Expressiveness and Complexity in
Underspecified Semantics*

CHris Fox aND SHaLoM LaApPIN
University of Essex and King’s College London

Abstract

In this paper we address an important issue in the development
of an adequate formal theory of underspecified semantics. The
tension between expressive power and computational tractability
poses an acute problem for any such theory. Generating the full set
of resolved scope readings from an underspecified representation
produces a combinatorial explosion that undermines the efficiency
of these representations. Moreover, Ebert (2005) shows that most
current theories of underspecified semantic representation suffer
from expressive incompleteness. In previous work we present an
account of underspecified scope representations within Property
Theory with Curry Typing (PTCT), an intensional first-order the-
ory for natural language semantics. We review this account, and
we show that filters applied to the underspecified-scope terms of
PTCT permit expressive completeness. While they do not solve
the general complexity problem, they do significantly reduce the
search space for computing the full set of resolved scope readings
in non-worst cases. We explore the role of filters in achieving
expressive completeness, and their relationship to the complex-
ity involved in producing full interpretations from underspecified
representations.

“We dedicate this paper to Jim Lambek, whose pioneering contributions to
mathematical linguistics have inspired generations of researchers in the theory of
formal grammar.

Earlier versions of this paper were presented at The Symposium on Logic
and Language, Debrecen, 2004; The Amsterdam Colloquium, 2005; the Computer
Science Colloquium, University of Sheffield, 2006, the Computer Science Collo-
quium, University of Haifa, 2006; the Linguistics Colloquium, Yale University, 2007,
the Dialogue Matters Workshop, King’s College, London, 2008; the Computational
Linguistics Colloquium, IRIT, Toulouse, 2008; and the Computational Linguistics
Colloquium of the School of Informatics, University of Edinburgh, 2008. We are
grateful to the participants of these forums for helpful comments and advice. We
would also like to thank Christian Ebert, Richard Crouch, Josef van Genabith, Ron
Kaplan, Alexander Koller, Nati Linial, Massimo Poesio, and Ian Pratt-Hartmann
for invaluable discussion of the complexity issues discussed here. We bear sole
responsibility for the ideas presented in this paper and any mistakes that it may
contain.

Linguistic Analysis, 36 1-4
© 2010 Linguistic Analysis
P.O. Box 2237, Vashon, WA 98070

2 Chris Fox AND SHALOM LAPPIN

1. Introduction

Cooper (1983) pioneered underspecified scope representation
in formal and computational semantics through his introduction of
quantifier storage into Montague semantics as an alternative to the
syntactic operation of quantifying-in. This work established the basis
for a fruitful line of research in underspecified semantics over the
past twenty-five years. In this paper we address an important issue
in the development of an adequate formal theory of underspecified
semantics. We are concerned with achieving expressive complete-
ness in a system for underspecified scope representations in a way
that maximises computational efficiency.

We will not discuss the syntax-semantics interface but focus on
properties of the semantic representation language. The semantic
representations that we use can be mapped onto, and built up compo-
sitionally in tandem with, the syntactic structures provided by most
contemporary theories of formal grammar. Our semantic representa-
tions are particularly commensurate with the syntactic structures of
a categorial grammar, as both are terms of a A-calculus. However,
our general framework could easily be adapted to other syntactic
systems.

In Fox and Lappin (2005a) we propose Property Theory with
Curry Typing (PTCT) as a formal framework for the semantics of
natural language. PTCT allows fine-grained distinctions of meaning
without recourse to modal notions like (im)possible worlds. It also
supports a unified dynamic treatment of pronominal anaphora and
VP ellipsis, as well as related phenomena such as gapping and
pseudo-gapping.

PTCT consists of three sublanguage components. The first com-
ponent encodes a property theory within a language of terms (an
untyped A-calculus). The second adds dynamic Curry typing (Curry
and Feys, 1958) to provide a system for expressing type judgements
for terms. The third uses a first-order logic to specify the truth-
conditions of the propositional subpart of the term language. Our
semantic representation language is first-order in character, rather
than higher-order. We achieve the sort of expressive power previously
limited to higher-order theories within a formally more constrained
system. This provides an effective procedure for modelling inference
in natural language.

Fox and Lappin (2005a,b) use product types to generate under-

EXPRESSIVENESS AND COMPLEXITY IN UNDERSPECIFIED SEMANTICS 3

specified semantic representations within PTCT, the representation
language, rather than through meta-language devices, which are
invoked in most current treatments of underspecification (Reyle,
1993; Bos, 1995; Blackburn and Bos, 2005; Copestake et al., 2006).
The expressive power of the language permits the formulation of
filters on scope readings that cannot be captured in other theories
of underspecification which rely on special purpose extra-linguistic
operations and a weak system for constraint specification.

In Section 2 we summarise the main features of PTCT and our
account of underspecified representations. Section 3 is devoted to
showing how filters on underspecified scope terms can solve the
problem of expressive incompleteness that Ebert (2005) raises for
other theories of underspecification. Section 4 discusses the general
complexity problem posed by underspecified scope representations
and explores three initially attractive strategies for dealing with it.
None of these turns out to be viable. In Section 5 we indicate how
filters can be used to reduce the search space involved in computing
the set of possible scope readings that an underspecified term gener-
ates. Section 6 compares our account to other approaches to scope
ambiguity current in the literature. Finally, in Section 7 we state the
main conclusions of this work.

2. PTCT

In this section we provide an overview of PTCT and our ac-
count of underspecified scope representations within this framework.
Scope-taking elements occur in a variety of syntactic categories,
which include NPs, quantified adverbial phrases, negation, tense,
and prepositional phrases. When the interaction of expressions from
all of these categories is taken into account, the degree of scope
ambiguity exhibited by even relatively simple sentences can be quite
high. However, for ease of exposition we limit ourselves here to the
generalised quantifiers used to interpret NPs.

2.1. Syntax

PTCT is a first-order theory in which types and propositions are
terms over which we can quantify. This allows rich expressiveness

4 Chris Fox AND SHALOM LAPPIN

whilst restricting the system to first-order resources (Fox and Lappin,
2005a, Chapter 9).

The core language of PTCT consists of the following sub-
languages, where x ranges over a set of variables, ¢ ranges over
a set of constants, B is a basic type, and p characterises the type of
propositions.

(1) Terms
tu=x|c|l|T|Ax() | ()t
(logical constants)
[u= 2 A1V D& VA2 47T

(2) Types
T:=e|pl|(T,,T2) | X|{xeT:¢} | IX.T
where X ranges over types excluding those of the form ITX.T'.

(3) Wff
pr=al~el (@A) | (@1 V)l (e = @)l (1 < ¢)
| (Vxp) | (Fxp) | (VXe) | (AXp)
(atomicwif) @ =t =y s|teT|t=rs|

The language of terms is the untyped A-calculus, enriched with
logical constants. It is used to represent the interpretations of natural
language expressions. For this reason, it includes terms to represent
the usual logical connectives, together with type membership € T,
identity =7 and equivalence £7. It has no internal logic, but when
we add a proof theory, the simple language of types together with
the language of terms can be combined to produce a Curry-typed
A-calculus.

The syntactic rules of PTCT terms given here are flexible. They
allow the generation of syntactic expressions that have no intuitively
meaningful interpretation. This does not undermine the system. The
rules give a minimal characterisation of the syntax while our proof
theory and our model theory characterise the proper subset of well-
formed PTCT terms that constitute meaningful expressions.

All the types are term representable. In a separation type {x € T :
¢'}, ¢ is a term representable fragment of a wif, where term repre-
sentability can be defined recursively. This restriction on separation
types avoids semantic paradoxes of type membership which could
otherwise emerge in the specification of these types. The values of

EXPRESSIVENESS AND COMPLEXITY IN UNDERSPECIFIED SEMANTICS 5

bound type variables is limited to non-polymorphic types in order to
avoid impredicative type membership statements.

In the first-order language of wifs we formulate type judgements
for terms, and truth conditions for those terms judged to be in p.

