (2001))
or to distributions generated by the stochastic variations of the representa-
tions, such as Probabilistic Deterministic Finite-State Automata (PDFA) or
PCFGs, then we find that efficient learning is possible (Clark & Thollard
(2004); Clark (2006)).

Additional problems for learnability derive from the computational com-
plexity of the learning problem. Learning statistical models of the kinds stan-
dardly employed in current NLP work is hard. So, for example Abe & War-
muth (1992) show that training a Hidden Markov Model (HMM) is compu-
tationally hard under commonly made assumptions.!® On standard crypto-
graphic methods, computationally hard problems can be embedded in the
learning of even simple acyclic deterministic automata (Kearns & Valiant
(1989); Kearns et al. (1994)). The natural conclusion is that the child would
not be able to learn such classes. Indeed the sorts of languages that these
problems give rise to bear no relation to natural languages, as they involve
computing parity functions, or multiplying large integers together. From a
formal point of view this means that uniform learning over the entire class of
languages is not possible.

9 Questions have been raised about the extent to which this helps the child (Gleit-
man et al. (2001)).

10 The Baum-Welch algorithm (also known as the Forward-Backward algorithm)
used to estimate the parameter values for such models only finds a local optimum.
See Manning & Schiitze (1999) for discussion of this procedure.
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However, Ron et al. (1998) suggest a useful strategy for dealing with these
difficulties. A class of languages can be stratified by a parameter that separates
it into subclasses according to how hard each one is to learn. The specific
parameter for Ron is a distinguishability condition. Similar approaches can
be applied to the learnability of Context-Free grammars (Clark (2006)).

2.1 Summary

What insight can we gain from this analysis? Unsupervised learning of lan-
guages is difficult but possible. This is a favourable outcome, as it implies
that the study of learnability can offer us useful guidance in dealing with
both engineering and cognitive issues in grammar induction.

Under the best possible theoretical analysis, we can see that negative
results rule out uniform learning from positive data of the full classes of
regular languages and Context-Free languages, but that regular languages,
represented by deterministic finite state automata, and some subclasses of
Context-Free languages, may be learnable when the distributions of examples
are benignly specified. Both of these representations are based on observable
properties of languages. The non-terminals or states are identified with distri-
butional properties of the substrings of the languages. In the case of the regular
languages, these are the residual languages (Clark & Thollard (2004)), and
with Context-Free languages these are the congruence classes (Clark (2006)).
Conversely it seems that representations based on deep hidden structures,
such as trees, especially trees with many empty nodes, where the structure is
not directly detectable from the surface utterance, may be hard to learn.

We might also be able to obtain positive results for a class of languages
that is very restricted or even finite, although the languages in this class may
themselves be infinite. But even here we may encounter problems. Finiteness in
itself does not insure efficient computation. For example, the negative results
in Kearns et al. (1994) are based on finite sets of finite languages. Despite
the fact that they are finite, they are unlearnable, because the problem of
identifying the correct hypothesis is too hard. Even though these families of
languages are specified by a small number of binary valued parameters, the
parameters are very tightly entwined in the computation of a parity function.
This causes the class to be not efficiently learnable.

From a theoretical point of view, the interesting question is whether these
results rule out domain-general learning approaches, and necessitate a very
restricted class of languages. The answer seems to be that they do not. They
clearly point to different language classes than those in the Chomsky hierarchy.
The classes that we use in our learning analyses do not necessarily correspond
to normal families of languages, and certainly not to the Chomsky classes,
such as Context-Free grammars. They might include, for example, some regu-
lar languages, some Context-Free languages and some Context-Sensitive lan-
guages, but they may not cover all the members of these classes. It is also
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important not to confuse the hypothesis class of the learner with the class of
languages that may be learnable. As Poggio et al. (2004) say:

”Thus, for example, it may be possible that the language learning
algorithm may be easy to describe mathematically while the class of
possible natural language grammars may be difficult to describe.”

The hypothesis class could be very much larger than the class of lan-
guages for which it is guaranteed to learn. So, for example, the learner in
Clark (2006) represents its hypotheses as Context-Free languages. All of these
hypotheses lie within the (smaller) class of Non-Terminally Separated (NTS)
languages. The proof given there establishes that it will a PAC-learnable class
of unambiguous languages under some plausible assumptions about the data
sample distributions. But if the samples are generated adversarially (as in
one of Gold’s paradigms), then the learner is only guaranteed to acquire the
still smaller class of substitutable languages (Clark & Eyraud (2007)). The
algorithm however remains unchanged.

