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Abstract. The paper presents Property Theory with Curry Typing (PTCT) where
the language of terms and well-formed formulæ are joined by a language of types.
In addition to supporting fine-grained intensionality, the basic theory is essentially
first-order, so that implementations using the theory can apply standard first-order
theorem proving techniques. Some extensions to the type theory are discussed, type
polymorphism, and enriching the system with sufficient number theory to account
for quantifiers of proportion, such as “most.”

1. Introduction

Higher-order theories that characterise intensions as functions from possible worlds to
extensions have dominated formal semantics since Carnap (1947). There are problems
with such theories:

1. the intensionality that they characterise is insufficiently fine grained—logically equiv-
alent expressions are co-intensional and so intersubstitutable in all contexts, including
the complements of propositional attitude predicates;

2. their higher-order nature does not aid implementation of automatic theorem proving.

3. the type system of such theories is very rigid, which does not accurately reflect the
apparently flexible nature of the syntactic categories and semantic types of natural
language.

All of these concerns have been addressed to a greater or lesser extent. There have
been alternative proposals that have a more fine-grained analysis of intensionality which
take propositions to be independent intensional entities, and truth to be a derived property.
Such proposals include Thomason (1980), situation semantics (Barwise and Perry 1983;
Barwise and Etchemendy 1990; Seligman and Moss 1997), Landman (1986), Lappin and
Pollard (1999), Muskens (1995). There have also been proposals for explicitly first-order
theories with fine-grained intensionality, such as property theory (Chierchia and Turner
1988; Turner 1987; Turner 1992). Work in categorial grammar, and related areas, has
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addressed concerns with the requirements of type flexibility (Steedman 1996; Steedman
2000; Morrill 1994; Moortgat 1997; Carpenter 1998).

Here we sketch PTCT (Property Theory with Curry Typing), a formal semantic
theory which seeks to address all three of the issues highlighted above simultaneously.
Specifically PTCT supports fine-grained intensionality and flexible typing within a first-
order framework.

Typed logics, based upon Church-style typing (Church 1940) typically have a basic
set of (intensional) entities e, propositions P , and general functional types T =⇒ T ′. Such
logics require that terms (or expressions) belong to exactly one type (monomorphism),
and that there is no universal type. These requirements are imposed, in part, to avoid
paradoxes in the underlying set-theoretic model: they lead to a ban on self-application. It
is possible to avoid paradoxes whilst having a more flexible system of types.

In order to remain first-order, one option is to develop the logical theory as a first-
order metatheory over representations of the appropriate propositions, properties, relations
and other terms. This is the approach adopted by Property Theory (PT), which axiomatises
Aczel’s Frege Structures (Turner 1992; Aczel 1980). PT is essentially untyped, although it
is possible to mimic types with a sortal system (Turner 1992). The language of terms is
that of the untyped λ-calculus.

There are other logical systems that can be formulated as metatheories over the
untyped λ-calculus, such as (constructive) programming logics. These logics include an
explicit language of types. Rather than incorporating types into the language of the λ-
calculus, as in Church (1940), such theories take the terms of untyped λ-calculus as given,
and then adopt rules and axioms to assign types to terms (Curry and Feys 1958; Curry
et al. 1958). This way of adding types to λ-calculus leads to a more expressive system
(Hindley and Seldin 1986). As with PT, the metatheory is essentially first-order. The
types will not lead to a higher-order system, provided that they do not include abstraction
and universal quantification (over types).

In effect, PTCT can be thought of as adopting such a logic, and extending its expres-
siveness to allow the representation of propositions within the language of terms, and so
rendering it an appropriate vehicle for computational semantics.

The version of PTCT presented here is essentially the theory presented in Fox, Lappin
and Pollard (2002a), but extended with modal operators and with a type system that is
enriched to allow a logical analysis of proportional quantifiers, such as “most.” This adapts
the proposal of Fox and Lappin (2001).1

2. The Language of PTCT

Adopting the above proposal leads to the following language of Property Theory with
Curry Typing (PTCT):

(logical constants) l ::= ∧̂ | ∨̂ | →̂ | ↔̂ | ⊥̂ | ∀̂ | ∃̂ | =̂ | ∼̂=T | ε | 2̂ | 3̂
(terms) t ::= x | c | l | T | λx(t) | (t)t
(Types) T ::= B | Prop | T =⇒ S
(atomic wff) α ::= (t = s) | ⊥ | t ∈ T | t ∼=T s
(wff) ϕ ::= α | (ϕ ∧ ψ) | (ϕ ∨ ψ) | (ϕ→ ψ) | (ϕ↔ ψ)

| (∀xϕ) | (∃xϕ) | 2ϕ | 3ϕ | truet

1Fox, Lappin and Pollard (2002b) present a higher-order logic with fine grained intensionality (FIL).
We are in the process of exploring the correspondences between PTCT and FIL.



