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1 Introduction

Computational learning theory explores the limits of learnability. Studying
language acquisition from this perspective involves identifying classes of lan-
guages that are learnable from the available data, within the limits of time and
computational resources available to the learner. Different models of learning
can yield radically different learnability results, where these depend on the
assumptions of the model about the nature of the learning process, and the
data, time, and resources that learners have access to. To the extent that
such assumptions accurately reflect human language learning, a model that
invokes them can offer important insights into the formal properties of nat-
ural languages, and the way in which their representations might be efficiently
acquired.

In this chapter we consider several computational learning models that
have been applied to the language learning task. Some of these have yielded
results that suggest that the class of natural languages cannot be efficiently
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learned from the primary linguistic data (PLD) available to children, through
domain general methods of induction. Several linguists have used these res-
ults to motivate the claim that language acquisition requires a strong set of
language specific learning biases, encoded in a biologically evolved language
faculty that specifies the set of possible languages through a Universal Gram-
mar.1

In fact, when the assumptions underlying these models are carefully ex-
amined, we find that they involve highly implausible claims about the nature
of human language learning, and the representation of the class of natural lan-
guages. Replacing these models with ones that correspond to a more realistic
view of the human learning process greatly enhances the prospect for effi-
cient language learning with domain general induction procedures, informed
by comparatively weak language specific biases. Specifically, various proced-
ures based on the ideas of distributional learning show that significant classes
of languages can be learned.

2 Linguistic Nativism and Formal Models of Learning

The view that a set of strong language specific learning biases is a necessary
condition for language acquisition can be described as linguistic nativism. This
view has been endorsed by, inter alia, Chomsky (1965, 1975, 1981, 1995, 2000,
2005), Crain & Pietroski (2002), Fodor & Crowther (2002), Niyogi & Berwick
(1996), Nowak et al. (2001), Pinker (1984), Pinker & Jackendoff (2005), and
Yang (2002). It has been dominant in linguistics and cognitive psychology for
the past fifty years. One of the central motivations for this view is the claim
that if children were equipped only with domain general learning procedures of
the sort that they employ to achieve many kinds of non-linguistic knowledge,
they would not be able to acquire the complex grammars that represent the
linguistic competence of native speakers. The argument takes domain general
inductive learning of grammar to be ruled out by limitations on the primary
linguistic data (PLD) to which children are exposed, and restrictions on the
resources of time and computation available to them. This view is commonly
known as the argument from the poverty of the stimulus (APS).

There are several different versions of the APS, each of which focuses
on a distinct aspect of the way in which the PLD underdetermines the lin-
guistic knowledge that a mature native speaker of a language acquires.2 In
this chapter we are concerned with the APS as a problem in formal learning

1 For a discussion of the relevance of current work in computational learning theory
to grammar induction, see Clark & Lappin (2010a). For a detailed discussion of
the connection between computational learning theory and linguistic nativism,
see Clark & Lappin (2010b).

2 See, for example, Laurence & Margolis (2001), Pullum & Scholz (2002), and Crain
& Pietroski (2002) for alternative statements of the APS.
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theory, and we adopt the computational formulation of this argument given
in Clark & Lappin (2010b).

(1) a. Children acquire knowledge of natural language either through do-
main general learning algorithms or through procedures with strong
language specific learning biases that encode the form of a possible
grammar.

b. There are no domain general algorithms that could learn natural lan-
guages from the primary linguistic data.

c. Children do learn natural languages from primary linguistic data.
d. Therefore children use learning algorithms with strong language spe-

cific learning biases that encode the form of a possible grammar.

Some linguists and psychologists have invoked learning theoretic consid-
erations to motivate this version of the APS. So Wexler (1999), apparently
referring to some of Gold (1967)’s results, states that

The strongest most central arguments for innateness thus continue to
be the arguments from APS and learnability theory. . . . The basic results
of the field include the demonstration that without serious constraints on
the nature of human grammar, no possible learning mechanism can in fact
learn the class of human grammars.

As we will see in Section 3, Gold’s results do not entail linguistic nativism.
Moreover, his model is highly problematic if taken as a theory of human
language learning.

At the other extreme, several linguists have insisted that learning theory
has little, if anything of substance to contribute to our understanding of lan-
guage acquisition. On their approach, we must rely entirely on the empirical
insights of psychological and linguistic research in attempting to explain this
process. So Yang (2008) maintains that

In any case, the fundamental problem in language acquisition remains
empirical and linguistic, and I don’t see any obvious reason to believe that
the solution lies in the learning model, be it probabilistic or otherwise.

We suggest that computational learning theory does not motivate strong
linguistic nativism, nor is it irrelevant to the task of understanding language
acquisition. It will not provide an explanation of this phenomenon. As Yang
observes, it is not a substitute for a good psycholinguistic account of the facts.
However, it can clarify the class of natural language representations that are
efficiently learnable from the PLD. There are a number of important points to
keep in mind when considering learning theory as a possible source of insight
into language acquisition.

First, as we have already mentioned, a formal learning model is only as
good as its basic assumptions concerning the nature of learning, the compu-
tational resources with which learners are endowed, and the data available to
them. To the extent that these assumptions accurately reflect the situation
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of human language learners, the models are informative as mathematical and
computational idealizations that indicate the limits of learning in that situ-
ation. If they significantly distort important aspects of the human learning
context, then the results that they yield will be correspondingly unenlighten-
ing in what they tell us about the formal properties of acquisition.

Second, at least some advocates of the APS as an argument for linguistic
nativism conflate learnability of the class of natural languages with learn-
ability of a particular grammar formalism.3 While a formalism may indeed
be unlearnable, given reasonable conditions on data, domain general induc-
tion procedures, and computational resources, this does not, in itself, show us
anything about the learnability of the class of natural languages. In order to
motivate an interesting unlearnability claim of the latter sort, it is necessary
to show that the formalism in question (or a theory of grammar formulated in
this formalism) is the best available representation of the class of natural lan-
guages. Establishing such a claim is exceedingly difficult, given that we have
yet to achieve even a descriptively adequate grammar for a single language. In
its absence, attempting to support the APS on the grounds that a particular
grammar formalism is unlearnable from the PLD is vacuous.

Third, it is has often been assumed that the class of natural languages
must be identified either with one of the classes in the Chomsky hierarchy of
formal languages, or with a class easily definable in terms of this hierarchy.4 In
fact, there is no reason to accept this assumption. As we will see in subsequent
sections, there are efficiently learnable classes of languages that run orthogonal
to the elements of the Chomsky hierarchy (or are proper subsets of them),
and which may be candidates for supersets of the class of natural languages.

Fourth, it is necessary to impose reasonable upper and lower bounds on
the degree of difficulty that a learning model imposes on the language learning
task. At the lower bound, we want to exclude learning models that trivialize
the learning task by neglecting important limitations on the learning process.
As we shall see, it is easy to construct models in which almost any class
of languages is learnable. Such models are both inaccurate and unhelpful,
because they do not constrain or guide our research in any way. At the upper
bound we want to avoid theories on which learning is impossibly difficult.
Given that humans do achieve the task we seek to model formally, our learning
theory must allow for acquisition. If our model does not permit learning, then
it is clearly false.

Finally, it is important to distinguish the hypothesis space from which a
learning algorithm can select candidate representations of a language, from the

3 Berwick & Chomsky (2009) identify language acquisition with achieving know-
ledge of a transformational grammar of a particular kind. See Clark & Lappin
(2010b), Chapter 2 for a critical discussion of this and other theory-internal in-
stances of the APS.

4 See Wintner (2010) for a discussion of the Chomsky hierarchy within formal
language theory.
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class of languages that it can learn. The learning model imposes constraints
that (partially) specify the latter class, but these do not prevent the algorithm
from generating hypotheses that fall outside that class. Indeed in some cases it
is impossible for the algorithm to restrict its hypotheses so that they lie inside
the learnable class. It is also possible for such an algorithm to learn particular
languages that are not elements of its learnable class, with particular data
sets. Therefore, the class of learnable languages is generally a proper subset
of the hypothesis space (hence of the set of representable languages) for a
learning algorithm.

It follows that it is not necessary to incorporate a characterization of the
learnable class into a language learner as a condition for its learning a specified
class of languages. The design of the learner will limit it to the acquisition of
a certain class, given data sets of a particular type. However, the design need
not specify the learnable class, but only a hypothesis class that might be very
much larger than this class.