It is important to distinguish between the notion of a proposition
itself (in the language of wff), and that of a term that represents
a proposition (in the language of terms). '(r) will be a true wiff
whenever the proposition represented by the term ¢ is true, and a
false witf whenever the proposition represented by ¢ is false. The
representation of a proposition ¢ (¢ p) is distinct from its truth
conditions ('(r)). The identity criteria for propositions, taken as
terms, are those of the A-calculus with «, 5, and 7 reduction.

We note that if 7 ¢ p, then '(¢) will be false. We enforce a strictly
bivalent Boolean evaluation in the proof theory and model theory. In
principle we could modify this semantics. We might, for example,
take the truth value of '(f) to be undefined when ¢ ¢ p, whilst
preserving Boolean negation (with the “law of excluded middle™)
for propositions. We will not pursue this issue here.

2.2. Proof Theory

The rules and axioms governing the logical behaviour of PTCT
can be summarised as follows. The rules for the basic connectives of
the wil have standard classical first-order behaviour. The axioms for
identity of terms =7 are those of @, 8, and i reduction in the untyped
A-calculus. The rules for typing A-terms are the rules/axioms of the
Curry-typed calculus, augmented with rules governing those terms
that represent propositions (p). Additional rules for the language
of wifs govern the truth conditions of terms in p, which represent
propositions. Finally, the rules for equivalence =7 specify it as the
relation of extensional equivalence.

We illustrate some of these rules as they apply to conjunction, as
it appears in the language of terms (A), of type judgements, and of
wit (A).

(4) The basic connectives of the wif

YN pAY
oy N T Ne Ty

Ne

6 Chris Fox AND SHALOM LAPPIN

(5) Typing rules for A-terms

tepAatrep—>(tAr)ep

(6) Truth conditions for Propositions
tepArep—(tA)YoTtAT)

We have encoded the proof theory of PTCT in a tableau system,
which we present in Fox and Lappin (2005a, Chapter 5), together
with proofs of soundness and completeness. A slightly earlier version
of the proof theory appears in Fox and Lappin (2004).

2.3. Equivalence and Identity

There are two equivalence relations in this theory, intensional
identity and extensional equivalence. ¢ =7 s states that the terms
t, s are extensionally equivalent in type 7. In the case where two
terms ¢, s are propositions (¢, s € p), then ¢ =, s corresponds to
t < s. In the case where two predicates of T (¢, s € (T,p)) are
extensionally equivalent (¢ =7), , s each hold of all and only the
same elements of 7. Therefore Vx(x € T — ('t(x) & Ts(x))).

t =7 s states that two terms are intensionally identical in type T'.
The proof system for PTCT permits us to derive t =7 s = t =7 s
for all types inhabited by ¢, (s), but not t = s — ¢ =7 s. Therefore,
two expressions (terms) can be provably equivalent but intensionally
distinct. We have achieved this result without recourse to modal
notions.

The fact that we can distinguish between equivalence and in-
tensionality permits us to sustain differences in meaning in natural
language that elude other intensional logics. The precise definition
of equivalence and identity are given by our proof theory and model
theory in Fox and Lappin (2005a, Chapter 5). Again, Fox and Lappin
(2004) has a slightly earlier version of these theories.

2.4. Model Theory

We construct our set of models for PTCT on the basis of the
model theory for the untyped A-calculus given in Meyer (1982).
D =(D,[D — D], ®,¥) where D is isomorphic to [D — D].

EXPRESSIVENESS AND COMPLEXITY IN UNDERSPECIFIED SEMANTICS 7

(7) a. Disanon-empty set,

b. [D — D] is some class of functions from D to D,
. ®:D—>[D - D],

. ¥Y:[D—- D]— D,

. P(O(d)) =dforalld € D.

o o

a

We can interpret the calculus using the following.

@) [lxlg = gx)
[Ax.t], = W(Ad.[[]lg1a/x)
[izslly = O s

where g is an assignment function from variables to elements of D.
This interpretation exploits the fact that @ maps every element of D
into a corresponding function from D to D, and ¥ maps functions
from D to D into elements of D.

Note that we require functions of the form Ad.[[t]ly(4/x to be in
the class [D — D] to ensure that the interpretation is well defined.
Here we are just following Meyer (1982).

We interpret the types as terms in D that correspond to subsets
of D. A model of PTCTis M= (D, T,P,B,B,7",7), where

(a) D is a model of the A-calculus,

(b) T: D — {0, 1} models the truth predicate ',
(c) P ¢ D models the class of propositions,

(d) B ¢ D models the class of basic individuals,

(e) B(B) is a set of sets whose elements partition B into equiva-
lence classes of individuals,

(f) 77 € 7 models the class of non-polymorphic types
(g) 7 ¢ D models the term representation of types,

with sufficient structural constraints on T, P, 7, and 7’ to validate
the rules of PTCT.

In Fox and Lappin (2005a) we prove the soundness and com-
pleteness of PTCT with respect to the proof theory and model theory
specified there.

8 Chris Fox AND SHALOM LAPPIN

2.5. Underspecified Representations in PTCT

We extend the type system of PTCT to include product types
S ® T, which have elements of the form (s, 7). We add the type S ® T,
and a tableau rule corresponding to the following axiom.

9) PROD: (x,y)) e § ®T) > xS AyeT

Unlike monomorphic lists, the k-tuples that instantiate product types
allow us to express polymorphic relations.

The appropriate notions of pairs and projections required for
product types are A-definable.

(10) (x,) =get Az(z(x)(y))
(1) fst =get Ap(pAxy(x))

(12) snd =get Ap(pAxy(y))

We write (t1,1,...,t,) for (t;,(t2,(...1,))...), and T} @ T, ®
. T, for T} @ (T, ® (... T,)...). We will typically require
that the last element #; of the k-tuple (¢1,...,%) € T1 ® ... ® Ty,
is a designated object, like O or L. This condition insures that it is
possible to recognise the final element of a k-tuple and so compute
its arity. The designated element of a k-tuple plays the same role as
the empty list does in the tail of every list. It renders the elements of
product types equivalent to weak lists with elements of (possibly)
distinct types. As in the case of lists, we generally suppress this final
designated element when representing a k-tuple.

2.6. Generalised Quantifiers

Generalised quantifiers (GQs) represent noun phrases. We follow
Keenan (1992) and van Eijck and Unger (2010) in taking a GQ to
be an arity reduction operator that applies to a relation r to yield
either a proposition or a relation 7’ that is produced by effectively
saturating one of 7’s argument with the GQ.! On this view, applying
the GQ corresponding to “every student” (every_student’ or in

'In Keenan’s presentation, some generalised quantifiers can bind more than
one of r’s arguments, and so reduce its arity by more than 1. These GQs are
formed from constituent quantifiers that exhibit relations of mutual dependence.
Due to these relations, the GQ which they yield cannot be reduced to a simple
functional composition of one quantifier with another. An example of such a GQ is

9

(“every student”, “a different book”) in “Every student read a different book.”

EXPRESSIVENESS AND COMPLEXITY IN UNDERSPECIFIED SEMANTICS 9

a conventional logical notation, AQV¥x(student’(x) — Q(x))) to
the binary relation Ayx(loves’(x,y)) gives the one-place relation
Ax(every_student’(2y.loves’(x, y))). Through B-reduction this gives
Ax(Yy(student’(y) — love’(x, y))), which is the property of loving
every student.

GQs are of type ((X, p), p), which we write Quant* for clarity
(where X is typically B). Core propositional relations, such as verbs,
are of type (X1,{..., (X, p)...)). Slightly modifying van Eijck and
Unger’s Haskell-based treatment of GQs (van Eijck and Unger,
2010), we define an operator R recursively to “lift” quantifiers to the
appropriate level to combine with a relation.

(13) a. R e {(Quant® (X, T)),T))
b. Q € Quant® A r e (X,p) = RQr = Or
c. QeQuant* A re(X,T) A (T ¢ p) — ROr = AxRQ(rx)

We use relation-reduction to compose representations of n quantifiers
QO ...Q, with an n-place relation r by applying R as follows.