These are rather different conclusions from other recent analyses. For ex-
ample, Nowak et al. (2002) and Niyogi (2006) claim that the PAC-analysis
rules out learning without specific restrictions. This is largely because their
approach does not allow the size of the language representation to depend on
the amount of data that the learner can have, as discussed above in Section
1.1.

Our theoretical understanding of learning is changing rapidly. Modifying
Chomsky’s terminology somewhat, we can say that linguistic representations
may achieve varying levels of adequacy. Observational adequacy is the re-
quirement that the representations are sufficiently powerful to express the
distinction between grammatical and ungrammatical sentences. Explanatory
adequacy imposes the additional requirement that the representations can be
learned from the available data.

We have not yet achieved explanatory adequacy. The most descriptively
adequate frameworks use very powerful systems of representation, such as Tree
Adjoining Grammar (TAG) (Joshi (1987)) or Head Driven Phrase Structure
Grammar (HPSG) (Pollard & Sag (1994)), while the grammars developed
to date that can be efficiently learned, are not powerful enough to cover the
full complexity of natural language syntax. Whether there are observationally
adequate grammars that can be learned using unsupervised learning from
raw corpora remains very much an open question. Our theoretical analysis
points in general towards shallower linguistic representations, regardless of
whether these are conceived of in terms of parameters of a language model,
formal grammars, or a more situated account of learning, which leverages
extralinguistic context to a far greater extent than considered here.
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3 Empirical learning

We now turn to empirical work on unsupervised learning, where ML algo-
rithms are applied to naturally occurring natural language corpora. We will
look in detail at two NLP tasks. One is the unsupervised learning of word
classes, and the other is unsupervised induction of syntactic parsing.

First, we will briefly take up the problem of evaluation, which is particu-
larly problematic in the case of unsupervised learning.'' Three methodologies
have been used. The first is naive. It involves having observers evaluate an
algorithm’s output on the basis of their intuitions concerning the property or
structure that the procedure is designed to identify. This approach may offer
some insight into the strengths and weaknesses of the method, but it is both
subjective and imprecise.

A second evaluation technique measures the correspondence between the
results that the algorithm generates and those of a gold standard for the cor-
pus. So, for example, when evaluating induced word classes one can compare
the word classes that an ML procedure generates for a corpus with the tradi-
tional lexical categories that are assigned to the corpus by a reliable Part of
Speech (POS) tagger that uses these categories. This comparison can be done
using standard information theoretic criteria. For example the conditional en-
tropy of the gold standard tags with respect to the induced tags will tell you
how much of the information in the gold standard tags remains unaccounted
for by the induced tags. If this number is very low or zero, then the gold
standard tags are predictable from the induced tags.

This comparison yields objective numerical evaluation, but the gold stan-
dard in linguistic annotation often incorporates theoretical assumptions that
may not be well motivated. Alternative annotations of the text may be pos-
sible. The gold standard might simply reflect the prestige of the organiza-
tion that produced the annotation, the theoretical framework it employs, the
amount of data annotated, the availability of the corpus, or other factors
irrelevant to a sound evaluation standard.

In part-of-speech annotations of English, for example, there are signifi-
cant differences between various tag sets. Using data provided by the AMAL-
GAM (Automatic Mapping Among Lexico-Grammatical Annotation Models)
project (Atwell et al. (1995)), which provided text annotated with 8 different
tag sets, we measured the conditional entropy of each tag set with respect
to the others. Table 1 shows the results. We see that the conditional entropy
here varies up to 1.3 for these equally valid, manually constructed tag sets'?,
and it is zero, as one would expect, down the leading diagonal. By comparing

1 Qee Resnik and Lin, Chapter 12, Evaluation of NLP systems, and Palmer and
Xue, Chapter 11, Corpus Annotation for discussions of this and related issues in
connection with a variety of NLP tasks.

12 The texts were tagged automatically, which might introduce some variability.
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these competing gold standards against each other, we observe the range of
possible outcomes that we might expect.

’Tag set n H \Brown ICE LLC LOB Parts POW Sec UPenn‘

Brown 3.16(0 - 034022 1.1 099 0.32-
ICE 3.38|— o - - - - - 084
LLC 3.34/052 — 0 044 1.3 1.0 045-

LOB 3.2410.31
Parts 2.46/0.41

0.35 0 1.2 1.0 0.24-
0.40 041 0O 0.75 0.38 -
POW 2.72|0.55 0.42 0.46 1.0 0 0.43 —
Sec 3.24|10.40 - 035024 1.2 095 0 -
Upenn  2.92|- 0.38 — - — - -0
Table 1. Comparison of different tag sets on IPSM data. Conditional entropy of

row given column. Blanks () are where the two sets have different tokenisation due
to differing treatment of the possessive clitic.

