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Abstract

The capacity to recognise and interpret sluices—bare wh-phrases that ex-
hibit a sentential meaning—is essential to maintaining cohesive interaction
between human users and a machine interlocutor in a dialogue system. In
this paper we present a machine learning approach to sluice disambigu-
ation in dialogue. Our experiments, based on solid theoretical consider-
ations, show that applying machine learning techniques using a compact
set of features that can be automatically identified from PoS markings in
a corpus can be an efficient tool to disambiguate between sluice interpret-
ations.

1 Introduction

Most theoretical analyses of sluicing—bare wh-phrases that exhibit a sentential
meaning—focus on embedded sluices like e.g (1a), considered out of dialogue
context (see e.g. Ross 1969; Chung et al. 1995). They rarely look at direct
sluices—sluices used in queries to request further elucidation of quantified para-
meters (e.g. (1b)). With a few isolated exceptions, these analyses also ignore
a class of uses we refer to (following Ginzburg and Sag 2001 (G&S)) as reprise
sluices. These are used to request clarification of the reference of a constituent
in a partially understood utterance, as in (1c).

(1) a. Jo left someone/something/somewhere.
Bo knows who/what/where/why.

b. Cassie: I know someone who’s a good kisser.
Catherine: Who? [KP4, 512]1

c. Sue: I think you were getting a real panic then.
Angela: When? [KB6, 1888]

∗We wish to thank Lief Arda Nielsen and Mattew Purver for useful discussion and sugges-
tions. The work presented in this paper has been funded by grant RES-000-23-0065 from the
Economic and Social Council of the United Kingdom.

1This notation indicates the BNC file (KP4) and the sluice sentence number (512).
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Our corpus investigation shows that the combined set of direct and reprise
sluices constitutes more than 75% of all sluices in the British National Corpus
(BNC). In fact, they make up approximately 33% of all wh-interrogative quer-
ies in the BNC. Therefore, they represent an empirically important construction
which has been understudied from both theoretical and computational perspect-
ives.

The capacity to recognise and interpret bare sluices correctly is essential
to maintaining cohesive interaction between human users and a machine inter-
locutor in an automated dialogue system. If a dialogue system does not assign
the correct interpretation to a sluice, it will not respond correctly to the ques-
tion. Consider the following example.

(2) A: A LAN support person contacted you recently.
B: Who?

If A interprets who in (2) as a query for more specific information on the
indefinite description “A LAN support person”, then the appropriate response
to B’s question is to provide a proper name or identifying description. However,
if A takes B to be indicating that he/she does not understand the description
in this context, then A should either repeat the NP, or supply a paraphrase
designed to make its meaning clear to B, such as “a technician to help with
your network problem”.

The next section sketches the theory underlying our study. Section 3 de-
scribes our corpus investigation of classifying sluices into interpretation classes.
In section 4 we use a set of features to manually annotate a data set of sluices,
and run two machine learning algorithms: SLIPPER and TiMBL, which yield
similar success rates of approx. 89%. Section 5 presents a procedure for auto-
matically annotating our data set with the features that we use with our two
machine learning algorithms. When we apply the algorithms to its output both
achieve a success rate of 79%. In Section 6 we compare our machine learn-
ing results with those of a simple algorithm that determines the sluice reading
solely on the basis of the raw frequency counts of different interpretations for
that sluice type. We finally present our conclusions and future work in Section
7.

2 Sluicing: Theory and Implementation

In this section we briefly introduce the theoretical framework that underlies our
investigation, and provide a schematic description of SHARDS, a system which
implements the basic ideas of this theory to resolve the interpretation of clausal
fragments in dialogue.

2.1 Sluicing: A Constructional Approach

G&S provide a detailed analysis of a number of classes of non-sentential ut-
terances (NSUs), including short answers, sluicing, and Clarification Ellipsis

2



(CE). The framework they develop combines the basic approach to grammat-
ical constructions developed by Sag (1997) within Head-driven Phrase Structure
Grammar (HPSG) and a theory of context in dialogue, the KOS framework
(Ginzburg 1996; Ginzburg frth; Larsson 2002). The essential idea they develop
is that NSUs get their main predicates from context, specifically via unification
with the question that is currently under discussion, an entity dubbed the max-
imal question under discussion (max-qud).2 NSU resolution is, consequently,
tied to conversational topic, viz. the max-qud. The resolution of NSUs, on this
approach, involves one other parameter, an antecedent sub-utterance dubbed
the salient-utterance (sal-utt). This plays a role similar to the role played by
the parallel element in higher order unification–based approaches to ellipsis res-
olution (see e.g. Dalrymple et al. 1991; Pulman 1997). Intuitively, the sal-utt

provides a partial specification of the focal (sub)utterance—it is computed as
the (sub)utterance associated with the role bearing widest scope within max-

qud. sal-utt is used to encode syntactic and phonological parallelism between
the fragment and an antecedent which non-sentential utterances often exhibit.
For instance, case matching or even identity at the level of phonological seg-
ments. As we will see in subsequent sections, many of the heuristics we develop
for disambiguating sluices relate to identifying the sal-utt.