(14) ROI(RQ>...(RQyr)...)
2.7. Indexed Permutations of GQ Scope Sequences

Many of the scope ambiguities involving GQs are most naturally
treated as purely semantic in nature. So, as has been often observed,
the following well-worn example (15) allows two alternative scope
readings, represented in a conventional logical notation in (16) and
17).

(15) Every man loves a woman
(16) Vx(man’(x) — Jy(woman’(y) A loves’(x, y)))
(17) Ay(woman’(y) A Yx(man’(x) — loves’(x, y)))

We want our theory to produce underspecified representations
that subsume all the various readings, and from which the different
readings can be generated. We can express computable functions in
PTCT, and so we can incorporate the machinery of underspecified
semantics directly into the representation language.

We specify a family of functions perms_scope; (where k > 1)
that generate all k! indexed permutation products of a k-ary indexed

10 Chris Fox AND SHALOM LAPPIN

product term (¢1, ...,) as part of the procedure for generating the
set of possible scope readings of a sentence. In Fox and Lappin
(2005b) we specify a standard algorithm (following Campbell, 2004)
for mapping a k-tuple (1, ..., k) into the indexed k!-tuple of its per-
mutations as part of the interpretation of perms_scope,. In Section 5
we formulate an alternative tree construction algorithm to gener-
ate the set of all possible permutations of scope-taking elements to
which perms_scope, applies. We will use the factorial permutation
trees that this algorithm generates to demonstrate the non-worst
case scenario search-space reduction that filters on underspecified
representations can achieve.

For our treatment of underspecification, perms_scope; needs
to take a k-ary product of scope-taking elements (by default, in
the order in which they appear in the surface syntax) and a k-ary
relation representing the core proposition as its arguments. The
scope-taking elements and the core representation can be combined
into a single product, for example as a pair consisting of the k-tuples
of quantifiers as its first element and the core relation as its second.
The permutation function perms_scope, produces the k!-ary product
of scoped readings. When a k-tuple of quantifiers is permuted, the
A-operators that bind the quantified argument positions in the core
relation are effectively permuted in the same order as the quantifiers
in the k-tuple. This correspondence is necessary to preserve the
connection between each GQ and its argument position in the core
relation across scope permutations.

A scope reading is generated by applying the elements of the
k-tuple of quantifiers in sequence to the core proposition, reduc-
ing its arity with each such operation until a proposition results.
The ith scope reading is identified by projecting the ith element
of the indexed product of propositions that is produced by the
perms_scope, function. The PTCT term consisting of the appli-
cation of perms_scope, to an appropriate input pair — a k-tuple of
GQs and a core relation — therefore provides an underspecified
representation of the sentence corresponding to this term. Below
we describe a function that projects a fully specified scope reading.
In principle we can follow van Eijck and Unger (2010) and give
a uniform type to these representations by defining arbitrary arity
product types to cover the type of the k-tuple of GQs that is the first
element in the pair to which perms_scope, applies and the k!-tuple
which is its value.

EXPRESSIVENESS AND COMPLEXITY IN UNDERSPECIFIED SEMANTICS 11

Consider example (15) “Every man loves a woman”. The GQs
interpreting the subject NP, the object NP and the core relation
are given as PTCT terms in (18), (19) and (20), respectively, and
the PTCT term expressing the underspecified representation of the
sentence is given in (21).

(18) Q) = APYx & e(man’(x) = P(x))
(19) Q> = 10y & e(woman’(y) A ()
(20) Auv.loves’uv

(21) perms_scope,((Q1, Q2), Auv.loves’uv)

The permutations of the quantifiers and the core representation pro-
duced by (21) are given by the following.

(22) perms_scope,((Q1, Q2), Auv.loves'uv) =
(((Q1, O2), Auv.loves'uv), (0>, O1), Avu.loves'uv))

Applying relation-reduction (13 & 14) to each of the representations
of the scope orderings gives a pair of propositions corresponding to
the two readings.

(23) (Yx & e(man’(x) = dy & e(woman’(y) A loves’(x, y))),
Jy & e(woman’(y) A Yx & e(man’(x) — loves’(x, y))))

To obtain resolved scope readings from an underspecified rep-
resentation, we define a family of functions project_scope, (i) that
compute the ith permutation of a k-ary product of propositions.
Specifically, a function of this kind returns the ith proposition in the
product of scope readings that perms_scope,, gives as its value. We
extend the type system to include the type Num of natural numbers.
In the event that we apply project_scope, after relation-reduction,
we can define its type as

24) ((P1,---»Pe), (Num, p))

where Num < k. To ensure that the function is total, we can define
project_scope,; (i) so that it projects the (i mod k)th term, for exam-
ple. A detailed proposal for the inclusion of natural numbers into
PTCT is provided in Fox and Lappin (2005a, Chapter 6).

12 Chris Fox AND SHALOM LAPPIN

3. Filters and Expressive Completeness

There are various kinds of constraints that limit the set of possible
scope readings for a particular sentence to a proper subset of the
set of k! orderings of the k scope-taking elements which appear in
it. A common condition on relative scope is the strong preference
for wide scope assignment to certain quantifiers by virtue of their
lexical semantic properties, as is the case with “a certain N'”.

A second kind of condition depends upon the syntactic domain
in which a GQ appears. So, for example, a quantified NP within a
relative clause cannot take scope over a quantified NP in which the
relative clause is embedded.

The following two examples illustrate these constraints.

(25) Every critic reviewed a certain book.

(26) A student who completed every assignment came first in the
class.

The strongly preferred reading of (25) is the one on which “a certain
book” takes wide scope relative to “every critic”. In (26) “every
assignment” can only take narrow scope relative to “a student who
completed every assignment”.

Scope constraints of these kinds can be formulated as filters on
the k!-tuple of permutations ((Qtuple,, Rel,), ..., (Qtuple,,, Rely))
that perms_scope,, generates from (Qtuple,, Rel,), the initial argu-
ment pair. Each such filter is a Boolean property function that im-
poses a condition on the elements of the k!-tuple.?

Let (Quants, Rel) be a pair of variables in which Quants ranges
over k-tuples, and Rel over k-ary relations. We take a_certain to be
a PTCT property that is true of all and only GQs that represent “a
certain N”, and is false of anything else. As the k-tuples are indexed,
there is a one-to-one correspondence between the elements of a k-
tuple and their respective indices. Let tuple_element(i, Quants) = Q;
if Q; is the ith member of Quants, and the distinguished term w
otherwise.

We can specify the lexical scope constraint illustrated in (25) as
the filter in (27), where i and j are variables ranging over integers
(type Num).

2See van Eijck and Unger (2010) for examples of filters on lists specified as
Boolean functions on the elements of a list.

EXPRESSIVENESS AND COMPLEXITY IN UNDERSPECIFIED SEMANTICS 13

(27) A(Quants, Rel)[
e j & Num(a_certain(tuple_element(i, Quants)) A
2 a_certain(tuple_element(j, Quants)) A
j<l
This condition requires that no element of a k!-tuple of scope read-
ings contains a k-tuple of GQs in which the index of a a_certain
GQ is higher than that of a non-a_certain GQ (and so outscoped by
it). Notice that we have only quantified over integers (elements of
the type Num) in this filter. We have taken advantage of the isomor-
phism between k-tuples of integers and k-tuples of indexed GQs to
avoid quantifying over GQ expressions. In principle this allows the
filter to be stated within the expressive resources of any first-order
language that supports natural numbers.’

In order to formulate the condition illustrated in (26) we must
introduce syntactic relations. Let relcl_embed(Q, Q) hold iff the
NP corresponding to Q, appears in a relative clause contained in the
NP corresponding to Q. We can formulate the constraint as in (28).

(28) A(Quants, Rel)[
4(§i, Jj € Num(relcl_embed(tuple_element(i, Quants)
tuple_element(j, Quants))
Aj<il
This filter prevents a GQ that interprets an NP in a relative clause
from having scope over a GQ that interprets an NP in which the
relative clause is embedded.

Filters (27) and (28) achieve partial disambiguation of an un-
derspecified representation to which they apply (non-vacuously) by
ruling out a subset of the set of possible scope readings that this
representation generates independently of the filters.