In unsupervised parsing this approach involves using a treebank and mea-
suring derived trees against gold standard trees: an evaluation approach first
employed by van Zaanen (2000).

The third and final evaluation technique is to invoke some objective and
theoretically neutral evaluation strategy. For example, one can compute the
predictive power of a derived language model for word class induction (Ney
et al. (1994)). This is usually defined in terms of perplexity, which measures
the ability of the model to predict the next word in a string or corpus.'® This
evaluation metric has two advantages. First, it directly measures a useful
property of the model. Such models can be used in speech recognition, and
models with lower (better) perplexity will perform with a lower error rate.
Second, the metric does not depend on linguistic annotations, which as we
have noted, are not uncontroversial. It relies solely on raw, naturally occurring
data.

Alternatively, we could consider performance in an end to end problem in
which the results of one procedure are taken as input for a second application.
The output of the latter provide an indirect measure for the success of the
former. Bod (2007a) does this when he uses the trees of his unsupervised
parser to support a machine translation system. However it is not clear how
well this approach captures the linguistic accuracy of the first algorithm.

13 See Chelba, Chapter 3, Statistical Language Modeling, this volume and Manning
& Schiitze (1999), Section 2.2 for discussions of perplexity and entropy.
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3.1 Learning word classes

One of the earliest NLP problems to which unsupervised learning was success-
fully applied is the induction of parts of speech. The words in every language
can be divided into lexical categories that partially correspond to traditional
parts of speech. Nearly all lexical resources use some fixed categories of this
type, as do syntactically annotated corpora. While for many purposes manu-
ally tagging of text is adequate, it is frequently desirable, for reasons of effi-
ciency, to extract lexical classes from corpora automatically. Moreover, from a
cognitive perspective it is important to determine the extent to which purely
distributional algorithms can learn these categories, as they provide the basis
for post-lexical syntactic analysis.

Corresponding to engineering and to cognitive concerns we find two strands
of research. The cognitive science approach is most notably represented by
Nick Chater and his co-workers (Finch et al. (1995); Redington et al. (1998)).
The engineering direction focusses on statistical language modeling, where
lexical categories are invoked to smooth n-gram models by specifying condi-
tional probabilities for strings in terms of word classes rather than individual
lexical items. The basic methods of this approach are studied in detail by Ney
et al. (1994), Martin et al. (1998) and Brown et al. (1992).

We assume a vocabulary of words V' = {7, ...}. Our task is to learn a de-
terministic clustering, which we can represent as a class membership function
g from V into the set of class labels {1,...,n}. The clustering can be used to
define a number of simple statistical models. The objective function we try
to maximise will be the likelihood of some model, understood as the proba-
bility of the data with respect to that model. The simplest candidate is the
class-bigram model, though this approach can be extended to class-trigram
models. Suppose we have a corpus wy,...,wy of length N. We can assume
an additional sentence boundary token. Then the class-bigram model defines
the probability of the next word given the history as

(5) Pwilwi™") = P(wi|g(w;))P(g(wi—1)|g(wi—2))

It is not computationally feasible to search through all of the exponentially
many possible partitions of the vocabulary to find the one with the highest
likelihood value. Therefore we need a search algorithm that will give us a local
optimum. The standard techniques (Ney et al. (1994); Martin et al. (1998))
use an exchange algorithm similar to the k-means algorithm for clustering.
This procedure (i) iteratively improves the likelihood of a given clustering by
moving each word from its current cluster to the cluster that will give the
maximum increase in likelihood, or (ii) leaves it in its original cluster if no
improvement can be found. There are a number of different ways in which
an initial clustering can be chosen. It has been found that the initialisation
method has little effect on the final quality of the clusters, but it can have a
marked effect on the speed of convergence for the algorithm. A more important
variation for our purposes is how rare words are treated. Martin et al. (1998)
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leave all words with a frequency of less than 5 in a particular class, from which
they may not be moved.

These techniques, using purely distributional evidence, work remarkably
well for frequent words. However, as (Rosenfeld, 2000, pp.1313-1314) points
out, in language modeling the most important task is to cluster the infrequent
words. We have sufficiently reliable information about the statistical proper-
ties of the frequent words that they do not need to be smoothed with the
clusters, and so it is the infrequent words that are most in need of smooth-
ing.' But it is these words that are most difficult to cluster.

Distributional data is of course not the only information relevant to iden-
tifying the syntactic category of a word class. Words are not atoms, but se-
quences of letters or phonemes, and this information can be used by a learning
algorithm. Moreover words have relative frequency, and infrequent words will
exhibit different frequency patterns than frequent words. Pronouns, for exam-
ple, tend to be very frequent.