The language of terms is embellished with logical constants that will be used to “represent”
propositions, properties and relations.

We have made the assertion of truth a wff, rather than a type assignment in order
to avoid complications when considering extensions to the theory. There are two notions
of equality: =̂ is intended to correspond to intensional identity, and ∼̂= corresponds to
extensional equivalence. This follows the proposal of Fox and Lappin (2001).2 Note that
equivalence in PTCT does not entail intensional identity.

Not every term will have a type, but every term that has a type in this basic theory
will correspond with an expression in conventional higher-order logic.

The resultant theory may be more powerful than is required just for natural language
semantics, but it makes it more convenient to show correspondences between conventional
higher-order logic and a first-order language. The Curry typing is useful when we consider
polymorphic variants. Once we have an explicit language of types independent of any
set-theoretic interpretation, it is more convenient to explore more unusual types and type
constructions.

2.1 Logic of Wff

We can give the language of wff the standard behaviour of classical first-order logic.3

2.1.1 Modal Operators

The modal operators are governed by the usual rule of necessitation, plus the appropriate
axioms (for example, the standard axioms for S4 or S5).

2.2 Rules for Identity and Equivalence

Both identity = and equivalence ∼=T are reflexive, symmetric and transitive, although these
properties only hold for ∼=T with terms that are of type T .

2.3 Rules for λ-terms

The λ-terms care governed by the conventional α, β axioms of the untyped calculus:

α λx.t = λy.t[y/x] Provided y is not free in t

β (λx.t)y = t[y/x]

It is possible to add either of the following axioms to give the extensional version of
the untyped calculus:

Ext ∀x(tx = sx)→ (t = s)

η λx.(tx) = t

2Gilmore (2001) constructs an intensional simple theory of types (ITT) in which an intensional
(=) and an extensional (=e) identity predicate are defined. His proposal differs from that of Fox and
Lappin (2001) in that (i) the extensional identity predicate is not type general, and is only defined for
propositions and predicates, and (ii) for Fox and Lappin, identity and equivalence are primitive, whereas
Gilmore defines them in terms of substitution and bi-implication.

3A full formalisation, with both natural-deduction and tableau-style rules is given in Fox, Pollard
and Lappin (2002a).



Note that adding Ext to the untyped λ-calculus is equivalent to adding η. Such ex-
tensionality of the the underlying λ-calculus would not undermine the intensionality of the
system as these axioms govern the behaviour of intensional identity, and are independent
of the extensional notion of equivalence in the language of wff.4

2.4 Type Assignment

Function types are governed by the axiom of general function spaces

GFS f ∈ (S =⇒ T )↔ ∀x(x ∈ S → fx ∈ T )

2.4.1 Identity and Types

We can also have the following, which links identity with types:

(t ∈ T ∧ t′ = t)→ t′ ∈ T

2.5 Prop Typing Rules

We need to be able to determine which terms represent propositions.

2.5.1 Absurdity

⊥̂ ∈ Prop

2.5.2 Binary Connectives

We illustrate with disjunction:

(t ∈ Prop ∧ t′ ∈ Prop)→ (t ∨̂ t′) ∈ Prop

2.5.3 Quantifiers

We illustrate with universal quantification:

(λx.t) ∈ (S =⇒ Prop)→ (∀̂xεS.t) ∈ Prop

2.5.4 Modal Operators

We illustrate with necessity:
t ∈ Prop→ 2̂t ∈ Prop

2.5.5 Identity and Equivalence

(t ∈ T ∧ t′ ∈ T )→ (t =̂ t′) ∈ Prop

(t ∈ T ∧ t′ ∈ T )→ (t ∼̂=T t
′) ∈ Prop

4We are grateful to Paul Gilmore for pointing this out to us.



2.6 Rules for Truth true

The following rules give the truth conditions of those terms that represent propositions.
The truth conditions themselves are stated as expressions in the language of wff.

2.6.1 Propositions are in Prop

truet→ t ∈ Prop

2.6.2 Absurdity

true⊥̂ → ⊥

2.6.3 Binary Connectives

We illustrate with disjunction:

(t ∈ Prop ∧ t′ ∈ Prop)→ (true(t ∨̂ t′)↔ (truet ∨ truet′))

2.6.4 Quantifiers

We illustrate with universal quantification:

λx.t ∈ (S =⇒ Prop)→ (true(∀̂xεS.t)↔ ∀x(x ∈ S → true(t)))

2.6.5 Modal Operators

We illustrate with necessity:

t ∈ Prop→ (true2̂t↔ 2truet)

2.6.6 Identity

(t ∈ T ∧ t′ ∈ T )→ (true(t =̂ t′)↔ t = t′)