Underspecified representations can also be disambiguated by
information acquired through subsequent discourse. So, for exam-
ple, resolving anaphoric expressions like pronouns and definite de-
scriptions in sentences following a statement that exhibits scope
ambiguity may eliminate certain readings of the antecedent.*

3In Fox and Lappin (2005a, Chapter 6) we formulate a version of Num using
Presburger arithmetic (Presburger, 1929), so avoiding a commitment to the full
power of Peano arithmetic. In the case of PTCT, however, we would remain within
first-order expressibility even if we were to quantify over the term representations of
GQ expressions.

“4Koller and Niehren (2000) propose a procedure for using anaphora resolution to

14 Chris Fox AND SHALOM LAPPIN

(29) a. Speaker I: Every student wrote a program for some profes-
SOf.

b. Speaker 2: Yes, I know the professor. She taught the Haskell
course.

c. Speaker 3: 1saw the programs, and they were all list-sorting
procedures.

Identifying “some professor” in (29a) as the antecedent for “the
professor” and “she” in (29b) gives “some professor” scope over
“every student” in (29a). Interpreting “a program” in (29a) as the
antecedent for both “the programs™ and “they” in (29c) causes “a
program’ to have narrow scope relative to “every student” in (29a).
Therefore, taken conjointly (29b) and (29c¢) force on (29a) the fully
resolved scope order

99 ¢ 99 <

(“some professor”, “every student”, “a program’)

To simplify the presentation: let Q; represent “every student”;
0y, “a program”; and Qs, “some professor”. We can formulate the
filters contributed by (29b) and (29c¢) as (30) and (31), respectively
(where GQ in ¢ abbreviates the appropriate type of Q;).

(30) A(Quants, Rel)[

Vi, j & Num((tuple_element(i, Quants) 2o Qs A
tuple_element(j, Quants) Z¢o Q1) =
i<)]

(31) A(Quants, Rel)[

Vi, j & Num((tuple_element(i, Quants) 2o Q1 A
tuple_element(j, Quants) Z¢o O2) =
i<)]

We specify the function filter_tuple(F,T) which maps a pair
consisting of a j-tuple F of filters and a k-tuple 7 to a k’-tuple
(possibly the empty tuple) of all the elements of 7 that satisfy each
filter in F.> We construct a PTCT term of the form (32) to represent
the k’-tuple obtained by applying the elements of F to the k!-tuple
that is the value of perms_scope,(Quantsy, Rel).

(32) filter_tuple(F, perms_scope,(Quants;, Rel))

filter possible scope readings within a dominance constraint system for underspeci-
fied representation.

SIn fact, this will be a family of functions filter_tuple w(Fj, Ti). In the interests
of simplicity we will suppress the j and & indices on filter_tuple in the text.

EXPRESSIVENESS AND COMPLEXITY IN UNDERSPECIFIED SEMANTICS 15

Expressive Completeness

Ebert (2005) shows that most current theories of underspecifi-
cation are expressively incomplete to the extent that they cannot
identify the proper subset of possible scope readings specified by
Boolean operations other than conjunction, and in particular by nega-
tion and disjunction. He cites the following example to illustrate the
problem.

(33) Every market manager showed five sales representatives a
sample.

Ebert stipulates that, in his example, contextual information allows
all scope permutations except the one corresponding to (3, 5,V),
where “a sample” takes wide scope, “five sales representatives” has
an intermediate position, and “every market manager” takes narrow
scope. He demonstrates that storage (Cooper, 1983; Pereira, 1990),
hole semantics (Bos, 1995; Blackburn and Bos, 2005), Minimal Re-
cursion Semantics (Copestake et al., 2006), and Normal Dominance
Conditions (Koller et al., 2003) cannot formulate underspecified rep-
resentations that express the set containing only the five remaining
scope readings.

By contrast it is straightforward to formulate a filter in PTCT
that rules out the problematic scope sequence in Ebert’s case while
permitting the five other readings.

(34) A(Quants, Rel)[

Vi, j,k & Num((tuple_element(i, Quants) 6o Q3 A
tuple_element(j, Quants) Zgo Qs A
tuple_element(k, Quants) Z¢o Ov) =
A& A jER)]

Ebert shows that in order to achieve expressive completeness,
a theory of underspecified semantic representation must be able to
characterize the power set of k! possible readings generated by a
sentence with k interacting scope operators. PTCT is, in principle,
able to achieve expressive completeness in this sense.® This is due

SEbert (2005) makes the important observation that to actually arrive at expressive
completeness it is necessary to extend PTCT to deal with nested quantificational
structures, like the subject NP in “Two representatives from three companies saw
most samples”. He sketches a proposal for doing this in a straightforward way.

16 Chris Fox AND SHALOM LAPPIN

to the fact that the terms of the A-calculus that encode both under-
specified scope representations and filters are interpreted by the type
and propositional components of PTCT as having the full power
of typed quantification and Boolean operations. It is important to
recall, that they are part of the semantic representation language
itself, and so no enrichment of this language or recourse to an ex-
ternal metalanguage is required to achieve expressive completeness.
Moreover, these terms denote computable functions, and they remain
expressions in a first-order system.

4. The Complexity Problem for Underspecified Scope
Representations

4.1. The General Complexity Issue

We have already observed that generating the full set of possible
resolved scope readings for a sentence with k interacting scope ele-
ments requires at least k! steps. What happens when filters are added
to the representation language? Assume that the set of constraints
in the language is initially limited to simple linear precedence con-
ditions of the form Q; < Q;. We will refer to such constraints as
weak filters. When disjunction is added to the set of weak filters,
then the problem of deciding whether an arbitrary reading satisfies
these filters is NP-complete. It is not possible to design an algorithm
for testing satisfaction of a set of filters in this theory in less than
exponential time for worst cases.’

It is straightforward to show that this complexity result holds
for underspecified scope terms with filters in PTCT, where the fil-
ters are formulated only in terms of linear precedence relations and
Boolean connectives (and the quantification over indices is elim-
inable through reference to specified elements of a k-tuple). The
A-terms that we use to formulate such filters correspond to propo-
sitions containing Boolean connectives and state precedence condi-
tions on scope-taking elements. These conditions can be translated
into Conjunctive Normal Form (CNF), which is a conjunction of
propositions, each of which is a disjunction of literals (elementary

7See Koller et al. (1998) and Duchier (2003) for results showing that the sat-
isfiability of unrestricted dominance constraints, and dominance constraints with
Boolean connectives, respectively, is NP-complete.

EXPRESSIVENESS AND COMPLEXITY IN UNDERSPECIFIED SEMANTICS 17

propositional variables or negations of them). For filters in which the
number of propositional variables is k and k > 3, the satisfiability
problem is NP-complete. This is the k-SAT satisfiability result.®

In fact, the general complexity problem for underspecified repre-
sentations is even more severe than the NP-completeness result for
filters limited to weak filters, conjunction, and disjunction. Let us as-
sume that our underspecified representations can only express filters
as conjunctions of weak filters, without disjunction. Such a system
is expressively incomplete because, as Ebert has shown, it cannot
identify the full power set of the set of possible scope readings for
any given sentence, and so some scope readings are not expressible.

An underspecified representation with weak filters defines a par-
tially ordered set (a poset) of scope operators. A fully resolved
scope representation that satisfies a poset is a linear extension of
this set. Brightwell and Winkler (1991) show that computing the
number of linear extensions of a poset is a #P-complete problem.
where #P-completeness is a degree of intractability that exceeds NP-
completeness.’ If computing the number of linear extensions of a
poset is #P-complete, then generating the set of its linear extensions
is, in the general case, at least exponential and so intractable. If one
cannot enumerate the set of linear extensions of an arbitrary poset
in polynomial time, then one cannot generate this set in polynomial
time either. Therefore, no algorithm can generate the set of possible
scope readings for underspecified scope representations contain-
ing only weak filters, in less than exponential time in worst cases.
This result holds despite the fact that the language is expressively
incomplete in Ebert’s sense.