Consider a trivial case of the first type from written language. If we en-
counter an unknown word, say £ 212,000, then merely looking at the sequence
of characters that compose it may well be sufficient to allow us to reliably es-
timate its part of speech. Less trivially, suffixes like -ing or -ly on an English
word is a strong clue as to its lexical category.

Clark (2003) presents a method for determining how frequency and mor-
phological information can be incorporated into this approach, and tests the
method on a number of different languages from different families. He uses
texts prepared for the MULTEXT-East project (Erjavec & Ide (1998)), which
consists of data (George Orwell’s novel 198/) in seven languages: the original
English together with Romanian, Czech, Slovene, Bulgarian, Estonian, and
Hungarian.

Table 5 from Clark (2003) shows the results of the cross-linguistic evalua-
tion of this data (to get a sense of how to interpret the values in this table it
is worth consulting Table 1 again).

This method was also evaluated by comparing the perplexity of a class-
based language model derived from these classes.

3.2 Unsupervised parsing

Initial experiments with unsupervised grammar-induction (like those de-
scribed in Carroll & Charniak (1992)) were not particularly encouraging. Far
more promising results have been achieved in work over the past decade. Klein
& Manning (2002) propose a method that learns constituent structure from
POS tagged input by unsupervised techniques. It assigns probability values

14 See Chelba, Chapter 3, Statistical Language Modelling, this volume and Pereira
(2000) on the application of smoothing techniques for statistical modelling, orig-
inally introduced by Good (1953), in NLP.
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H(G|C) [Base DO D5 D+M D+F D+M+F|[Base DO D+M D+F D+M+F

All words f<5

English  |1.52 0.98 0.95 1.00 0.97 0.94 2.33 153120 1.51 1.16
Bulgarian |2.12 1.69 1.55 1.56 1.63 1.53 3.67 2.86 2.48 2.86 2.57
Czech 2.93 2.642.27 2.35 2.60 2.31 4.55 3.873.22 3.88 3.31
Estonian (2.44 2.31 1.88 2.12 2.29 2.09 4.01 3.423.14 3.42 3.14
Hungarian|2.16 2.04 1.76 1.80 2.01 1.70 4.07 3.46 3.06 3.40 3.18
Romanian |2.26 1.74 1.53 1.57 1.61 1.49 3.66 2.52 2.20 2.63 2.22
Slovene |2.60 2.28 2.01 2.08 2.21 2.07 4.59 3.72 3.25 3.73 3.55

Table 2. Cross-linguistic evaluation: 64 clusters, left all words, right f < 5. We
compare the baseline with algorithms using purely distributional (D) evidence, sup-
plemented with morphological (M) and frequency (F) information.

to all subsequences of tagged elements in an input string, construed as possi-
ble constituents in a tree. The model that this method employs imposes the
constraint of binary branching on all non-terminal elements of a parse tree.
Klein and Manning invoke an Ezpectation Maximization (EM) algorithm to
select the most likely parse for a sentence. Their method identifies (unlabeled)
constituents through the distributional co-occurrence of POS sequences in
the same contexts. The model partially characterizes phrase structure by the
condition that sister phrases do not have (non-empty) intersections. Binary
branching and the non-overlap requirement are biases of the model.

Evaluated against Penn Treebank parses (Marcus (1993)) as the gold stan-
dard, this unsupervised parse procedure achieves an F-measure of 71% on
Wall Street Journal (WSJ) test data. This score is achieved despite a serious
limitation imposed by the gold standard. The Penn Treebank allows for non-
binary branching for many constituents. A binary branching parse algorithm
of the sort that Klein and Manning employ can only achieve a maximum F-
score of 87% against this standard. As it turns out, many of the algorithm’s
binary constituent analyses that are excluded by the gold standard are, in
fact, linguistically defensible parses. So, for example, while the Treebank an-
alyzes noun phrases as having flat structure, the iterated binary branching
constituent structure that the Klein-Manning procedure assigns to NPs is
well motivated on syntactic grounds.

The Klein—Manning parser is, in fact, constructed by semi-supervised,
rather than fully unsupervised learning. The input to the learning algorithm
is a corpus annotated with the POS tagging of the Penn Treebank. If POS
annotation is, in turn, provided by a tagger that uses unsupervised learning,
then the entire parsing procedure can be construed as a sequenced process of
unsupervised grammar induction.'®

15 Actually, an unsupervised POS tagger will also rely on morphological analysis
of the words in a corpus. This can be provided by an unsupervised morpholog-
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Klein & Manning (2002) report an experiment in which their parser
achieves an F-score of 63.2% on WSJ text annotated by an unsupervised
POS tagger. They observe that this tagger is not particularly reliable. Other
unsupervised taggers, like the one presented in Clark (2003), produce good
results that might well allow the Klein-Manning unsupervised constituency
parser to perform at a level comparable to that which it achieves with Penn
Treebank tags.