Moreover, as the set of learnable languages for an algorithm may vary with
its input data, this set corresponds to a relational property, rather than to
a data invariant feature of the algorithm. In particular, in some models, as
the amount of data increases, the class of languages that an algorithm can
learn from that quantity of data will also expand. Therefore, only a range of
learnable classes of languages, rather than a particular learnable class, can be
regarded as intrinsic to the design of a learner.5

The tendency to reduce the hypothesis space of a learner to its learnable
class runs through the history of the APS, as does the belief that human
learners are innately restricted to a narrow class of learnable languages, in-
dependently of the PLD to which they are exposed. Neither claim is tenable
from a learning theoretic perspective. To the extent that these claims lack
independent motivation, they offer no basis for linguistic nativism.

We now turn to a discussion of classical models of learning theory and
a critical examination of their defining assumptions. We start with Gold’s
Identification in the Limit paradigm.

3 Gold’s Identification in the Limit Framework

We will take a language to be a set of strings, a subset of the set of all possible
strings of finite length whose symbols are drawn from a finite alphabet Σ.
We denote the set of all possible strings by Σ∗, and use L to refer to the
subset. In keeping with standard practice, we think of the alphabet Σ as the
set of words of a language, and the language as the set of all syntactically

5 See Clark & Lappin (2010b) Chapter 4, Section 7 for a detailed discussion of the
relation between the hypothesis space and the learnable class of an algorithm,
and for arguments showing why even the specification of the algorithm’s learnable
class cannot be treated as part of its design.
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6 Alexander Clark and Shalom Lappin

well-formed (grammatical) sentences. However, the formal results we discuss
here apply even under different modeling assumptions. So, for example, we
might consider Σ to be the set of phonemes of a natural language, and the
language to be the set of strings that satisfy the phonotactic constraints of
that language.

Gold (1967)’s identification in the limit (IIL) paradigm provides the first
application of computational learning theory to the language learning task. In
this paradigm a language L consists of a set of strings, and an infinite sequence
of these strings is a presentation of L. The sequence can be written s1, s2, . . .,
and every string of a language must appear at least once in the presentation.
The learner observes the strings of a presentation one at a time, and on the
basis of this evidence, he/she must, at each step, propose a hypothesis for
the identity of the language. Given the first string s1, the learner produces
a hypothesis G1, in response to s2. He/she will, on the basis of s1 and s2,
generate G2, and so on.

For a language L and a presentation of that language s1, s2, . . ., the learner
identifies in the limit the language L, iff there is some N such that for all
n > N , Gn = GN , and GN is a correct representation of L. IIL requires
that a learner converge on the correct representation GL of a language L
in a finite but unbounded period of time, on the basis of an unbounded se-
quence of data samples, and, after constructing GL, he/she does not depart
from it in response to subsequent data. A learner identifies in the limit the
class of languages L iff the learner can identify in the limit every L ∈ L, for
every presentation of strings in the alphabet Σ of L. Questions of learnability
concern classes of languages, rather than individual elements of a class.

The strings in a presentation can be selected in any order, so the present-
ation can be arranged in a way that subverts learning. For example, the first
string can recur an unbounded number of times before it is followed by other
strings in the language. In order for a class to be learnable in the IIL, it must
be possible to learn all of its elements on any presentation of their strings,
including those that have been structured in an adversarial manner designed
to frustrate learning.

Gold specifies several alternative models within the IIL framework. We
will limit our discussion to two of these: the case where the learner receives
positive evidence only, and the one where he/she receives both positive and
negative evidence.

3.1 The Positive Evidence Only Model

In the positive evidence only variant of IIL presentations consist only of the
strings in a language. Gold proves two positive learnability results for this
model. Let a finite language be one which contains a finite number of strings.
This class is clearly infinite, as there are an infinite number of finite subsets
of the set of all strings. Gold shows that
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(2) Gold Result 1:
The class of finite languages is identifiable in the limit on the basis of
positive evidence only.

The proof of (2) is straightforward. Gold assumes a rote learning algorithm
for this class of languages. When the learner sees a string in a presentation,
he/she adds it to the set which specifies the representation of the language
iff it has not appeared previously. At point pi in the presentation, the learner
returns as his/her hypothesis Gi = the set of all strings presented up to pi.
If L has k elements, then for any presentation of L, there is a finite point pN
at which every element of L has appeared at least once. At this point GN

will be correct, and it will not change, as no new strings will occur in the
presentation.

We can prove a second positive result in this model for any finite class
of languages. In contrast to the class of finite languages, these classes have a
finite number of languages, but may contain infinite languages. We will restrict
ourselves throughout this chapter to recursive languages which are defined by
the minimal condition that an effective decision procedure exists for deciding
membership in the language for any string.

(3) Gold Result 2:
A finite class of recursive languages is identifiable in the limit on the basis
of positive evidence only.

To prove (3) we invoke a less trivial algorithm than the rote learning pro-
cedure used to demonstrate (2). Assume that L is a finite class of languages,
and its elements are ordered by size, so that that if Li ⊂ Lj , then Li occurs
before Lj . Initially the learning algorithm A has a list of all possible languages
in L, and it returns the first element in that list compatible with the present-
ation. As A observes each string si in the presentation, it removes from the
list all of the languages that do not contain si. Eventually it will remove all
languages except the correct one L, and the languages that are supersets of
L. Given the ordering of the list, A returns L, the smallest member of the list
that is compatible with the presentation, which is the correct hypothesis.

The best known and most influential Gold theorem for the positive evid-
ence only model is a negative result for supra-finite classes of languages. Such
a class contains all finite languages and at least one infinite language. Gold
proves that

(4) Gold Result 3:
A supra-finite class of languages is not identifiable in the limit on the basis
of positive evidence only.

The proof of (4) consists in generating a contradiction from the assump-
tions that (i) a class is supra-finite, and (ii) it can be learned in the limit.
Take L to be a supra-finite class of languages, and let Linf ∈ L be an infinite
language. Suppose that there is an algorithm A that can identify L in the
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limit. We construct a presentation on which A fails to converge, which entails
that there can be no such A.

Start with the string s1, where L1 = {s1} is one of the languages in L.
Repeat s1 until A starts to produce a representation for L1 (the presentation
will start s1, s1, . . .). If A never predicts L1, then it will not identify L1 in the
limit, contrary to our assumption. If it does predict L1, then start generating
s2 until it predicts the finite language L2 = {s1, s2}. This procedure continues
indefinitely, with the presentation s1, . . . , s2, . . . , s3 . . .. The number of repeti-
tions of each si is sufficiently large to insure that A generates, at some point,
the corresponding language Li = {s1, . . . , si}. This presentation is of the lan-
guage Linf , which is infinite. But the algorithm will continue predicting ever
larger finite subsets of Linf of the form Li. Therefore, A will never produce a
representation for the infinite language Linf .

Notice that we cannot use the algorithm A that Gold employs to prove (3)
in order to establish that a class of supra-finite languages is identifiable in the
limit. This is because a supra-finite class contains the infinite set of all finite
languages as a proper subset. If these are ordered in a list by size, and the
infinite languages in the class are then ordered as successively larger supersets
of the finite elements of this infinite class, then, for any given infinite language
Linf , A will never finish identifying its infinite set of finite language subsets
in the list to arrive at Linf .

3.2 The Negative Evidence Model

In Gold’s negative evidence (informant) model, a presentation of a language
L contains the full set of strings Σ∗ generated by the alphabet Σ of L, and
each string is labeled for membership either in L, or in its complement L′.
Therefore, the learner has access to negative evidence for all non-strings of L
in Σ∗. Gold proves that

(5) Gold Result 4:
The class of recursive languages is identifiable in the limit in the model
in which the learner has access to both positive and negative evidence for
each string in a presentation.

Gold proves (5) by specifying an algorithm that identifies in the limit the
elements of this class. He takes the enumeration of the class to be an infinite
list in which the representations of the language class are ordered without
respect to size or computational power. At each point pi in a presentation the
algorithm returns the first representation of a language in the list that is com-
patible with the data observed up to pi. This data includes labels for all strings
in the sequence p1 . . . pi. A representation Gi of a language is compatible with
this sequence iff it labels its strings correctly.