One might try to avoid the complexity problem by arguing that
it is a feature of performance, and so it is not of concern to semantic
theory. In fact, this manoeuvre is seriously misconceived. Underspec-
ified semantic representations are motivated by a concern to achieve
computational efficiency. They were introduced precisely in order to
avoid the processing complexity involved in identifying all possible
readings that can be assigned to a scope ambiguous sentence.

But any account of semantic underspecification is responsible for
explaining how the representations that it provides yield the mean-

8We are grateful to Alexander Koller and Nati Linial for helpful discussion on
this point.

9See Papadimitriou (1994) for the concepts of NP- and #P-completeness, and a
general introduction to complexity theory.

18 Chris Fox AND SHALOM LAPPIN

ings that speakers associate with ambiguous sentences in discourse
and dialogue. If the account does not allow these meanings to be ef-
fectively computed, then it does not offer an adequate model of how
speakers are able to interpret scope ambiguous sentences. A credible
theory of ambiguity cannot escape the demand for computational
viability. Seeking refuge in the competence-performance distinction
is a misapplication of a technique for theoretical idealisation in order
to claim exemption from the question that the theory was designed
to answer.

4.2. Three Non-Strategies for Dealing with the Complexity
Problem

4.2.1. Underspecified Logic

One possibility is to simply avoid interpreting terms that encode
underspecified scope readings, and develop a logic in which the rules
of inference apply directly to underspecified premises. Konig and
Reyle (1999) propose an underspecified logic of this kind. Using
a logic that specifies valid inferences with underspecified premises
and conclusions permits one to reason with underspecified represen-
tations without resolving their scope ambiguities. One could then
treat the interpretation of an underspecified representation as given
by the set of entailments that it supports in such a logic.

However, there are cases in which the validity of an inference
depends upon a specified scope reading of the premises.

(35) a. Every student in the class did not show up yesterday.
b. No student in the class showed up yesterday.

The statement (35b) can only be inferred from the premise (35a) on
the reading in which “every student” is given scope over “not”.

It is also not obvious that the interpretation of underspecified
representations can be entirely reduced to the set of inferences that
they license. In at least some instances one needs to assign a re-
solved interpretation to a sentence in order to interpret it in dialogue.
Imagine, for example, the following exchange on a quiz show.

(36) A: Two Toronto Maple Leafs players participated in every
World Hockey Championship final for the past ten years.

B: Right.

EXPRESSIVENESS AND COMPLEXITY IN UNDERSPECIFIED SEMANTICS 19

A: Can you tell me which ones?

In order to respond to A’s question in (36) B must select a rela-
tive scope ordering for “Two Toronto Maple Leafs players”, “every
World Hockey Championship finals”, and “for the past ten years”.
Specifically, he/she must decide whether to seek a single pair of
Leafs players who participated in the past ten World Hockey Cham-
pionship finals, or distribute distinct pairs of Leafs players over the
set of ten final games.

Finally, the task of constructing a viable logic encoding the set
of entailments of underspecified representations of propositions is
daunting. Such a logic must be at least sound, and completeness is
a desirable property. It is not clear how to construct such a system,
and the few attempts that have been made to sketch one have not
yielded a full logic.

4.2.2. Approximation Algorithms

A second strategy is to construct a polynomial-time approxima-
tion algorithm for computing the full set of linear extensions of an
underspecified representation within reasonable limits of correctness
and likelihood. Polynomial-time randomised approximation algo-
rithms compute a value for a given input to within a specified range
of error, to a high degree of probability. They have been proposed for
some #P-complete problems, like Jerrum et al. (2004)’s algorithm
for computing the permanent (the number of perfect matchings) of
a matrix with non-negative entries.

Constructing such a procedure to identify a reliable approxima-
tion of the set of linear extensions for an underspecified scope rep-
resentation constrained by weak filters is a non-trivial task. For the
algorithm to be useful we would need to show that the approximation-
set of resolved scope readings that it returns for any underspecified
term includes reasonable candidates for the interpretation of that
term. In the absence of both an efficient approximation algorithm
and a criterion for determining whether an approximation-set of
linear extensions offers a viable interpretation of an underspecified
scope term, this strategy remains problematic.

It is even less plausible for a system which allows non-weak
filters containing the full range of Boolean connectives. In this case
an approximation algorithm would have to approximate a set of

20 Chris Fox AND SHALOM LAPPIN

possible posets, and, for each one of these, a set of linear extensions,
all in at most polynomial time.

4.2.3. A Single Candidate Scope Interpretation

A third possibility is to limit ourselves to underspecified scope
terms with weak filters, and, for each such term, to identify a single
linear extension for the poset that it specifies.

It is possible to compute a verifying linear extension of a poset in
linear time as the upper complexity bound. A directed acyclic graph
(DAG) encodes a poset. A generalised topological sorting procedure
for a DAG yields an ordering of its edges that is equivalent to a linear
extension of the poset to which it corresponds. Hagerup and Mass
(1993) propose a topological sorting algorithm that yields a solution
for a DAG D in O(n + m) time, where n is the number of vertices in
D, and m is the number of its edges.!”

The Hagerup-Mass algorithm also decides whether a DAG has
any topological sorting solution, in O(n + m) time. Therefore, given
a weakly filtered underspecified scope term 7', it shows that deter-
mining the consistency of the filters of 7" is a tractable problem. In
this context, 7T is consistent iff only if it defines a poset, and so has
a linear extension. When T is represented as a DAG, the algorithm
will decide the truth or falsity of the right side of this biconditional
in linear time.

Moreover, Hagerup and Mass (1993) provide a second algorithm,
defined in terms of the first, which decides whether a topological
sorting solution for a DAG is unique, and it also runs in O(n + m)
time. So for any weakly filtered underspecified scope term 7', we can
in linear time, (i) decide whether T is consistent, (ii) if it is, compute
a verifying resolved scope interpretation Z for 7', and (iii) determine
if 7 is the only possible reading generated by 7.

On this approach a hearer in discourse or dialogue uses a weakly
filtered underspecified scope term to generate a candidate interpreta-
tion for a sentence. He/she can then recompute this interpretation in

""Hagerup and Mass (1993)’s algorithm generates solutions for the constrained
version of the generalised topological sorting problem, where an integer correspond-
ing to the number of vertices in a DAG is specified. Identifying a resolved scope
reading for a weakly filtered underspecified scope term can be formulated as a
constrained topological sorting problem for the DAG that expresses the poset de-
fined by the term. The integer of the constrained problem would be the number of
scope-taking elements in the poset.

EXPRESSIVENESS AND COMPLEXITY IN UNDERSPECIFIED SEMANTICS 21

light of new information that alters the filter set that applies to the
term.

As attractive as this strategy may appear at first sight, it suffers
from the restriction of underspecified scope terms to constraints that
can be expressed as weak filters. Therefore, we achieve computa-
tional efficiency at the expense of expressive completeness, which
undermines the viability of the approach.

5. Using Filters to Reduce the Search Space for Possible
Scope Readings

When filters contain Boolean connectives like disjunction or
negation they add to the complexity involved in computing the set
of possible scope readings that an underspecified scope term defines.
However, weak filters can significantly reduce the search space, and
hence the complexity of this problem in non-worst cases.

At first glance it might seem that it is, in general, necessary
to generate the full k!-tuple given by perms_scope,(Quants,, Rely)
before applying the filters of F to the elements of this k!-tuple in
order to compute the value of (32). If this were true, filters would
never reduce the search space of possible scope readings that must
be accessed in the course of their application. In fact, this is not the
case.

In Fox and Lappin (2005b) we specify an algorithm based on
Campbell (2004) for generating the indexed list of all possible per-
mutations of an input list. This procedure was used to partially
characterise the computable function perms_scope,. It is possible
to use an alternative algorithm to implement this function, given in
Figure 1, where the indexed k!-tuple of possible permutations of an
initial k-tuple is obtained through the construction of a tree. If this
algorithm takes as its input the triple (Q;, O, O3), then it generates
the following tree.