2.6.7 Equivalence

(t ∈ T ∧ t′ ∈ T )→ (true(t ∼̂=T t
′)↔ (t ∼=T t

′))

(t ∈ (S =⇒ T ) ∧ t′ ∈ (S =⇒ T ))→ ((t ∼=(S=⇒T ) t
′)↔ ∀s(s ∈ S → ts ∼=T t

′s))

(t ∈ Prop ∧ t′ ∈ Prop)→ (t ∼=Prop t
′ ↔ (truet↔ truet′))

We can derive:

(t ∈ (S =⇒ Prop) ∧ t′ ∈ (S =⇒ Prop))→ ((t ∼= t′)↔ ∀s(s ∈ S → (truets↔ truet′s)))



3. Extensions to the Language of Types

There are many ways in which this system can be extended and strengthened, for example
we can define types for general functions, pairs (〈t, t′〉) (and n-tuples), disjoint union (t⊕t′),
Cartesian product t	t′, dependent product (π(x)tt′) and dependent sum (σ(x)tt′). We can
define a Curry-Howard isomorphism, mapping from logical connectors to type operators.
Here, we will look at a small selection of types and type operations that are of special
interest. Universal type, and polymorphic types are useful in the analysis of type general
expressions in natural language. Comprehension types, or separation types together with
a universal type, will be required for the subsequent analysis of proportional quantifiers,
such as “most.”

3.1 Universal Type

We can add ∆ to the language of types, which is governed by the following:

UT x ∈ ∆↔ x = x

At first, this might appear inconsistent as in standard ZF set theory, but we can see that
it is not by noting that x ∈ x is not in the language.

There have been proposals to use a universal type in the analysis of type-general
expressions in natural language, ex amplified by “is fun,” which accepts individuals, in-
finitives and gerunds as in the sentences “John is fun,” “Tennis is fun,” “Playing tennis is
fun,” and “To play tennis is fun,” as well as conjunctions of arbitrary categories (Chierchia
and Turner 1988).

3.2 Separation Types

It can be useful to have ‘subtypes’. These can be defined using Separation Types. These
embody wff within a type expression. Essentially, we add {x ∈ T : ϕ} to the language of
types. Such types are governed by the following:

SP z ∈ {x ∈ T : ϕ} ↔ (z ∈ T ∧ ϕ[z/x])

Adding UT (§3.1) by itself does not really seem to increase the power of the logic (it
just appears to say something fairly vacuous), but when combined with SP, we then have
the means to define pairs, disjoint union, Cartesian product, dependent sum, dependent
product and more, including ‘classical’ intersection (∩), union (∪) and difference (−). For
example, we can define intersection, union and difference by way of the following:

T ∩ S =def {T ∈ ∆ : x ∈ S ∧ x ∈ T}
T ∪ S =def {T ∈ ∆ : x ∈ S ∨ x ∈ T}
T − S =def {T ∈ ∆ : x ∈ S ∧ x 6∈ T}

3.3 Comprehension Types

Comprehension allows us to capture a type just using a wff (property). We add {ϕ} to the
language of types, and the following axiom:

COMP z ∈ {x : ϕ} ↔ ϕ[z/x]



It turns out that COMP is equivalent to SP+UT (see Turner (1991) for example).
The proofs are trivial.

Theorem 1 COMP supports SP and UT

This can be shown by adopting the definitions {x ∈ S : ϕ} =def {x : x ∈ S ∧ ϕ} and
∆ =def {x : x = x}.

Theorem 2 SP+UT supports COMP

This is demonstrated by adopting the definition {x : ϕ} =def {x ∈ ∆ : ϕ}.

3.4 Polymorphic Types

To add polymorphic types, first we have to enrich the language of types to include type
variables X, and our language of wff to include quantification over types (using these type
variables) ∀Xϕ, ∃Xϕ.

We also need to have comprehension types of the form {x : ϕ′}, where ϕ′ are first
order, and do not contain bound type variables. This excludes expressions of the form
{x : ∃X(x ∈ X)} (the set of terms that have a type).

By adopting these restricted comprehension types, rather than full second-order com-
prehension, the system remains first-order: type variables range over terms corresponding
to types, and the types themselves are not permitted to embody quantification over types.5

The proof rules for quantification over types are as expected.
Now we can express universal (implicit) polymorphic types, by adding ΠX.T to the

language of types, which is governed by the following axiom:

PM f ∈ ΠX.T ↔ ∀X(f ∈ T )

Such types represent infinite intersections of types. As an example, ΠX(X =⇒ X) is the
type of function in every general function space (such as λx.x). The expression “is fun”
can now be given the type ΠX.(X =⇒ P ).