The algorithm returns the first Gi in the list that is compatible with the
data in the presentation. Because the presentation contains both the strings
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of the target language L and the non-strings generated by its alphabet, at
some point pj one of the data samples will rule out all representations in the
list that precede GL, and all samples that follow pj will be compatible with
GL. Therefore, this algorithm will make only a finite number of errors. The
upper bound on the errors that it can make for a presentation corresponds to
the integer marking the position of the target representation in the ordered
list.

Assume, for example, that Lfs is a finite state language which includes the
strings of the context-free language Lcf as a proper subset. This is the case if
Lfs = {anbm|n,m > 0} and Lcf = {anbn|n > 0}. Let Gfs precede Gcf in the
list of representations for the class. At some point in a presentation for Lcf a
string labeled as not in the language will appear that is accepted by Gfs. As
a result, the algorithm will discard Gfs, and, by the same process, all other
elements of the list, until it arrives at Gcf . After this point all data samples
will be labeled in accordance with Gcf , and so the algorithm will return it.
If only positive evidence were contained in the presentation of Lcf , all of the
data samples would be compatible with Gfs, and the algorithm would not be
able to identify Gcf in the limit.

The class of recursive languages includes the class of context-sensitive
languages as a proper subset. To date no natural language has been dis-
covered whose formal syntactic properties exhibit more than context-sensitive
resources, and so it seems reasonable to conjecture that natural languages con-
stitute a proper subset of this latter class. Therefore, (5) implies that, with
negative evidence for all strings in a language, any natural language can be
identified in the limit by the simple learning algorithm that Gold describes.

The negative evidence variant of IIL is an instance in which learning is
trivialized by an excessively powerful assumption concerning the sort of evid-
ence that is available to the learner. It is clear that the PLD to which children
are exposed does not consist of sentence-label pairs in which every string con-
structed from the alphabet of the language is identified as grammatical or as ill
formed. Whether or not negative evidence of any kind plays a significant role
in language acquisition remains a highly controversial issue in psycholinguist-
ics.6 Even if we assume that certain types of negative evidence are available,
it is clear that Gold’s full informant model of IIL does not offer a plausible
view of the PLD that provides the basis for human language acquisition.

3.3 The Positive Evidence Only Model and Learning Biases

Some linguists have used Gold’s proof that a supra-finite class of languages
is not identifiable in the limit as grounds for positing a rich set of prior con-

6 See Clark & Lappin (2010b), Chapter 3, Section 3.2 for detailed discussion of this
issue, as well as Chapter 6 for a proposed stochastic model of indirect negative
evidence.
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straints on the human language learning mechanism. So, for example, Mat-
thews (1989) states

[pp 59-60] The significance of Gold’s result becomes apparent if one
considers that (i) empiricists assume that there are no constraints on the
class of possible natural languages (. . . ), and (ii) Gold’s result assumes that
the learner employs a maximally powerful learning strategy (. . . ). These
two facts . . . effectively dispose of the empiricist claim that there exists a
“discovery procedure” capable of discovering a grammar for any natural
language solely by analyzing a text of that language. This claim can be
salvaged but only at the price of abandoning the empiricist program, since
one must abandon the assumption that the class of possible languages is
relatively unconstrained.

Advocates of linguistic nativism go on to insist that these learning biases
must specify the hypothesis space of possible natural languages, and determine
a task particular algorithm for selecting elements from this space for given
PLD, as necessary conditions for language acquisition. Nowak et al. (2001)
claim the following.

Universal grammar consists of (i) a mechanism to generate a search
space for all candidate mental grammars and (ii) a learning procedure that
specifies how to evaluate the sample sentences. Universal grammar is not
learned but is required for language learning. It is innate.

In fact, these conclusions are not well motivated. They depend upon as-
sumptions that are open to serious challenge. First, Gold’s negative result
concerning supra-finite languages is significant for language acquisition only
if one assumes that the class of natural languages is supra-finite, as are the
language classes of the Chomsky hierarchy. This need not be the case. A set
of languages can be a proper subset of one these classes such that it is a fi-
nite class containing infinite languages. In this case, it is not supra-finite, but
it is identifiable in the limit. Moreover, it may contain representations that
converge on the grammars of natural language.

So, for example, Clark & Eyraud (2007) define the class of substitutable
languages, which is a proper subset of the class of context free languages. The
grammars of these languages can generate and recognize complex syntactic
structures, like relative clauses and polar interrogative questions. Clark &
Eyraud (2007) specify a simple algorithm for learning substitutable languages
from well formed strings (positive data only). They show that the algorithm
identifies in the limit the class of substitutable languages in time polynomial
to the required data samples, from a number of samples polynomially bounded
by the size of the grammar.

Second, Gold’s positive evidence only version of IIL is not a plausible
framework for modeling human language acquisition. It is both too demand-
ing of the learner, and too permissive of the resources that it allows him/her.
Its excessive rigor consists in the condition that for a class to be identifiable
in the limit, all of its elements must be learnable under every presentation.
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Therefore, learning is required even when a data presentation is designed in an
adversarial mode to sabotage learning. As Gold notes, if we discard this condi-
tion and restrict the set of possible presentations to those that promote learn-
ing, then we can significantly expand the class of learnable languages, even in
the positive evidence only model. Children are not generally subjected to ad-
versarial data conditions, and if they are, learning can be seriously impaired.7

Therefore, there is no reason to demand learning under every presentation.
Conversely, IIL allows learners unbounded amounts of computational com-

plexity in time and data samples. Identification need only be achieved in the
limit, at some bounded point in a presentation. This feature of Gold’s frame-
work is unrealistic, given that humans learn under serious restrictions in time,
data, and computational power. In order to approximate the human learning
process, we need to require that learning be efficient.

Third, as we noted in Section 2, the hypothesis space for a learning al-
gorithm cannot be reduced to the class of representations that it can learn.
A grammar induction procedure can generate hypotheses that represent lan-
guages outside of its learnable class. It may even learn such languages on
particular presentations, but not on all of them.

Finally, the positive evidence only IIL paradigm is too restrictive in requir-
ing exact identification of the target language. Convergence on a particular
adult grammar is rarely, if ever, complete. A more realistic approach char-
acterizes learning as a process of probabilistic inference in which the learner
attempts to maximize the likelihood of a hypothesis, given the data that it is
intended to cover, while seeking to minimize its error rate for this data. We
will consider probabilistic learning theories in the next two sections.

4 Probabilistic Models and Realistic Assumptions about
Human Learning

One of the limitations of the Gold model is that the learner must identify
the target under every possible presentation. Therefore, he/she is required to
succeed even when the sequence of examples is selected in order to make the
learning task as difficult as possible, ie. even when the teacher is an adversary
who is trying to make the learner fail. This is a completely unrealistic view
of learning. In the human acquisition process adults generate sentences in
the child’s environment with an interest, in most cases, in facilitating child
learning.

A consequence of the IIL is that it is difficult for the learner to tell when
a string is not in the language. Absence of evidence in this model is not

7 Impairment of learning due to an absence of data is particularly clear in the case
of feral children, who are deprived of normal linguistic interaction. Perhaps the
best known case of such a child is Genie, discussed in Curtiss (1977).
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evidence of absence from the language. The fact that the learner has not seen
a particular string does not permit him/her to conclude that that string is
ill formed. No matter how short a string is, nor how long the learner waits
for it, its non-occurrence could be due to the teacher delaying its appearance,
rather than ungrammaticality. It is for this reason that, as we have seen,
the presence or absence of negative data has such a significant effect on the
classes of languages that can be learned within the IIL framework (see Clark
& Lappin (2010b) Chapters 3 and 6 for extensive discussion of these issues).

Linguists have been mesmerized by this property of IIL, and they have
frequently taken the absence of large amounts of direct negative evidence to be
the central fact about language acquisition that motivates the APS (Hornstein
& Lightfoot (1981) characterize this issue as the “logical problem of language
acquisition”). It is worth noting that it is only in linguistics that the putative
absence of negative evidence is considered to be a problem. In other areas of
learning it has long been recognised that this is not a particular difficulty. The
importance that many linguists assign to negative evidence (more specifically
its absence) arises largely because of an unrealistic assumption of the IIL
paradigm (Johnson (2004)). From very early on, learning theorists realised
that in a more plausible model a learner could infer, from the absence of a
particular set of examples, that a grammar should not include some sentences.

(Chomsky, 1981, p. 9) states

A not unreasonable acquisition system can be devised with the
operative principle that if certain structures or rules fail to be exem-
plified in relatively simple expressions, where they would expect to be
found, then a (possibly marked) option is selected excluding them in
the grammar, so that a kind of “negative evidence” can be available
even without corrections, adverse reactions etc.