(37) ()

(Q1. 0>) (2.0
(Ql3 QZs QS) (Q17 Q}? QZ) (Q37 Q17 QZ) (QZ’ le Q}) (QZ’ Q3’ Ql) (Q3, QZ, Ql)

Weak filters can apply as constraints to nodes in the tree as the
algorithm produces them. If a node violates a filter, then it is deleted,

22 Chris Fox AND SHALOM LAPPIN

(a) Given a k-tuple (Qy,...Qx), a tree is generated breadth first,
starting by creating the root of the tree, then producing succes-
sive levels, continuing until level & is generated, as follows.

Base Case Take the tuple (Q)) consisting of the initial element
of the k-tuple (Q1, ..., Q) to be the root of the tree. Let this
be level 1 of the tree.

Recursive Case Level (i + 1) of the tree is created from level i
by considering each node n,, of level i in turn (starting with
the left-most node 7}, and continuing to the right-most node),
and constructing all the daughters of each node n,, as follows.

Base Case’ Construct the left-most daughter d; of the cur-
rent node n,, by adding the (i + 1)th tuple in which the
(i+ 1)th element of (O, ..., Q) is concatenated with the
i-tuple at n,,, in the right-most position of the (i + 1)-tuple
atd,.

Recursive Case’ Obtain the daughter d;,; of the current
node n,, immediately to the right of d; by moving the
(i + Dth element of (Qy, ..., O), added at level (i + 1),
one place to the left.
In this way, construct all daughters of n,, until the right-
most daughter is generated as the (i + 1)-tuple in which
the (i + 1)th element of (Qy, ..., Q) appears in the left-
most position.

The tree is finished when the kth level has been generated.

(b) To obtain the k!-tuple of all possible permutations of
(Q1, ..., Q) concatenate the k-tuples at the leaves of the tree
from left to right into a k!-tuple.

(c) Indexing: assign each k-tuple element of the k!-tuple an index i,
starting with 1, in the the left-to-right order in which they appear
as leaves of the finished tree.

Figure 1: Tree Construction Algorithm.

EXPRESSIVENESS AND COMPLEXITY IN UNDERSPECIFIED SEMANTICS 23

and the subtree that it dominates is not generated. In this way weak
filters can reduce the size of the tree, and so limit the search space of
possible scope readings explored for a perms_scope,(Quants;, Rely)
term to a proper subset of the elements of the k!-tuple that is its
value. So, for example, the filter Q; < O, prunes the tree in (37) to
give the one in (38).

(38) Q)
(Q1.) (2, 01)
—

(Q1, 02, 03) (Q1, 03, 02) (O3, 01, 02)

Identifying the size of a tree with the number of its nodes, we
can compute the size of a tree 7, |T|, through the formula

39 |IT| = Zle i!, where i is the index of the ith element of the
initial k-tuple which the algorithm takes as its input.

Therefore, the size of the tree in (37) is 1! + 2! + 3! = 9. The size of
the tree in (38) is 6, which is a reduction of 30%.
The size of a subtree S T,, dominated by a node n, but not includ-
ing n, is given by the formula
40) |ST,| = Z’;:i 1 f—,' where i is the level in the tree at which n
occurs.!!

Consider the quadruple (Q1, Q», O3, Q4). The algorithm in Fig-
ure 1 produces an indexed k!-tuple of 24 k-tuples as the leaves of a
tree T4 with 4 levels and 33 nodes. If a filter like QO < Q, applies at
level 2, the first branching node of Ty, it prunes the right-half of 7
under (Q», 01), and so it eliminates a subtree of 15 nodes, reducing
T4 by 15/33 = 45.4%. The remaining left side of T4 has the three
nodes (Q1, 02, 03), (Q1, 03, 02), (03, 01, Q») at level 3. If the filter
0, < O3 applies at this level, the 8 leaf nodes under (Q1, O3, 0>)
and (Q3, Q1, 0») are pruned. Therefore, the conjunction of the filters
01 < Qs and O, < Qs reduces T4 by 15 + 8 = 23 nodes, which is
(approximately) 70% of the full tree.

It is not difficult to construct a plausible case in which the in-
terpretation of a sentence containing four quantified NPs is disam-
biguated by a conjunction of two filters of this kind through anaphora
resolution in subsequent discourse.

' We are grateful to Christian Ebert for supplying us with this formula.

24 Chris Fox AND SHALOM LAPPIN

(41) a. Speaker 1: It’s amazing. A critic recently reviewed two
plays for every newspaper in a major city.

b. Speaker 2: Yes, I wonder how he got away with that. He
published the same reviews of the current productions of
“A Midsummer Night’s Dream” and “New-Found-Land” in
every major paper in New York last week.

Clearly, the earlier in the tree construction process (the higher
up in the tree) that a filter applies, the greater the reduction in search
space of possible scope readings that it achieves. It is also possible to
optimise the interaction of filters and the tree construction algorithm
by specifying a procedure that reorders the elements of the input
k-tuple to permit the filters to apply at the earliest point in the
generation of the tree. For example, if the algorithm takes as its
input the triple (Q1, Q», Q3) and one of the filters that apply to this
triple is Q> < Qs3, then the reordering operation will map the triple
into (Q», O3, O1). We will leave the formulation of this operation for
future work.

6. Other Treatments of Scope Ambiguity
6.1. Quantifier Storage

Quantifier storage as defined in Cooper (1983) and Pereira (1990)
is perhaps the first system for generating non-compositional under-
specified scope representations. A generalised quantifier (GQ) is
stored as the first element of a pair whose second element identi-
fies the variable that is used to mark the GQ’s argument position in
the syntactic structure of the sentence. The representation produced
for the clause consists of the core propositional relation and a set
of stored GQ pairs. When a GQ is discharged from storage, it is
applied to the core relation, binding the variable in its original posi-
tion. As the elements of the storage set are unordered, they can be
discharged in any sequence, where each sequence yields a possible
scope reading.

Storage provides an elegant and straightforward way of generat-
ing underspecified scope representations for a sentence. However,
there are (at least) two difficulties with this approach. First, stor-
age is an additional mechanism defined outside of the semantic

EXPRESSIVENESS AND COMPLEXITY IN UNDERSPECIFIED SEMANTICS 25

representation language as such. The expressions that it produces
are not themselves part of this language (a typed A-calculus) but
stages in the derivation of well-formed terms of the representation
language. While storage is easily implemented in a declarative fash-
ion, as in Pereira (1990) and Blackburn and Bos (2005), it remains
an essentially procedural device that is added to a compositional
semantic theory as a means of obtaining scope ambiguity without
attaching alternative scope readings to distinct syntactic structures,
as in Montague (1974).

By contrast, on our account underspecified representations are
themselves terms of PTCT, the representation language. There-
fore, this issue does not arise; the underspecified representation is
expressed directly in the representation language.

Second, because storage is a mechanism constructed outside of
the representation language, it is necessary to specify an additional
constraint language for stating the Boolean conditions required to
restrict the set of possible scope readings derived from the storage
set.!> Without the addition of this constraint language, storage suffers
from expressive incompleteness in Ebert (2005)’s sense.

Again, this problem does not arise on our treatment of underspec-
ification. The filters that express constraints on scope readings are
A-terms of PTCT, and so the resources required for the formulation
of these constraints are available within the representation language.

6.2. Hole Semantics, Minimal Recursion Semantics, and
Normal Dominance Constraints

Bos (1995), and Blackburn and Bos (2005) develop a constraint-
based system for underspecified representation for first-order logic
that they refer to as Predicate Logic Unplugged (PLU). This sys-
tem is a generalisation of the hole semantics approach to under-
specification which Reyle (1993) first developed within the frame-
work of Underspecified Discourse Representation Theory. Copestake
et al.’s (2006) Minimal Recursion Semantics is an application of
hole semantics within a typed feature structure grammar (HPSG).

12Keller (1988) defines a type of storage that encodes relations of syntactic nesting
within the stored GQ corresponding to an NP that contains another quantified NP.
Although these nested stores avoid certain problems of variable binding encountered
with Cooper storage, they do not, in themselves, impose constraints on possible scope
readings of the sort that we have discussed in the previous section. See Blackburn
and Bos (2005) for a discussion and an implementation of Keller stores.