Klein & Manning (2004) present an unsupervised learning procedure for
acquiring lexicalized head-dependency grammars. It assigns probabilities to
possible dependency relations in a sentence S by estimating the likelihood that
each word in S is a head for particular sequences of words to its left and to its
right, taken as its syntactic arguments or adjuncts. The probabilities for these
alternative dependency relations are computed on the basis of the context in
which each head occurs. The context consists of the words (word classes)
that are immediately adjacent to it on either side. The dependency structure
model associated with the learning algorithm requires binary branching as a
condition on dependency relations. The procedure achieves an F-measure of
52.1% on Penn Treebank test data.

Klein & Manning (2004) combine their dependency and constituent struc-
ture grammar induction systems into an integrated model that produces better
results than either of its component parsers. The composite model computes
the score for a tree as the product of the dependency and constituency struc-
ture grammars. This procedure employs both constituent clustering and head
dependency relations to predict binary constituent parse structure. It achieves
an F-score of 77.6% with Penn Treebank POS tagging, and an F-score of 72.9%
with Schiitze (1995)’s unsupervised tagger.

Bod (2006, 2007a,b) proposes an alternative system for unsupervised pars-
ing, which he refers to as Unsupervised Data Oriented Parsing (U-DOP). U-
DOP generates all possible binary branching subtrees for a sentence S. The
preferred parse for S is the one which can be obtained through the smallest
number of substitutions of subtrees into nodes in larger trees. In cases where
more than one derivation satisfies this condition, the derivation using subtrees
with the highest frequency in previously parsed text is selected. Bod (2006)
reports an F-score of 82.9 % when U-DOP is combined with a maximum like-
lihood estimator and applied to the WSJ corpus on which Klein and Manning
tested their parsers.

While U-DOP improves on the accuracy and coverage of Klein & Manning
(2004)’s combined unsupervised dependency-constituency model, it generates
a very large number of subtrees for each parse that it produces. Bod (2007a)
describes a procedure for greatly reducing this number by converting a U-
DOP model into a type of PCFG. The resulting parser produces far fewer

ical analyzer. See Goldsmith (2001), Goldsmith, Chapter 15, Morphology, this
volume, and Schone & Jurafsky (2001) for alternative systems of unsupervised
morphological analysis.
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possible subtrees for each sentence, but at the cost of performance. It yields
a reported F-score of 77.9% on the WSJ test corpus (Bod (2007a)).

An important advantage that U-DOP has over simple PCFGs is its ca-
pacity to represent discontinuous syntactic structures, like subject-auxiliary
inversion in questions, and complex determiners such as more...than..., as
complete constructions.'® U-DOP incorporates binary branching tree recur-
sion as the main bias of its model. It can parse structures not previously
encountered, either through the equivalent of PCFG rules, or by identifying
structural analogies between possible tree constructions for a current input
and those assigned to previously parsed strings in a test set.

ADIOS is another recent unsupervised algorithm for grammar induction
(Solan et al. (2005)). It is interesting not so much for the algorithmic proper-
ties that it exemplifies (these are largely taken from other models, although
they are combined in a novel way), but the extensive and original method
of evaluation to which it is subjected. Solan et al. (2005) use a number of
different techniques to demonstrate the robustness of ADIOS. These include
a language modeling task, and application of the algorithm to test children’s
reading comprehension.

3.3 Accuracy vs. Cost in Supervised, Unsupervised, and
Semi-Supervised Learning

In general supervised learning algorithms achieve greater accuracy than un-
supervised procedures. So LPCFG parsers trained on WSJ corpora anno-
tated with constituent structure information in the Penn Treebank obtain F-
measures of 88 % to 91% (Collins (1999), Charniak & Johnson (2005)), while
efficient unsupervised parsers currently score in the mid to high 70s (Klein &
Manning (2004), Bod (2007a)). However, hand annotating corpora for train-
ing supervised algorithms adds a significant cost that must be weighed against
the accuracy that these procedures provide. To the extent that unsupervised
algorithms do not incur these costs, they offer an important advantage, if they
can sustain an acceptable level of performance in the applications for which
they are designed.