This sort of data has traditionally been called “Indirect Negative Evid-
ence”. The most natural way to formalise the concept of indirect negative
evidence is with probability theory. Under reasonable assumptions, which we
discuss below, we can infer from the non-occurrence of a particular sentence
in the data that the probability of its being grammatical is very low. It may
be that the reason that we have not seen a given example is that we have just
been unlucky. The string could actually have quite high probability, but by
chance we have not seen it. In fact, it is easy to prove that the likelihood of
this situation decreases very rapidly to insignificance. But much more needs
to be said. Clearly there are technical problems involved in specifying the re-
lationship between probability of occurrence and grammaticality. First, there
are an indefinite number of ungrammatical strings and it is not clear how the
learner could keep track of all of these, given his/her limited computational
resources.

Second, there are ungrammatical strings that do occur in the PLD. Sup-
pose we have an ungrammatical string with a non-zero probability, say ε. Since
there are, in most cases, an infinite number of strings in the language, there
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must be some strings that have probability less than ε. In fact, all but finitely
many strings will have probability less than ε. This leads to the incovenient
fact that the probability of some long grammatical strings will be less than
the probability of short ungrammatical ones. Therefore it is clear that we can
not simply reduce grammaticality to a particular probability bound.

Returning to the IIL, rather than assuming that the teacher is antagon-
istic, it seems natural to identify a proper subset as typical or helpful example
sequences and require the learner to succeed only on these. It turns out to be
difficult to construct a non-trivial model of non-adversarial learning (Gold-
man & Mathias (1996)). A more realistic approach is to assume that the data
has a probabilistic (random) dimension to it. There is much current interest
in probabilistic models of language (Bod et al. (2003)). We remain neutral as
to whether linguistic competence itself should be modeled probabilistically, or
categorically as a grammar, with probabilities incorporated into the perform-
ance component. Here we are concerned with probabilistic properties of the
input data and the learning process, rather than the target that is acquired.

If we move to a probabilistic learning paradigm, then the problem of negat-
ive evidence largely disappears. The most basic form of probabilistic learning
is Maximum Likelihood Estimation (MLE), where we select the model (or set
of parameters for a model) that makes the data most likely. When a fixed set
of data D (which here corresponds to a sequence of grammatical sentences)
is given, the learner chooses an element, from a restricted set of models, that
maximises the probability of the data, given that model (this probability value
is the likelihood of the model). The MLE approach has an important effect.
The smaller the set of strings that the model generates, while still including
the data, the higher is its likelihood for that data. To take a trivial example,
suppose that there are 5 types of sentences that we could observe, and we
see only three of them. A model that assigns a probability of 1/3 to each of
the three types that we encounter, and zero probability to the two unseen
types, will have higher likelihood than one which gives 1/5 to each of the 5
types. This example illustrates the obvious fact that we do not need expli-
cit negative data to learn that some types do not occur (a point developed
more compellingly and more thoroughly in, inter alia, Abney (1996); Pereira
(2000)).

When we are concerned with cases, as in language acquisition, where there
are an unbounded or infinite number of sentence types, it is important to limit
the class of models that we can select from. There are many closely related
techniques for doing this (like Bayesian model selection and Minimum De-
scription Length), where these techniques enjoy different levels of theoretical
support. They all share a common insight. We need to consider not just the
likelihood of the model given the data, but we must also take into account
the model’s size and complexity. Larger and more complex models have to be
justified by additional empirical coverage (Goldsmith (2001)).

In statistical modeling it is standard to regard the data as independently
and identically distributed. This it the IID assumption. It entails that for
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language acquisition there is a fixed distribution over sentences, and each
sentence is chosen randomly from this distribution, with no dependency on the
previous example. This claim is clearly false. The distribution of examples does
change over time. The relative probabilities of hearing “Good Morning” and
“Good Night” depend on the time of day, and there are numerous important
inter-sentential dependencies, such as question answer pairs in dialogue.

Many linguists find the IID objectionable for these reasons. In fact, we
can defend the IID as an idealization that approximates the facts over large
quantities of data. All we need is for the law of large numbers to hold so
that the frequency of occurrence of a string will converge to its expected
value rapidly. If this is the case, then the effect of the local dependencies
among sentences in discourse will be eliminated as the size of the data sample
increases. This view of the IID offers a much weaker understanding of the
independence conditions than the claim that the sentences of a distribution
are generated in full independence of each other. It is a view that applies to
a large class of stochastic processes.

Moreover if we can prove learnability under the IID assumption, then we
can prove learnability under any other reasonable set of assumptions concern-
ing the distributions of the data as well. Therefore, if we are modeling the
acquisition of syntax (i.e. intra-sentential structure), then it is reasonable to
neglect the role of inter-sentential dependencies (at least initially). We assume
then that there is a fixed distribution. For each string we have a probability.
The distribution is just the set of probabilities for all strings in a data set,
more accurately, a function that assigns a probability to each string in the
set.

To avoid confusion we note that in this chapter we use the word distribu-
tion in two entirely different senses. In this section a distribution is a prob-
ability distribution over the set of all strings, a function D from Σ∗ → [0, 1],
such that the sum over all string of D is equal to 1. In later sections we use
distribution in the linguistic sense to refer to the set of environments in which
a string can occur.

There are a number of standard models of probabilistic learning that
are used in machine learning. The best known of these is the PAC-learning
paradigm (Valiant (1984)), where ’PAC’ stands for Probably and Approxim-
ately Correct. The paradigm recognises the fact that if data is selected ran-
domly, then success in learning is random. On occasion the random data that
you receive will be inadequate for learning. Unlike the case in IIL, in the PAC
framework the learner is not required to learn the target language exactly,
but to converge to it probabilistically. This aspect of the paradigm seems par-
ticularly well-suited to the task of language learning, but some of its other
features rule it out as an appropriate framework for modeling acquisition.

PAC models study learning from labeled data in which each data point
is marked for membership or non-membership in the target language. The
problem here is, of course, the fact that few, if any, sentences in the PLD are
explicitly marked for grammaticality.
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A second difficulty is that PAC results rely on the assumption that learning
must be (uniformly) possible for all probability distributions over the data.
On this assumption, although there is a single fixed distribution, it could be
any one in the set of possible distributions. This property of PAC-learning en-
tails that no information can be extracted from the actual probability values
assigned to the strings of a language. Any language can receive any prob-
ability distribution, and so the primary informational burden of the data is
concentrated in the labeling of the strings. The actual human learning con-
text inverts this state of affairs. The data arrives unlabeled, and the primary
source of the information that supports learning is the probability distribu-
tion that is assigned to the observed strings of the PLD. Therefore, despite
its importance in learning theory and the elegance of its formal results, the
classical version of PAC-learning has no direct application to the acquisition
task. However PAC’s convergence measure will be a useful element of a more
realistic model.

If we consider further the properties of learnability in the PAC paradigm,
we encounter additional problems. A class is PAC learnable if and only if it has
a finite VC-dimension, where its VC-dimension is a combinatorial property of
the class (see Lappin & Shieber (2007) and Clark & Lappin (2010b), Chapter
5 for characterizations of VC-dimension and discussions of its significance for
language learning in the PAC framework). A finite class of languages has finite
VC-dimension, and so one way of achieving PAC learnability is to impose a
cardinality bound on the target class. So, for example, we might limit the tar-
get class to the set of all context-sensitive languages whose description length,
when written down, is less than some constant n, the class CSn. The class
of all context-sensitive languages CS has infinite VC-dimension, but we can
consider it as the union of a gradually increasing set of classes, CS =

⋃
n CSn.

On the basis of this property of PAC-learning one might be tempted to argue
along the following lines for a strong learning bias in language acquisition.
As CS has infinite VC-dimension it is not learnable. Therefore the class of
languages must be restricted to a member of the set of CSns for some n. It
follows that language learners must have prior knowledge of the bound n in
order to restrict the hypothesis space for grammar induction to the set of
CSns.

This argument is unsound. In fact a standard result of computational
learning theory shows that the learner does not need to know the cardinality
bound of the target class. (Haussler et al., 1991). As the amount of available
data increases, the learner can gradually expand the set of hypotheses that
he/she considers. If the target is in the class CSn, then the learner will start
to consider hypotheses of size n when he/she has access to a sufficiently large
amount of data. The size of the hypotheses that he/she constructs grows
in proportion to the amount of data he/she observes. A prior cardinality
restriction on the hypothesis space is unnecessary.