26 Chris Fox AND SHALOM LAPPIN

Koller et al.’s (2003) Normal Dominance Conditions can be seen as
a refinement and development of the central ideas of hole semantics.
The problems that we identify with the hole semantics model apply
to all three theories, and so, in the interests of simplicity, we will
summarise a version of PLU as the representative of this approach.'3

An underspecified representation of a quantified first-order for-
mula in PLU is an ordered tripe (LH, F,R). LH is a set of labels
for formulas and of holes, which are (essentially) metavariables
that take formulas as values. F is a set of labelled formulas, which
may contain holes for subformulas. R is a set of scope constraints
expressed as partial order relations on labels and holes. The PLU
representation of (42) is (43).

(42) Every student wrote a program.

43) (.12, 13, ho, by, o},
{l; : Yx(student'(x) — hy),
l> - Ay(program’(y) A ha),
3 : wrote’(x, y)},
{li £hg,lb < ho, I3 < hy, I3 < hyl)

~

The partial ordering constraints in (43) define a bounded lattice
with A as T, the propositional core of the formula, /5 as L, and /; and
[, as midpoints of the lattice between T and L. As [} and /; are not
ordered with respect to each other, either formula can be substituted
for the hole in the other formula. /3 must be substituted last in the
remaining hole. If /; is taken as the value of kg, [, is substituted for
h1, and then /5 is substituted for /,, the result is a wide scope reading
of the universal quantifier, as in (44). Alternatively, if [, is taken as
the value of hy, [; is assigned to hy, and /5 to i, we obtain (45).

(44) Vx(student’(x) — dy(program’(y) A wrote’(x,y)))
(45) Ay(program’(y) A Yx(student’'(x) — wrote’(x, y)))

These are the only two scope resolutions that satisfy the partial
order conditions in (43).

Hole semantics provides a more expressive and flexible system
for constructing underspecified representations than storage. It gen-
eralises naturally to scope elements other than GQs, like negation

13See Ebert (2005) for detailed discussion and results concerning the formal
relations among these theories with respect to their expressive power.

EXPRESSIVENESS AND COMPLEXITY IN UNDERSPECIFIED SEMANTICS 27

and modifiers. It is possible to identify a subset of scope readings
that satisfy the constraints of an underspecified hole semantic repre-
sentation by imposing a particular order of substitution of labels for
holes in a schematic formula set. However, it suffers from the two
difficulties which we raised against storage. Underspecified represen-
tations are constructed out of metavariables, schematic formulas, and
partial ordering statements in a metalanguage that is distinct from
the semantic representation language. The substitutions of labelled
formulas for holes that generate the well-formed formulas of the
representation language which correspond to scope readings are also
metalinguistic operations added to the representation language.
More seriously, as we have observed, Ebert (2005) shows that
PLU and other hole semantics theories are expressively incomplete
because their constraint languages do not permit the formulation of
Boolean conditions on scope like those given in (27), (28), and (34).
As in the case of storage, it is possible to add a constraint language
with sufficient expressive power required to state conditions of this
kind.'* But this requires further enrichment and complication of the
theory. As we have seen, these problems do not arise on our account.

6.3. Normal Dominance Constraints and Filtering

Koller and Thater (2006) describe an algorithm for identifying
equivalence classes of readings for underspecified scope represen-
tations encoded in Normal Dominance charts, which are compact
representations of Normal Dominance graphs. The algorithm relies
on local permutation relations between scope operators in the graphs.
It eliminates redundant elements from each equivalence class. Koller
and Thater (2006) show that their algorithm drastically reduces the
set of scope readings for the dominance graphs of sentences in the
Rondane treebank for an English corpus, while running in time
polynomial on the size of the dominance graph.

This algorithm offers a very useful filtering procedure for re-
ducing the search space for scope interpretations in corpora. Its
constraints could be incorporated into PTCT as weak filters that im-
pose unique precedence conditions on locally adjacent scope-taking
elements that are permutable under semantic equivalence.

Such filters, like those discussed in Section 5, do not solve the
general complexity problem. In worst case scenarios no scope op-

14We are grateful to Tan Pratt-Hartman for helpful discussion of this point.

28 Chris Fox AND SHALOM LAPPIN

erators in a sentence are permutable under semantic equivalence,
and so there is no redundancy to eliminate. Moreover, as the set of
theorems for first-order logic is not decidable, semantic equivalence
among quantified sentences in a first-order representation language
cannot be effectively tested.

Koller et al. (2008) use regular tree grammars (RTGs) to encode
Normal Dominance Charts. They present an algorithm for the elimi-
nation of redundancy through the reduction of semantic equivalence
classes that improves on the coverage and performance of the pro-
cedure suggested in Koller and Thater (2006). They also observe
that, as RTGs can generate any finite subset of possible scope read-
ings, they provide an underspecified representation system that can
achieve expressive completeness.

It is important to recall that Normal Dominance charts and the
filtering algorithms that apply to them are generated outside of the
semantic representation language through operations on the expres-
sions of this language. By contrast the underspecified scope terms
in PTCT and their filters are lambda terms of the representation
language.

6.4. Glue Language Semantics and Packed Scope Repre-
sentations

Dalrymple ef al. (1999) and Crouch and van Genabith (1999)
suggest a theory on which representations of GQs and core relations
are expressed as premises in an underspecified semantic glue lan-
guage. These premises are combined by the natural deduction rules
of linear logic in order to yield a formula that represents the scope
reading of a sentence. The rules can apply to premises in different
orders of derivation to generate alternative scope readings. Unlike
PLU, the glue language can be higher-order. Although their formal
properties differ, glue language semantics is closely related to hole
semantics in the general view of underspecification that it adopts.
It would seem that in order achieve expressive completeness, glue
language semantics must add a system for stating constraints on the
linear logic proof theory which it employs to derive fully specified
interpretations.

Crouch (2005) describes a procedure for using the linear logic
derivations of glue language semantics to generate all scoped in-
terpretations for a sentence. These interpretations are encoded as a

EXPRESSIVENESS AND COMPLEXITY IN UNDERSPECIFIED SEMANTICS 29

set of packed clauses in which components of meaning shared by
several readings are expressed as a single common clause. Scope
readings are distinguished by clauses in the set that encode their
distinctive elements. Packing uses the approach that is applied in
chart parsing to construct a graph for non-redundant representation
of the full set of possible syntactic structures for a parsed phrase.
In this system the choice space of Boolean combinations of clauses
in a packed representation that are to be tested for satisfiability is
optimised using Maxwell and Kaplan’s (1995) method for rendering
disjunctive constraint satisfaction efficient.

Packing offers an efficient way of representing and reasoning
with the full set of possible scope readings for a sentence. However,
it requires that this set be computed as part of the parsing and
compositional interpretation of a sentence. Therefore it makes no
attempt to avoid the complexity problem even in cases where filtering
would greatly reduce the search space of possible scope readings.

On the approach that we are suggesting, the interpretation of
underspecified scope terms would be delayed as long as possible in
a discourse or dialogue to permit the accumulation of a maximal set
of filters, which would, in many instances, greatly reduce the set of
possible scope interpretations.

6.5. Relation Reduction

van Eijck and Unger (2010) develop an approach to under-
specified representations, in the functional programming language
Haskell, which uses relation-reduction and arbitrary arity relations.
This inspired important elements of our account, which we have
developed within a more restrictive formal theory.

We give a fully general treatment of scope and generalise van
Eijck and Unger’s approach in certain respects. In particular, we
introduce a function for selecting specific scope readings, and we
make explicit the mechanisms for constraining scope readings us-
ing filters. Our approach to underspecification is also polymorphic,
which leaves open the possibility of dealing with core relations
whose arguments are of different types.

We developed PTCT to have a rich system of types, broadly
comparable to that of Haskell, but within a language that we have
shown to be of more restricted formal power.

30 Chris Fox AND SHALOM LAPPIN

7. Conclusion

We have presented a treatment of underspecified scope represen-
tation within PTCT which uses product types to represent sequences
of scope-taking terms. These types permit us to accommodate poly-
morphism in the core relation arguments.