Banko & Brill (2001) use a method of semi-supervised learning that com-
bines some of the benefits of both systems. They train 10 distinct classifiers
for a word disambiguation problem on an annotated test set. They then run
all the classifiers on an unannotated corpus and select the instances for which
there is full agreement among them. This automatically annotated data is
added to the original hand annotated corpus for a new cycle of training, and
the process is iterated with additional unannotated corpora. In the experi-
ments they describe accuracy is improved through unsupervised extensions of

16 See Clark & Eyraud (2006) for a simple unsupervised distributional algorithm
that learns a PCFG which correctly handles subject-auxiliary inversion.
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a supervised base corpus up to a certain phase in the learning cycles, after
which it begins to decline. They suggest that this effect may be due to the
learning process reaching a point at which the benefits that additional data
contribute are outweighed by the distortion of sample bias imported with the
new samples, which causes over-fitting of the data.

Bank and Brill’s approach can be generalized to grammar induction and
parsing. This would involve training several supervised parsing systems on
an initial parsed corpus and then optimizing these procedures through iter-
ated parsing of text containing only POS tagging. The tagging can be done
automatically using a reliable tagger.

There are, in fact, good engineering reasons for investing more research
effort in the development of robust unsupervised and semi-supervised learning
procedures. Very large quantities of raw natural language text are now avail-
able online and easily accessible. While supervised grammar induction has
achieved a high level of accuracy, generating the necessary training corpora is
an expensive and time consuming process. The use of unsupervised and semi-
supervised learning algorithms reduces much of this expense. The amount of
data that hand annotated training sets provide is very limited in comparison
to the corpora of unannotated text currently available at little or no cost. As
the accuracy and coverage of unsupervised systems improves, they become
increasingly attractive alternatives to supervised methods. It is reasonable,
then, to expect a greater focus on the development of these systems in future
NLP work.
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4 Unsupervised Grammar-Induction and Human
Language Acquisition

The promising results of recent work on unsupervised procedures for gram-
mar induction raise interesting questions for long-standing debates over the
cognitive basis for human language acquisition. Theoretical linguistics has
been dominated for the past fifty years by a strong version of linguistic na-
tivism.'” On this view, a set of rich, domain specific biases provide the basis
for language acquisition. These biases are formulated as the constraints of a
Universal Grammar, which constitutes a biologically determined, task specific
language faculty.

The main consideration offered in support of this notion of a language
faculty is the Argument from the Poverty of the Stimulus (APS). According
to the APS the amount and quality of the primary linguistic data available
to children acquiring their first language is not sufficient to account for the
grammar that expresses adult linguistic competence if acquisition of the adult
grammar is mediated primarily by domain general procedures of induction,
such as those applied in machine learning. A classic instance of the APS is
the use of subject-auxiliary inversion to claim that language learners have
an innate bias towards learning grammatical rules formulated in terms of a
hierarchical phrase structure representation of sentences.'®

(6) a. Is the student who is in the garden hungry?
b. *Is the student who in the garden is hungry?

The rule of auxiliary inversion requires that (something like) the following
structures be assigned to (6a), (6b), respectively.

(7) a. [sr is2 [s[wp the [/ student [re who [y p is; in the garden]]]] [vp [v
eo] hungry]]]
b. [s is1 [s[vp the [y’ student [rc who [yvp €1 in the garden]]]] [vp [v
iso | hungry]]]

Advocates of the APS maintain that the data to which children are exposed
do not provide an adequate basis for inferring a structure dependent rule of
subject-auxiliary inversion unless the children come to the task of language
acquisition already equipped with a mechanism for organizing strings of words
into phrasal constituents of the sort that facilitate the formulation of this rule.

17 See, inter alia, Chomsky (1965, 1971, 1981, 1986, 1995, 2000, 2005), and Pinker
(1989, 1996).

'8 See Chomsky (1971), Crain & Nakayama (1987), Crain (1991), Berwick & Chom-
sky (2009) for versions of this argument, and Clark & Lappin (to appear) for
critical discussion of it.
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The APS has recently been subject to strong challenges.!? Both sides to
this debate have tended to focus on the availability of evidence for grammar
induction through data-driven methods. However, it is not possible to decide
how much, and what sort of data is required for effective language acquisi-
tion independently of a clearly specified theory of learning. This question is
meaningful and interesting only when considered in relation to a particular
learning theory or class of such theories. Linguistic nativists have generally
argued for the paucity of data without specifying a strong bias model that
will generate the class of grammars which they posit, given the set of lin-
guistic samples which they assume as evidence. Similarly, some critics of the
APS have insisted that the child has access to sufficient linguistic data to pro-
duce the grammar of his/her first language without indicating how learning
is achieved.