This point becomes clear when we replace CS with the class of finite
languages represented as a list, FIN . A trivial rote learning algorithm can
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converge on this class by memorising each observed example for any of its
elements. This procedure will learn every element of FIN without requiring
prior information on the upper bound for the size of a target language, though
FIN has unbounded VC-dimension.

More appropriate learning models yield positive results that show that
large classes of languages can be learned, if we restrict the distribution for
a language in a reasonable way. One influential line of work looks at the
learnability of distributions. On this approach what is learned is not the lan-
guage itself, but rather the distribution of examples (ie. a stochastic language
model).

Angluin (1988) and Chater & Vitányi (2007) extend Horning (1969)’s early
work on probabilistic grammatical inference. Their results show that, if we set
aside issues of computational complexity, and restrict the set of distributions
appropriately, then it is possible to learn classes of grammars that are large
enough to include the set of natural languages as a subclass.

As Angluin (1988) says

These results suggest the presence of probabilistic data largely
compensates for the absence of negative data.

Angluin (1988) also considers the learnability of languages under a stochastic
version of IIL. She shows, somewhat surprisingly, that Gold’s negative results
remain in force even in this revised framework. Specifically, she demonstrates
that any presentation on which an IIL learner fails can be converted into a
special distribution under which a stochastic learner will also not succeed.
This result clearly indicates the importance of selecting a realistic set of dis-
tributions under which learning is expected. If we require learning even when
a distribution is perverse and designed to sabotage acquisition, then we end
up with a stochastic learning paradigm that is as implausible as IIL.

The negative results that we derive from either the IIL paradigm or from
PAC-learning suffer from an additional important flaw. They do not give us
any guide to the class of representations that we should use for the target
class, nor do they offer insight into the sort of algorithms that can learn such
representations. This is not surprising. Although IIL was originally proposed
as a formal model of language acquisition, it quickly became apparent that the
framework applies more generally to the task of learning any collection of infin-
itely many objects. The inductive inference community focuses on learnability
of sets of numbers, rather than on sets of strings. Similarly PAC-learning is
relevant to every domain of supervised learning. Since these frameworks are
not designed specifically for language acquisition, it is to be expected that
they have very limited relevance to the construction of a language learning
model.
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5 Computational Complexity and Efficiency in Language
Acquisition

An important constraint on the learner that we have not yet considered is
computational complexity. The child learner has limited computational re-
sources and time (a few years) with which to learn his/her language. These
conditions impose serious restrictions on the algorithms that the learner can
use. These restrictions apply not just to language acquisition, but to other
cognitive processes. The Tractable Cognition Thesis (van Rooij (2008)) is un-
controversial.

Human cognitive capacities are constrained by the fact that hu-
mans are finite systems with limited resources for computation.

However, it is not obvious which measure of complexity provides the most
appropriate standard for assessing tractability in human computation. Putting
aside for a moment the problem of how to formulate the tractability thesis
precisely for language acquisition, its consequences are clear. An algorithm
that violates this thesis should be rejected as empirically unsound. An ineffi-
cient algorithm corresponds to a processing method that a child cannot use,
as it requires the ability to perform unrealistic amounts of computation.

It is standard in both computer science and cognitive science to charac-
terise efficient computation as a procedure in which the amount of processing
required increases relatively slowly in relation to the growth of an input for
a given task. A procedure is generally regarded as tractable if it is bounded
by a polynomial function on the size of its input, for the worst processing
case. This condition expresses the requirement that computation grow slowly
in proportion to the expansion of data, so that it is possible to solve large
problems within reasonable limits of time. If the amount of processing that
an algorithm A performs grows very rapidly, by an exponential function on
the size of the data, then as the input expands it quickly becomes impossible
for A to compute a result.

Therefore, we can rule out the possibility that child learners use proced-
ures of exponential complexity. Any theory that requires such a procedure for
learning is false, and we can set it aside.8

We consider the tractability condition to be the most important require-
ment for a viable computational model of language acquisition to satisfy. The
problems involved in efficient construction of a target representation of a lan-
guage are more substantial than those posed by achieving access to adequate

8 There are a number of technical problems to do with formalising the idea of
efficient computation in this context. For instance, the number data samples that
the learner is exposed to increases, and the length of each sample is potentially
unbounded. There is no point to restricting the quantity of data that we use at
each step in the algorithm, unless we also limit the total size of the data set, and
the length of each sample in it.
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amounts of data. Efficiency of learning is a very hard problem, and it arises
in all learning models, whether or not negative evidence is available.

The computational complexity of learning problems emerges with the least
powerful formalisms in the Chomsky hierarchy, the regular languages, and so
the more powerful formalisms, like the class of context free (or context sensit-
ive) grammars also suffer from them. These difficulties concern properties of
target representations, rather than the language classes as such. It is possible
to circumvent some of them by switching to alternative representations which
have more tractable learning properties. We will explore this issue in the next
section.

There are a number of negative results concerning computational com-
plexity of learning that we will address. Before we do so, we need to register a
caveat. All of these results rest on an assumption that a certain class of prob-
lem is intrinsically hard to solve. These assumptions, including the famous
P 6= NP thesis, are generally held to be true. The results also rely on addi-
tional, more obscure presuppositions (such as factoring Blum integers etc.).
But these assumptions are not, themselves, proven results, and so we cannot
exclude the possibility that efficient algorithms can be devised for at least
some of the problems now generally regarded as intractable, although this
seems highly unlikely.

The most significant negative complexity results (Gold (1978); Angluin &
Kharitonov (1991); Abe & Warmuth (1992); Kearns & Valiant (1994)) show
that hard problems can be embedded in the hidden structure of a representa-
tion. In particular the results given in Kearns & Valiant (1994) indicate that
cryptographically hard problems arise in learning even very simple automata.
They entail that the complexity of learning representations is as difficult as
code cracking. This suggests that the framework within which these results
are obtained does not adequately model human learning. It should distinguish
between the supportive environment in which child learners acquire grammar,
and the adversarial nature of the code-breaking task. The codes are designed
to maximize the difficulty of decryption, while natural languages facilitate
acquisition and transmission.

Parametric theories of UG encounter the same complexity issues that other
learning models do. Assuming that the hypothesis space of possible grammars
is finite does not address the learnabilty issue. In fact, the proofs of the major
negative complexity of learning results proceed by defining a series of finitely
parameterised sets of grammars, and demonstrating that they are difficult to
learn. Therefore, Principles and Parameters (P&P) based models do not solve
the complexity problem at the core of the language acquisition task. Some
finite hypothesis spaces are efficiently learnable, while others are not. The
view that UG consists of a rich set of innate, language specific learning biases
that render acquisition tractable contributes nothing of substance to resolving
the learning complexity problem, unless a detailed learning model is specified
for which efficient learning can be shown. To date, no such model has been
offered.
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It is important to recognize that the computational hardness of a class of
problems hard does not entail that every problem in the class is intractable.
It implies only that there are some sets of problems that are hard, and so
we cannot construct an algorithm that will solve every problem in the class
uniformly. To take a simple example, suppose that the task is clustering. The
items that we are presented with are points in a two dimensional plane, and
the “language” corresponds to several roughly circular regions. The learning
task is to construct a set of clusters of the data where each cluster includes all
and only the points with a particular property. Formally this task is compu-
tationally hard, since the clusters may contain substantial overlap. If this is
the case, then there may be no alternative to trying every possible clustering
of the data. However if the clusters are well-separated, the learning task is
easy, and it is one that humans perform very well.
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Figure 1. Two clustering problems. On the left the three clusters are well separated
and the problem is easy, and on the right they are not, and the problem is hard.

There are provably correct algorithms for identifying clusters that are well-
separated, and humans can do this simply by looking at the data on the left
of Figure 5. It is easy to draw a circle around each of the three clusters in this
diagram. Conversely, when the data are not separated, as in the example on
the right of Figure 5, then it is hard to pick out the correct three clusters.