We have characterised an underspecified representation as a
PTCT term in which a function perms_scope, applies to a pair con-
taining an initial sequence of scope-taking elements and a core rela-
tion. It returns as its value an indexed k!-product of possible scope
readings. project_scope,(perms_scope, (O, Ry), i) projects the ith
scope reading in the k!-tuple of the scope readings generated by
perms_scope;(Qy, Ry). 15

We have formulated constraints on scope readings as filters on
the k!-tuples that perms_scope, produces. These filters are PTCT
property terms which encode Boolean conditions and quantification
over the integers of indexed k-tuples. In principle, they permit PTCT
to achieve expressive completeness in the sense of Ebert (2005).

We have specified a tree generation algorithm to characterise
(the permutation part of) the computable function that perms_scope,,
denotes. When weak filters are applied as constraints on nodes in
the tree that the algorithm generates, they can significantly reduce
the search space of possible scope readings given by an underspeci-
fied representation. While they do not solve the general complexity
problem of underspecified scope readings, they do permit a signifi-
cant improvement in efficiency for non-worst cases. In this respect,
computing the interpretation of filtered underspecified scope repre-
sentations is analogous to theorem proving in propositional logic.
In both cases the general problem is intractable (NP complete), but
efficient computation in non-worst cases is possible.

Underspecified representations, the projection of a particular
scope interpretation, and constraints on possible scope readings are
all specified by appropriately typed A-terms within the semantic
representation language, PTCT, rather than through operations on
schematic metalinguistic objects. Our proposed treatment of under-
specified representations within PTCT achieves both significant
expressive power and the possibility of relative efficiency.

ISPutting aside the details of relation-reduction.

EXPRESSIVENESS AND COMPLEXITY IN UNDERSPECIFIED SEMANTICS 31

Works Cited

1. Blackburn, P. and J. Bos. 2005. Representation and Inference
for Natural Language. Stanford: CSLI.

2. Bos, J. 1995. Predicate Logic Unplugged. In Proceedings of the
Tenth Amsterdam Colloquium. Amsterdam, Holland.

3. Brightwell, G. and P. Winkler. 1991. Counting Linear Exten-
sions is #P-Complete. In Proceedings of the Twenty-Third An-
nual ACM Symposium on Theory of Computing, 175-181. New
Orleans, LA.

4. Campbell, W. H. 2004. Indexing Permutations. Journal of
Computing in Small Colleges 19: 296-300.

5. Cooper, Robin. 1983. Quantification and Syntactic Theory.
Synthese Language Library. Dordrecht: D. Reidel.

6. Copestake, A., D. Flickinger, C. Pollard, and I. A. Sag. 2006.
Minimal Recursion Semantics. Research on Language and
Computation 3: 281-332.

7. Crouch, D. 2005. Packed Rewriting for Mapping Semantics
to KR. In Proceedings of the Sixth International Workshop on
Computational Semantics, 103—114. Tilburg.

8. Crouch, D. and J. van Genabith. 1999. Context Change, Under-
specification, and Structure of Glue Language Derivations. In
Semantics and Syntax in Lexical Functional Grammar, edited
by M. Dalrymple, 117-189. Cambridge, MA: MIT.

9. Curry, H. B. and R. Feys. 1958. Combinatory Logic, Studies in
Logic, vol. 1. North Holland.

10. Dalrymple, M., J. Lamping, F. Pereira, and V. Saraswat. 1999.
Quantification, Anaphora, and Intensionality. In Semantics and
Syntax in Lexical Functional Grammar, edited by M. Dalrym-
ple, 39-89. Cambridge, MA: MIT.

11. Duchier, D. 2003. Dominance Constraints with Boolean Con-
nectives: A Model Eliminative Treatment. Theoretical Com-
puter Science 293: 321-343.

12. Ebert, C. 2005. Formal Investigation of Underspecified Rep-
resentations. Ph.D. thesis, Department of Computer Science,
King’s College London. Unpublished.

13. van Eijck, J. and C. Unger. 2010. Computational Semantics with
Functional Programming. Cambridge: Cambridge Univesity
Press.

14. Fox, C. and S. Lappin. 2004. An Expressive First-Order Logic

32

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Chris Fox AND SHALOM LAPPIN

with Flexible Typing for Natural Language Semantics. Logic
Journal of the Interest Group in Pure and Applied Logics 12(2):
135-168.

—. 2005a. Foundations of Intensional Semantics. Oxford: Black-
well.

—. 2005b. Underspecified Interpretations in a Curry-Typed Rep-
resentation Language. The Journal of Logic and Computation
15: 131-143.

Hagerup, T. and M. Mass. 1993. Generalized Topological Sort-
ing in Linear Time. In Fundamentals of Computing Theory,
279-288. Berlin and New York: Springer.

Jerrum, M., A. Sinclair, and E. Vigoda. 2004. A Polynomial-
Time Approximation Algorithm for the Permanent of a Matrix
with Nonnegative Entries. Journal of the ACM 52: 671-697.
Keenan, E. 1992. Beyond the Fregean Boundary. Linguistics
and Philosophy 15: 199-221.

Keller, W. 1988. Nested Cooper Storage: The Proper Treatment
of Quantification in Ordinary Noun Phrases. In Natural Lan-
guage Parsing and Linguistic Theories, edited by U. Reyle and
C. Rohrer. Dordrecht: Reidel.

Koller, A. and J. Niehren. 2000. On Underspecified Processing
of Dynamic Semantics. In Proceedings of COLING 18, 460—
466. Saarbriicken: International Conference On Computational
Linguistics.

Koller, A., J. Niehren, and S. Thater. 2003. Bridging the Gap
between Underspecified Formalisms: Hole Semantics as Domi-
nance Constraints. In Proceedings of 11th EACL. Budapest.
Koller, A., J. Niehren, and R. Treinen. 1998. Dominance Con-
straints: Algorithms and Complexity. In Selected Papers from
the Third International Conference on Logical Aspects of Com-
putational Linguistics, 106—125. Berlin: LNCS, Springer.
Koller, A., M. Regneri, and S. Thater. 2008. Regular Tree
Grammars as a Formalism for Scope Underspecification. In
Proceedings the 46th Annual Meeting of the ACL. Columbus,
OH.

Koller, A. and S. Thater. 2006. An Improved Redundancy Elim-
ination Algorithm for Underspecified Representations. In Pro-
ceedings of COLING 21 and the 44th Annual Meeting of the
ACL, 409-416. Sydney, Australia.

Konig, E. and U. Reyle. 1999. A General Reasoning Scheme for

EXPRESSIVENESS AND COMPLEXITY IN UNDERSPECIFIED SEMANTICS 33

27.

28.

29.

30.

31.

32.

33.

Underspecified Representations. In Logic, Language, and Rea-
soning: Essays in Honour of Dov Gabbay, edited by Ohlbach
H.J and U. Reyle. Kluwer.

Maxwell, J. and R. Kaplan. 1995. A Method for Disjunctive
Constraint Satisfaction. In Formal Issues in Lexical Functional
Grammar, edited by M. Dalrymple, R. Kaplan, J. Maxwell, and
A. Zaenen. Stanford, CA: CSLI.

Meyer, A. 1982. What is a model of the lambda calculus?
Information and Control 52: 87-122.

Montague, R. 1974. Formal Philosophy: Selected Papers of
Richard Montague. New Haven, CT/London, UK: Yale Univer-
sity Press. Edited with an introduction by R. H. Thomason.
Papadimitriou, C., ed. 1994. Computational Complexity. Read-
ing, MA: Addison-Wesley.

Pereira, F. 1990. Categorial Semantics and Scoping. Computa-
tional Linguistics 16: 1-10.

Presburger, M. 1929. Uber die Vollstindigkeit eines gewissen
Systems der Arithmetik ganzer Zahlen, in welchem die Ad-
dition als einzige Operation hervortritt. In Comptes Rendus
du I congres de Mathématiciens des Pays Slaves, Warszawa,
92-101.

Reyle, U. 1993. Dealing with Ambiguities by Underspecifica-
tion: Construction, Representation and Deduction. Journal of
Semantics 10: 123-179.