To the extent that machine learning algorithms can acquire accurate and
theoretically viable grammars of languages from corpora through unsuper-
vised methods, employing weak rather than strong learning biases, they un-
dermine the APS as an argument for strong linguistic nativism.2° Specifically,
they show that it is possible to implement a learning algorithm that can
effectively acquire a significant element of human linguistic knowledge rely-
ing primarily on generalized information-theoretic techniques for classifying
data, with comparatively weak domain specific constraints on the set of pos-
sible grammars in its hypothesis space. As we have observed, unsupervised
grammar-induction has recently yielded encouraging results for parsing WSJ
text according to the gold standard given by the Penn Treebank. Moreover,
Bod (2006, 2007a), and Clark & Eyraud (2006) present systems that learn
subject-auxiliary inversion rules efficiently without being exposed to sample
sentences like (6a) or its full declarative counterpart.

(8) The student who is in the garden is hungry.

However, most of these unsupervised grammar-induction procedures in-
corporate learning biases that restrict their hypothesis spaces to constituent
structure grammars of some kind.?! An advocate of the APS can claim that
these biases are precisely the sort of conditions that the argument is intended
to motivate as necessary learning priors for language acquisition.

19 Pullum & Scholz (2002) and their critics conduct a lively debate on the APS
in Volume 19 (2002) of The Linguistic Review. Scholz & Pullum (2006) offer an
updated version of some of their criticisms of the APS.

20 For detailed discussion of the relevance of work in machine learning and compu-
tational learning theory to APS-based claims for linguistic nativism see Lappin
(2005), Lappin & Shieber (2007), Clark (2004), and Clark & Lappin (to appear).

21 This is not the case for the algorithm proposed in Clark & Eyraud (2006), which
uses a simple criterion of distributional congruence to identify equivalence classes
of words and phrases.
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In fact it is possible to argue that a preference for hierarchical constituent
structure is not, in itself, an irreducible bias on a language model. It can be
derived from a more basic and general learning prior. As we have seen, Perfors
et al. (2006) define a very general prior for smaller grammars with fewer rules
and fewer non-terminal symbols. It does not specify a bias towards constituent
structure. They apply their Bayesian posterior probability measure, given in
(3) (argmax i (P(H)P(D|H))), to a hypothesis space of three types of gram-
mar, which they evaluate on a subset of CHILDES (MacWhinney (1995)), a
corpus of child directed discourse.

The three types of grammar that Perfors et al. (2006) consider are

(i) aflat grammar that generates strings directly from S without intermediate
non-terminal symbols.
(ii) a probabilistic regular grammar (PRG), and
(iii) a probabilistic Context-Free grammar (PCFG).

They compute the posterior probability of each grammar for the CHILDES
sentences. The PCFG receives a higher posterior probability value and covers
significantly more sentence types in the corpus than either the PRG or the
flat grammar. The grammar with maximum a posteriori probability makes the
correct generalisation. This result suggests that it may be possible to decide
among radically distinct types of grammars on the basis of a Bayesian model
with relatively weak learning priors, when using a corpus that accurately
reflects the linguistic data that children are exposed to in the course of first
language acquisition. The prior that Perfors et al. (2006) invoke does not
impose a constituent structure bias, but a general preference for smaller, more
compact hypotheses.

While the success of weak bias unsupervised ML procedures in grammar
induction (and related tasks) vitiates the APS case for strong domain specific
learning priors as necessary conditions for language acquisition, it does not
tell us anything about the actual cognitive mechanisms that humans employ
in acquiring their first language. Even discounting the APS, a strong nativist
view of UG could, in principle, turn out to be correct on the basis of the
psychological and biological facts of language acquisition.

Is there, then, any psycholinguistic evidence showing that ML methods
play a significant role in human language learning? In fact there is. Saffran
et al. (1996) report a set of experiments in which 8-month-old infants learn to
identify word boundaries in continuous syllable sequences on the basis of a two
minute exposure to training data. The words are nonsense terms constructed
out of three syllable sequences. The transitional probabilities between syllables
within a word are maximal (set at 1), while those between syllables crossing
word boundaries are low (generally around .33). The transitional probability
of a syllable pair XY (X followed by Y) is computed as the conditional
probability P(Y'|X) according to its Bayesian MLE condition (where ¢(«) is
the frequency count for the sequence «).
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c(XY)
o(X)

(9) P(Y]X) =

The infants were able to distinguish familiar words heard in the training
samples from novel non-words on the basis of very limited exposure to a
word set. Saffran et al. (1996) conclude that they employed the difference in
transitional probabilities between word internal syllable sequences and word
external pairs in order to infer word boundaries.??