We can represent this difference in hardness by defining a separability
parameter. If the centers are well-separated, then the value of the separability
parameter will be high, but if they are not, then its value will be low. The
parameter allows us to stratify the class of clusters into problems which are
easy and those which are hard. Clearly, we do not need to attribute knowledge
of this parameter, as a learning prior, to the learner. If the clusters are sep-
arated, then the learner will exploit this fact to perform the clustering task,
and if they are not, he/she will not succeed in identifying the clusters. From
a learnability point of view we could define a class of “learnable clusterings”
which are those that are separable. We can prove that an algorithm could
learn all of the elements of this class, without incorporating a separability
parameter into the algorithm’s design.
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The analogy between clustering and language learning is clear. Acquir-
ing even simple language representations may be hard in general. However,
there might be parameters that divide easy learning problems from hard ones.
Stratifying learning tasks in this way permits us to use such parameters to
identify the class of efficiently learnable languages, and to examine the extent
to which natural languages form a subset of this class.

6 Efficient Learning

In fact there are some efficient algorithms for learning classes of representa-
tions. Angluin & Kharitonov (1991) shows that there is an important distinc-
tion between representations with hidden structure, and those whose struc-
ture is more readily discernible from data. Angluin (1987) shows that the
class of regular languages can be learned using the class of deterministic finite
state automata, when there is a reasonably helpful learning paradigm, but the
class of non-deterministic automata is not learnable (Angluin & Kharitonov
(1991)). In practice DFAs are quite easy to learn from positive data alone,
if this data is not designed to make the learner fail. Subsequent work has
established that we can learn DFAs from stochastic data alone, with a helpful
distribution on the data set.

If we look at the progress that has been made for induction of DFAs, we
see the following stages. First, a simple algorithm is given that can learn a re-
stricted class from positive data alone, within a version of the Gold paraidgm
(Angluin (1982)). Next, a more complex algorithm is specified that uses quer-
ies or some form of negative evidence to learn a larger set, in this case the
entire class of regular languages (Angluin (1987)). Finally, stochastic evidence
is substituted for negative data (Carrasco & Oncina (1999)). This sequence
suggests that the core issues in learning concern efficient inference from prob-
abilistic data and assumptions. When these are solved, we will be able to
model grammar induction from stochastic evidence as a tractable process.
The pattern of progress that we have just described for learning theoretic
inference of representation classes is now being followed in the modeling of
context free grammar induction.

An important question that remains open is whether we will be able to
apply the techniques for efficient learning to representation classes that are
better able to accommodate natural languages than DFSAs or CFGs. There
has been progress towards this goal in recent years, and we will briefly sum-
marize some of this work.

We can gain insight into efficient learnbility by looking at the approaches
that have been successful for induction of regular languages. These approaches
do not learn just any finite state automaton, but they acquire a finite state

Page: 20 job: clark-lappin_phil_ling_handbook_chapter macro: handbook.cls date/time: 13-Jun-2011/14:52



Computational Learning Theory and Language Acquisition 21

automaton that is uniquely determined by the language. For any regular lan-
guage L there is a unique minimal DFA that generates it.9

In this case, the minimal DFAs, are restricted to only one, and the unique-
ness of the device facilitates its learnabiliy. Moreover, they are learnable be-
cause the representational primitives of the automaton, its states, correspond
to well defined properties of the target language which can be identified from
the data. These states are in one-to-one correspondence to what are called
the residual languages of the language. Given a language L and a string u,
the residual language for u of L, written u−1(L) is defined as {v|uv ∈ L}.
This is just the set of those suffixes of u that form a grammatical string when
appended to u. A well known result, the Myhill-Nerode theorem, establishes
that the set of residual languages is finite if and only if the language is regu-
lar. In the minimal DFA, each state will generate exactly one of these residual
languages.

This DFA has a very particular status. We will call it an objective finite
automaton. It has the property that the structure of the automaton, though
hidden in some sense, is based directly on well defined observable properties
of the language that it generates.

Can we specify an analogous objective Context Free Grammar with similar
learnability properties? There is a class of Deterministic CFGs, but these
have the weaker property that the trees which they generate are traversed
from left to right. This condition renders an element of the parsing process
deterministic, but it does not secure the learnability result that we need.

To get this result we will pursue a connection with the theory of distri-
butional learning, which is closely associated with the work of Zellig Harris
(Harris, 1954), and has also been studied extensively by other structuralist
linguists (Wells, 1947; Bar-Hillel, 1950). This theory was originally taken to
provide discovery procedures for producing the grammar of a language, but
it was soon recognized that its techniques could be used to model elements of
language acquisition.

The basic concept of distributional learning is, naturally enough, that of
a distribution. We define a context to be a sentence with a hole in it, or,
equivalently, as a pair of strings (l, r) where l represents the string to the left
of the hole, and r represents the one to the right. The distribution of a string
u is just the set of contexts in which it can be substituted for the hole to pro-
duce a grammatical sentence, and so CL(u) = {(l, r)|lur ∈ L}. Distributional
approaches to learning and grammar were studied extensively in the 1950s.
One of the clearest expositions is Bar-Hillel (1950), which is largely concerned
with the special case where u is a single word. In this instance we are learning
only a set of lexical categories.

9 It is possible to relabel the states, but the structure of the automaton is uniquely
determined.
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Joshua Greenberg was another proponent of distributional learning. Chom-
sky (1959) lucidly paraphrases Greenberg’s strategy as “let us say that two
units A and B are substitutable1 if there are expressions X and Y such that
XAY and XBY are sentences of L; substitutable2 if whenever XAY is a sen-
tence of L then so is XBY and whenever XBY is a sentence of L so is XAY
(i.e. A and B are completely mutually substitutable). These are the simplest
and most basic notions.”

In these terms u is “substitutable1” with v when CL(u) ∩ CL(v) is non
empty and u is “substitutable2” with v when CL(u) = CL(v). The latter
relation is now called syntactic congruence, and it is easily seen to be an equi-
valence relation. The equivalence classes for this relation are the congruence
classes, expressed as [u]L = {v|CL(u) = CL(v)}.

It is natural to try to construct an objective context free grammar by re-
quiring that the non-terminals of the grammar correspond to these congruence
classes, and this approach has yielded the first significant context free gram-
matical inference result, presented in Clark & Eyraud (2007). Interestingly,
the class of CFG languages that this result shows to be learnable is one for
which, in Chomsky’s terms, one form of substitutability implies the other: a
language is substitutable if whenever A and B are substitutable1, then they
are substituable2. This class was precisely defined by Myhill in 1950 (My-
hill, 1950), which raises the question of why this elementary result was only
demonstrated 50 years after the class was first defined. The delay cannot be
plausibly attributed to the technical difficulty in the proof of the result in
Clark & Eyraud (2007), as this proof is constructed on direct analogy with
the proofs given in Angluin (1982).

Rather the difficulty lies in the fact that linguistic theory has been focused
on identifying the constituent syntactic structure of a language, which corres-
ponds to the strong generative capacity of a grammar. This structure cannot
be uniquely recovered from the PLD without additional constraints on learn-
ing. This is because two CFGs may be equivalent in their weak generative
power (ie. they generate the same set of strings), but differ in their strong
generative capacity (they assign distinct structures to at least some of these
strings). Therefore, a learner cannot distinguish between weakly equivalent
grammars on the basis of the observed evidence.

In order to achieve the learnability result given in Clark & Eyraud (2007)
it is necessary to abandon the idea that grammar induction consists in identi-
fying the correct constituent structure of the language. Instead learning is
characterized in terms of recovering the distributional structure of the lan-
guage. This structure is rich enough to describe the ways in which the prim-
itive units of the language combine to form larger units, and so to specify its
syntax, but the resulting grammar, and the parse trees that it produces, do
not correspond to the traditional constituents of linguistic theory. This may
seem to be a defect of the learning model. In fact it isn’t. The constituent
structure posited in a particular theory of grammar is itself a theoretical con-
struct invoked to identify the set of grammatical sentences of the language,
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as speakers represent them. If we can capture these facts through an alternat-
ive representation that is provably learnable, then we have demonstrated the
viability of the syntactic structures that this grammar employs.

We have passed over an important question here. We must show show that
a learnable grammar is rich enough to support semantic interpretation. We
will shortly take up this issue in outline.

In the end, the basic representational assumption of the simple distri-
butional approach is flawed. From a distributional point of view congruence
classes give the most fine-grained partitioning of strings into classes that we
could devise. Any two strings in a congruence class are fully interchangeable in
all contexts, and this condition is rarely, if ever, satisfied. Therefore, a learning
algorithm which infers a grammar through identification of these classes will
generate representations with large numbers of non-terminals that have very
narrow string coverage.