To allow conjunctions of terms and nominalised expressions (such as gerunds and
infinitives) to appear as arguments to type general verbs, natural language conjunction
“and” can be given the type ΠX(X =⇒ X =⇒ X).

The two approaches to dealing with nominalisation (polymorphic types, and a uni-
versal type) are not mutually exclusive: if we adopt additional extensions, we can obtain
a theory in which there is both a universal type and polymorphic types.

4. Proportional Quantifiers

We can adapt the approach of Fox and Lappin (2001) for number quantifiers to PTCT.
Things are slightly complicated by the fact that terms can be of more than one type. We
assume that we are judging whether most ps are qs when p and q are felicitously interpreted
as properties of objects of type B.

Note that numeric equality of terms is judged independently of syntactic identity;
this is an intensional number theory.

5Note that if we were to adopt existential types (Abstract Data Types) of the form ΣX.T—where
f ∈ ΣX.T ↔ ∃X(f ∈ T )—in addition to first-order comprehension and polymorphic types, then we would
produce a system that was equivalent to PTCT with second-order comprehension. See Turner (1991) for
the proof.



4.1 Syntax for Numbers

The following additions can be made to PTCT:

Terms 0 | succ | pred | add | mult | ˆmost | | · |B

Types Num

Wffs zero(t) | t ∼=Num t′ | t <Num t′ | most(p)(q)

In the language of types, Num is the type of terms that represent numbers.
The terms succ, pred , add and mult represent, respectively, the operations of succes-

sor, predecessor, addition, and multiplication, and 0 is the term that represents zero. The
term | · |B represents a cardinality operator. Given a term p of type (B =⇒ Prop), |p|B is
intended to represent the number of terms t of type B for which truept holds.

In the language of wffs, zero(t) tests whether the term t is numerically equal to
0, t ∼=Num t′ determines whether the terms t, t′ are numerically equal (corresponding to
extensional equivalence for numbers), and t <Num t′ determines whether the term t is
numerically less than the term t′. The wff most(t)(t′) represents the proposition “most ts
are t′s,” and ˆmost is the term representation of the same quantifier. The axioms governing
the behaviour of numbers must be formulated in such a way that t, t′, p and q are restricted
to terms of appropriate types.

4.2 Axioms for Numbers

We can add the following axioms to obtain the expected behaviour, adapting the usual
Peano axioms of first-order arithmetic to PTCT.

4.3 Axioms for <Num

In order to formalise the truth conditions of most(p)(q), we need a characterisation of what
it means for one term to be numerically less than another.

y ∈ Num→ 0 <Num succ(y)
x ∈ Num→ x 6<Num 0

x ∈ Num ∧ y ∈ Num→ (succ(x) <Num succ(y)↔ x <Num y)

4.4 “Most” in PTCT

To obtain an analysis of most(p)(q), we must first define the cardinality of properties. This
recursive definition exploits comprehension types (§3.3), together with separation types to
define differences (§3.2).

p ∈ (B =⇒ Prop) ∧ ∼∃x(x ∈ B ∧ truepx)→ |p|B ∼=Num 0

p ∈ (B =⇒ Prop) ∧ b ∈ B ∧ truepb→ |p|B ∼=Num add(|p− {x.x ∼̂=B b}|B)(succ(0))

Now we can give the appropriate behaviour to most(p)(q) by way of the following:

p ∈ (B =⇒ Prop) ∧ q ∈ (B =⇒ Prop)→
most(p)(q)↔ |{x ∈ B.truepx ∧ ∼ trueqx}|B <Num |{x ∈ B.truepx ∧ trueqx}|B

In this analysis, it is presumed that all terms representing the singular natural lan-
guage denotable objects are of the basic type B (although they may also belong to other
types). It would be possible to devise an explicitly polymorphic (§3.4) version of this
analysis.



5. Future Work

There are extensions to PTCT that are of relevance to natural language semantics. We
could incorporate separation types and dependent types into the language of types in
order to model discourse phenomena (Ranta 1991; Ranta 1994; Dávila-Pérez 1995; Fox
1994; Fox 2000). Of more immediate concern is a proof of consistency. Fox, Lappin and
Pollard (2002a) sketch an approach to demonstrating the consistency of PTCT by finding
sound and complete mappings between PTCT and a higher-order logic.6 An alternative
would be to build directly upon a model for the Curry-typed λ-calculus.

6. Conclusions

The paper presents a highly intensional theory that can emulate some key aspects of typed
logics within a first-order framework. In this system, extensional equivalence does not entail
intensional identity. The theory is sufficiently expressive to lend itself to extensions that
incorporate universal and polymorphic types (which can be used to model some natural
language nominalisation phenomena). The paper shows how the theory can be extended
with modal operators, and how an intensional number theory can be formalised to allow
an analysis of the full range of generalised quantifiers.
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