Thompson & Newport (2007) extend this experimental approach to inves-
tigate the learning of phrasal boundaries and constituent structure. They de-
scribe a series of experiments in which English speaking adults are exposed to
training sets of samples from simple artificial languages with six word classes,
each containing three words (the word number of some classes is modified for
one of the experiments). Phrases consist of word pairs where each element of
the pair comes from a distinct word class. The training sets contain a canon-
ical phrasal pattern of word class sequences, and variations on these patterns
involving

(a) the presence of repeated phrases,

(b) optional constituents,

(¢) permutations of phrases (moved constituents), and

(d) variation in the lexical size of two of the four phrase types.

Each of the three conditions in (a)—(c) introduces a significant difference in
intra-phrasal vs. inter-phrasal transitional probabilities between word classes.
The former are set at 1, while the latter are lower. For each of these four
conditions a control group is exposed to a training set in which the conditions
do not apply to discrete phrases, but are formulated only for word classes.

22 Yang (2004) disputes this conclusion. He reports a word identification experiment
on a subset of the CHILDES corpus using transitional syllable probabilities. The
results of the experiment indicate poor recall and precision for this procedure.
As he observes, this is due to the fact that 85% of the words in his test set are
monosyllabic. Therefore there is no significant distinction between intra-word and
inter-word transitional probabilities for most of the terms in this corpus. Yang
claims that his experiment shows that transitional probability is not an adequate
cue for word boundary identification in realistic data of the sort that children
receive. In fact, this claim is seriously under motivated. Child directed speech of
the kind that appears in CHILDES does not exhaust the linguistic samples to
which children are exposed in their normal environments. They generally have
access to the full range of multi-syllabic utterances of normal adult speech, even
when it is not directed to them. There is no reason to exclude this additional
data from the range of evidence that children can make use of when computing
transitional probabilities for syllable pairs. It is not unreasonable to hypothesize
that when one takes account of the full range of evidence available to child lan-
guage learners, a significant correlation between transitional probability patterns
and word boundaries in real language data will prove robust.
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As a result, there is no substantial difference in the transitional probabilities
that hold between different word class pairs in the control language.

After training both the experimental and control groups were tested on
their ability to identify well formed sentential and phrasal patterns in the
language. Thompson & Newport (2007) found that for conditions (a)—(c) the
experimental group outperformed the control group in learning both sentence
and phrasal structure. When all four conditions were combined in a single
language, the difference between intra-phrasal and inter-phrasal transitions
substantially increased. In an experiment with variants of this language type
in which the two groups were exposed to a comparatively small set of canon-
ical sentence patterns (5% of the the training set), the experimental subjects
achieved far greater success than the control subjects in learning both sentence
and phrasal patterns.

These results indicate that transitional probabilities can provide an im-
portant cue for identifying constituent structure from word sequences. While
the experiments provide data only on syntax learning by adults, when taken
together with Saffran et al. (1996)’s research on infant identification of word
boundaries, they strongly suggest that Bayesian inference of the kind em-
ployed by ML methods in NLP plays a significant role in human language
acquisition at a variety of levels of morphological and syntactic structure.

This work also gives credence to a boot-strapping view of language learn-
ing on which information theoretic methods yield an initial classification of
linguistic entities that can then be used to construct successive levels of rep-
resentation. Each previous cycle of learning provides a set of structural con-
straints on the entities out of which the next stage is developed by the same
kinds of Bayesian inference. If this view is sustained by further research, then
the weak bias model of language learning proposed in Lappin (2005), Lappin
& Shieber (2007), and Clark (2004) will achieve psychological as well as com-
putational credibility. Clearly much additional work remains to be done in
clarifying these issues before any such model can be endorsed with any confi-
dence as an account of human language acquisition. It does, however, provide
a serious alternative to the strong nativist approach that has dominated lin-
guistics and cognitive science for the past five decades, generally without a
learning theory to motivate it.
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5 Conclusion

Unsupervised learning is a rich and varied area of research. It includes different
motivations, techniques and methods of evaluation. In this chapter we have
surveyed the field and provided an overview of what we regard as the most
important theoretical and engineering developments.

It is important to recognize that while the application of these techniques
to practical problems in NLP is still at an early stage, unsupervised learning
is almost certain to expand as an area of interest and activity.

It is also plausible to hope that, as we make progress in understanding the
capacities and limits of unsupervised methods, we will achieve deeper insight
into how much and what kinds of linguistic knowledge can be acquired by
domain general learning algorithms operating on raw linguistic data. Such
insight is of direct significance to work in theoretical linguistics and the study
of human cognition.
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