The grammar will also be formally inadequate for capturing the full range
of weak generative phenomenon in natural language, because at least some lan-
guages contain mildly context sensitive syntactic structures (Shieber, 1985).

Finally, distributional CFGs do not offer an adequate formal basis for se-
mantic interpetation, as neither their tree structures nor their category labels
provide the elements of a suitable syntax-semantics interface.

These three considerations indicate that we need a more abstract repres-
entation which preserves the learnability properties of the congruence formal-
ism. Our challenge, then, is to combine two putatively incompatible proper-
ties: deep, abstract syntactic concepts, and observable, objective structure. It
was precisely the apparent conflict between these two requirements that first
led Chomsky to discard simple Markov (n-gram) models and adopt linguistic
nativism in the form of a strong set of grammar specific learning biases.

In fact there is no intrinsic conflict between the demands of abstract struc-
ture on one hand, and categories easily identifiable from the data on the
other. Clark (2009) specifies a rich distributional framework that is sufficiently
powerful to represent the more abstract general concepts required for natural
language syntax, and he demonstrates that this formalism has encouraging
learnability properties. It is based on a Syntactic Concept Lattice.

The representational primitives of the formalism correspond to sets of
strings, but the full congruence of distributional CFGs is replaced by partial
sharing of contexts. This weaker condition still generates a very large num-
ber of possible categorial primitives, but, by moving to a context-sensitive
formalism, we can compute grammars efficiently with these primitives (Clark
(2010)). We refer to these representations as Distributional Lattice Grammars
(DLG), and they have two properties that are important for our discussion of
language acquisition.

First, the formalism escapes the limitations that we have noted for simple
congruence based approaches. DLGs can represent non-deterministic and in-
herently ambiguous languages such as
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(6) {anbncm|n,m ≥ 0} ∪ {ambncn|n,m ≥ 0}

It can encode some non-context free languages (such as a variant of the
MIX or Bach language), but it cannot represent all context free languages.
The examples of context-free languages that the formalism cannot express
are artificial, and they do not correspond to syntactic phenomena that are
attested in natural languages.

It is important to recognize that our objective here is not to represent the
full set of context free grammars, but to model the class of natural languages.
It is not a flaw of the DLG framework that it is not able to express some
CFGs, if these do not represent natural languages. In fact, this may be taken
as a success of the paradigm (Przezdziecki, 2005).

Second, DLGs can be efficiently learned from the data. The current formal
results are inadequate in a number of respects. (i) they assume the existence
of a membership oracle. The learner is allowed to ask an informant whether
a given sentence is grammatical or not. As we discussed above, we consider
this to be a reasonable assumption, as long as such queries are restricted in a
way that renders them equivalent to indirect negative (stochastic) evidence.
(ii) The learnability result is not yet sharp enough. Efficiency is demonstrated
for each step in the learning procedure, rather than for the entire process.
(iii) Although the formalism exhibits the partial structural completeness that
the congruence-based models have, the labels of its parse trees have the rich
algebraic structure of a residuated lattice.10

The operations in the lattice include the residuation operators / and \, and
the partial order in the lattice allows us to define labeled parse trees, where
the labels are “maximal” in the lattice. Ambiguous sentences can therefore be
assigned sets of different representations, each of which can support a different
interpretation. The theory of categorial grammar tells us how we can do this,
and Categorial Grammars are based on the same algebraic structure (Lambek
(1958)).

The theory of DLGs is still in its infancy, but for the first time we appear
to have a learning paradigm that is provably correct, can encode a sufficiently
large class of languages, and can produce representations that are rich enough
to support semantic interpretation.

The existence of probabilistic data, which we can use as indirect negative
evidence, allows us to control for over-generalisation. DLGs provide a very
rich framework which can encode the sorts of problems that give rise to the
negative results on learning that we have cited. We should not be surprised,
then, to find that uniform learning of an entire class in this framework may be
hard. So it will certainly be possible to construct combinations of distributions
and examples where the learning problem is difficult. But it is crucial to

10 In some circumstances, the derived structural descriptions will not be trees, but
non-tree directed acyclic graphs. This will generally be the case when the language
is not context-free.
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distinguish the assumptions that we make about the learner from those that we
adopt for the environment. We can assume that the environment for language
learning is generally benign, but we do not need to attribute knowledge of
this fact to the learner.

In the context of the argument from the poverty of the stimulus, we are
interested in identifying the minimal initial information which we must as-
sume that the learner has in order to account for acquisition. We are making
the following claim for DLGs. In order for acquisition of DLGs to proceed we
need to hypothesize a bias for paying attention to the relation between sub-
strings and their contexts, and an ability to construct concept lattices (Ganter
& Wille (1997)). The representational formalism and the learning algorithm
both follow naturally from these assumptions. Additionally we need to posit
a robust mechanism for dealing with noise and sparsity of data. Our second
claim is that these mechanisms are adequate for representing a large amount
of natural language.

We acknowledge that these claims require substantial empirical support,
which has yet to be delivered. We do know that there are a wide range of
efficient algorithms for the inference of large classes of context free languages,
where these were not available as recently as ten years ago. The exact limits
of the approach to learning that we are suggesting have not yet been fully
explored. However, the results that we have briefly described here give some
reason to think that language acquisition is computationally possible on the
basis a set of minimal learning biases. The extent to which these biases are
truly domain-general is a subject for future discussion.

7 Machine Learning and Grammar Induction: Some
Empirical Results

In the previous sections we have considered the problem of efficient learnability
for the class of natural languages from the perspective of formal learning
theory. This has involved exploring mathematical properties of learning for
different sorts of representation types, under specified conditions of data, time,
and computational complexity. In recent years there has been a considerable
amount of experimental work on grammar induction from large corpora. This
research is of a largely heuristic kind, and it has yielded some interesting
results.11 In this section we will briefly review some of these experiments and
discuss their implications for language acquisition.

11 For a more detailed discussion of this applied research in grammar induction see
Clark & Lappin (2010a).
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7.1 Grammar Induction through Supervised Learning

In supervised learning the corpus on which a learning algorithm A is trained
is annotated with the parse structures that are instances of the sort of rep-
resentations which A is intended to learn. A is tested on an unannotated set
of examples disjoint from its training set. It is evaluated against the annot-
ated version of the test set, which provides the gold standard for assessing its
performance.12

A’s parse representations for a test set TS are scored in two dimensions.
Its recall for TS is the percentage of parse representations from the gold
standard annotation of TS that A returns. A’s precision is the percentage of
the parse structures that it returns for TS which are in the gold standard.
These percentages can be combined as a weighted mean to give A’s F1-score.13

The Penn Treebank (Marcus (1993)) is a corpus of text from the Wall
Street Journal that has been hand annotated for lexical part of speech (POS)
class for its words, and syntactic constituent structure for its sentences. A
Probabilistic Context Free Grammar (PCFG) is a context-free grammar whose
rules are assigned a probability value in which the probability of the sequence
of symbols C1 . . . Ck on the right side of each rule is conditioned on the oc-
currence of the non-terminal symbol C0 on the left side, which immediately
dominates it in the parse structure. So P (C0 → C1 . . . Ck) = P (C1 . . . Ck|C0)).

For every non-terminal C in a PCFG, the probabilities for the rules C → α
sum to 1. The probability of a derivation of a sequence α from C is the product
of the rules applied in the derivation. The probability that the grammar as-
signs to a string s in a corpus is the sum of the probabilities that the grammar
assigns to the derivations for s. The distribution DG that a PCFG specifies
for a language L is the set of probability values that the grammar assigns to
the strings in L. If the grammar is consistent, then

∑
s∈T∗ DG(s) = 1, where

T ∗ is the set of strings generated from T, the set of the grammar’s terminal
symbols.

The probability values of the rules of a PCFG are its parameters. These
can be estimated from a parse annotated corpus by Maximum Likelihood Es-
timation (MLE) (although more reliable techniques for probability estimation
are available).

(7)
c(C0→C1...Ck)

c(C0→γ)

12 Devising reasonable evaluation methods for natural language processing systems
in general, and for grammar induction procedures in particular raises difficult
issues. For a discussion of these see Resnik & Lin (2010) and Clark & Lappin
(2010a).

13 Recall, precision, and F-measure were first developed as metrics for evaluating
information retrieval and information extraction systems. See Grishman (2010)
and Jurafsky & Martin (2009) on their application within NLP.
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where c(R) = the number of occurrences of a rule R in the annotated
corpus.

The performance of a PCFG as a supervised grammar learning procedure
improves significantly when it is supplemented by lexical head dependencies.
In a Lexicalized Probabilistic Context Free Grammar (LPCFG), the probab-
ility of the sequence of symbols on the right side of a CFG rule depends on
the pair 〈C0, H0〉. C0 is the symbol that immediately dominates the sequence
(the left hand side of the rule), and H0 is the lexical head of the constituent
that this symbol encodes, and which the sequence instantiates.

Collins (1999, 2003) constructs a LPCFG that achieves an F-score of ap-
proximately 88% for a WSJ test set. Charniak & Johnson (2005) improve on
this result with a LPCFG that arrives at an F-score of approximately 91%.
This level of performance represents the current state of the art for supervised
grammar induction.

Research on supervised learning has made significant progress in the de-
velopment of accurate parsers for particular domains of text and discourse.
However, this work has limited relevance to human language acquisition. The
PLD to which children are exposed is not annotated for morphological seg-
mentation, POS classes, or constituent structure. Even if we grant that some
negative evidence is contained in the PLD and plays a role in grammar in-
duction, it is not plausible to construe language acquisition as a supervised
learning task of the kind described here.

7.2 Unsupervised Grammar Induction

In unsupervised learning the algorithm is trained on a corpus that is not annot-
ated with the structures or features that it is intended to produce for the test
set. It must identify its target values on the basis of distributional properties
and clustering patterns in the raw training data. There has been considerable
success in unsupervised morphological analysis across a variety of languages
(?, Goldsmith (2010), Schone & Jurafsky (2001)). Reliable unsupervised POS
taggers have also been developed (Schütze (1995), Clark (2003)).

Early experiments on unsupervised parsing did not yield promising results
(Carroll & Charniak (1992)). More recent work has produced systems that
are starting to converge on the performance of supervised grammar induction.
Klein & Manning (2004) (K&M) present an unsupervised parser that combines
a constituent structure induction procedure with a head dependency learning
method.14

K&M’s constituent structure induction procedure determines probabilities
for all subsequences of POS tagged elements in an input string, where each
subsequence is taken as a potential constituent for a parse tree. The procedure

14 See Bod (2006, 2007a,b, 2009) for an alternative, largely non-statistical, method
of unsupervised parsing.
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invokes a binary branching requirement on all non-terminal elements of the
tree. K&M use an Expectation Maximization (EM) algorithm to select the
parse with the highest probability value. Their procedure identifies (unlabeled)
constituents through the distributional co-occurrence of POS sequences in the
same contexts in a corpus. It partially characterizes phrase structure by the
condition that sister phrases do not have (non-empty) intersections. Binary
branching and the non-overlap requirement are learning biases of the model
which the procedure defines.

K&M’s unsupervised learning procedure for lexicalized head-dependency
grammars assigns probabilities to possible dependency relations in a sentence
S. It estimates the likelihood for every word wi in S that wi is a head for all of
the subsequences of words to its left and to its right, taken as its syntactic ar-
guments or adjuncts. The method computes the likelihood of these alternative
dependency relations by evaluating the contexts in which each head occurs.
A context consists of the words (word classes) that are immediately adjacent
to it on either side. This procedure also imposes a binary branching condition
on dependency relations as a learning bias.

K&M combine their dependency and constituent structure grammar sys-
tems into an integrated model that computes the score for a constituent tree
structure as the product of the values assigned to its terminal elements by the
dependency and constituency structure models. This method employs both
constituent and head dependency distributional patterns to predict binary
constituent parse structure. The method achieves an F-score of 77.6% when it
applies to text annotated with Penn Treebank POS tagging, and an F-score of
72.9% when this test set is marked by Schütze (1995)’s unsupervised tagger.
The latter case is a more robust instance of unsupervised grammar induction
in that the POS tagging on which the learning procedure depends is itself the
result of unsupervised word class identification.

7.3 Machine Learning and Language Acquisition

Fong & Berwick (2008) (F&B) argue that supervised parsers, like Collins’
LPCFG, do not acquire syntactic knowledge of the sort that characterizes the
linguistic competence of native speakers. They run several experiments with
variants of Collins’ grammar. Their results contain incorrect probabilities for
wh-questions, putatively problematic parses for PP attachment cases, and
(what they claim to be) some puzzling effects when non-grammatical word
order samples are inserted in the data.

Some of the effects that F&B obtain are due to the very limited amount
of training data that they employ, and the peculiarities of these samples. It
might well be the case that if Collins’ LPCFG were trained on a large and
suitably annotated subset of the CHILDES child language corpus (MacWin-
ney (1995)), it would yield more appropriate results for the sorts of cases that
F&B consider.

Page: 28 job: clark-lappin_phil_ling_handbook_chapter macro: handbook.cls date/time: 13-Jun-2011/14:52



Computational Learning Theory and Language Acquisition 29

But even if their criticisms of Collins’ parser are accepted, they do not
undermine the relevance of machine learning to language acquisition. As we
noted in Section 7.1, supervised learning is not an appropriate model for
human learning, because the PLD available to children is not annotated with
target parse structures. Work in unsupervised grammar induction offers more
interesting insights into the sorts of linguistic representations that can be
acquired from comparatively raw linguistic data through weak bias learning
procedures. In order to properly evaluate the significance of this heuristic work
for human language acquisition, it is necessary to train and to test machine
learning algorithms on the sort of data found in the PLD.

Unsupervised grammar induction is a more difficult task than supervised
parsing, and so we might expect F&B’s criticisms to apply with even greater
force to work in this area. In fact, recent experimental research in unsupervised
learning, such as K&M’s parsing procedure, indicates that it is possible to
achieve accuracy approaching the level of supervised systems. Of course, these
results do not show that human language acquisition actually employs these
unsupervised algorithms. However, they do provide initial evidence suggesting
that weak bias learning methods may well be sufficient to account for language
learning. If this is the case, then positing strong biases, rich learning priors,
and language specific learning mechanisms requires substantial psychological
or neural developmental motivation. The APS does not, in itself, support these
devices.

8 Conclusions and Future Research

We have considered the ways in which computational learning theory can
contribute insights into language acquisition. We have seen that while formal
learning models cannot replace empirically motivated psycholinguistic theor-
ies, they can provide important information on the learnability properties of
different classes of grammatical representations. However, the usefulness of
such models depends on the extent to which their basic assumptions approx-
imate the facts of the human acquisition process.

We looked at two classical learning paradigms, IIL and PAC learning. Each
of these has been the source of negative results that linguists have cited in
support of the APS. When we examine these results closely we find that they
do not, in fact, motivate a strong domain specific bias view of language ac-
quisition. The results generally depend on assumptions that are implausible
when applied to acquisition. In some cases, they have been inaccurately in-
terpreted, and, on a precise reading, it becomes clear that they do not entail
linguistic nativism.

We observed that the main challenge in developing a tractable algorithm
for grammar induction is to constrain the computational complexity involved
in inferring a sufficiently rich class of grammatical representations from the
PLD. We looked at recent work on probabilistic learning models based on
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a distributional view of syntax. This line of research has made significant
progress in demonstrating the efficient learnability of grammar classes that
are beginning to approach the level of expressiveness needed to accommodate
natural languages.

A central element in the success of this work is the restriction of the set
of possible distributions to those that facilitate learning in a way that corres-
ponds to the PLD to which human learners are exposed. A second important
feature is that it characterizes representational classes that are not elements of
the Chomsky hierarchy, but run orthogonally to it. A third significant aspect
of this work is that although the primitives of the grammars in the learnable
classes that it specifies are sufficiently abstract to express interesting syntactic
categories and relations, they can be easily identified from the data.

We then considered recent experiments in unsupervised grammar induc-
tion from large corpora, where the learning algorithms are of a largely heuristic
nature. The results are encouraging, as the unsupervised parsers are beginning
to approach the performance of supervised systems of syntactic analysis.

Both the formal and the experimental work on efficient unsupervised gram-
mar induction are in their initial stages of development. Future research in
both areas will need to refine the grammar formalisms used in order to provide
a fuller and more accurate representation of the syntactic properties of sen-
tences across a larger variety of languages. It is also important to explore the
psychological credibility of the learning procedures that successful grammar
induction systems employ. This is a rich vein of research that holds out the
prospect of a rigorously formulated and well motivated computational account
of learning in a central human cognitive domain.
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