What determines the max-qud? In the most prototypical case, the max-

qud is the content of the most recent utterance, as in short answers; the sal-utt

in such a case is the sub-utterance of the wh-phrase:

(3) a. A: Who phoned?
B: Bo (= Bo phoned).

b. max-qud: λx.Phone(x, t)

For propositional lexemes such as ‘yes’, ‘no’, and ‘probably’ the max-qud is
a polar question p?, which is either the (content of the) most recent utterance
or the most recent utterance is an assertion p:3

(4) a. A: Did Bo phone?
B: Yes/No/Probably (= Bo phoned/didn’t phoned /probably phoned).

b. A: Bo phoned.
B: Yes/No/Probably (= Bo phoned/didn’t phoned/ probably phoned).

c. max-qud: ?Phone(b, t)

2In G&S’s framework, questions are represented as semantic objects comprising a set of
parameters—that is, restricted indices—and a proposition prop as in (i). This is the feature
structure counterpart of the λ-abstract λπ(. . . π . . .). In a wh-question the params set repres-
ents the abstracted index values associated with the wh-phrase(s). For a polar question the
params set is empty.

(i)


question

params {π, ...}

prop

proposition

sit

soa

[
soa(. . . π . . .)

]



3There is no sal-utt in such cases.
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A similar characterisation applies to direct sluicing, with the additional re-
quirement that p be a quantified proposition; the sal-utt in such a case is the
sub-utterance associated with the widest scoping quantifier:4

(5) a. A: A student phoned. B: Who? (= Which student phoned?)

b. A: Did someone phone? B: Who? (= Who phoned?).

c. max-qud: ?∃x.Phone(x, t)

max- qud can also arise in a somewhat less ‘direct’ way, via a process
of utterance coercion (see Ginzburg and Cooper 2001, 2004), triggered by the
inability to ground (Clark 1996; Traum 1994) the previous utterance. The
output of the coercion process is a question about the content of a sub-utterance
which the addressee cannot resolve. This sub-utterance constitutes the sal-

utt. Such a question is the max-qud for reprise sluices and CE. For instance,
if the original utterance is (6a), with ‘Bo’ as the unresolvable sub-utterance, one
possible output from the coercion operations defined by Ginzburg and Cooper
(2004) is the question in (6b):

(6) a. A: Did Bo leave? B: Who? (= Who are you asking if s/he left?)

b. max-qud: λbAsk(A, ?leave(b, t0))

2.2 Implementing the direct/reprise divide

SHARDS (Ginzburg et al. 2001; Fernández et al. frth) is an implemented sys-
tem which provides a procedure for computing the interpretation of NSUs in
dialogue. The system comprises two main components: an HPSG-based gram-
mar and a resolution procedure. The grammar employed is an implemented
version of the wide coverage grammar proposed by G&S and it is encoded in
ProFIT (Erbach 1995). Once an elliptical sentence has been parsed, the res-
olution component of the system resolves its interpretation by assigning values
to the max-qud and sal-utt features of the clause on the basis of informa-
tion located in a structured record of previously processed sentences stored in
memory. The system currently handles short answers, direct and reprise sluices,
as well as plain affirmative answers to polar questions.

SHARDS has been extended to cover several types of clarification requests
and used as a part of the information-state-based dialogue system CLARIE
(Purver 2004a, 2004b). In particular, CLARIE can parse and generate reprise
sluices by implementing the aforementioned analysis of grounding/clarification
interaction.

4Adjuncts sluices are possible even without an overt antecedent:

(i) A: John saw Mary.
B: Why?/With who? (= Why/With who did John see Mary?)

In such cases the value of sal-utt needs to be null—there is no antecedent quantificational
NP and none of the parallelism effects that argument sluices show. (Fernández et al. frth)
suggest that such cases should be analysed in a way akin to the propositional lexemes above,
rather than like argument-sluices such as who or what.
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3 Corpus Study

Our corpus-based investigation of bare sluices has been performed using the
dialogue transcripts of the BNC. The corpus of bare sluices has been constructed
using SCoRE (Purver 2001), a tool that allows one to search the BNC using
regular expressions.

The dialogue transcripts of the BNC contain a total of 5343 sluices, whose
distribution is shown in Table 1. From this total, we selected two different
samples of sluices, created by arbitrarily selecting 50 sluices of each class (15 in
the case of which). The first sample included all instances of bare how and bare
which found, making up a total of 365 sluices. The second sample contained 50
instances of the remaining classes, making up a total of 300 sluices.

what why who where which N when how which Total
3045 1125 491 350 160 107 50 15 5343

Table 1: Total of sluices in the BNC

The annotation procedure consisted of classifying the two samples of sluices
according to a set of domain independent categories. The categories used, drawn
from the theoretical distinctions referred to in the previous section, correspond
to different sluice interpretations. The classification was done independently by
3 different annotators.

To classify the sluices in the first sample of our sub-corpus, we used the
following categories:

Direct The utterer of the sluice understands the antecedent of the sluice
without difficulty. The sluice queries for additional information that was ex-
plicitly or implicitly quantified away in the previous utterance.

(7) Caroline: I’m leaving this school.
Lyne: When? [KP3, 538]

Reprise The utterer of the sluice cannot understand a particular aspect of the
previous utterance, corresponding to one of its constituents, which the previous
(or possibly not directly previous) speaker assumed as presupposed (typically a
contextual parameter, except for why, where the relevant “parameter” is some-
thing like speaker intention or speaker justification).

(8) Geoffrey: What a useless fairy he was.
Susan: Who? [KCT, 1753]

Clarification The sluice is used to ask for clarification of the entire preceding
utterance.

(9) June: Only wanted a couple weeks.
Ada: What? [KB1, 3312]
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Unclear It is difficult to understand what content the sluice conveys, possibly
because the input is too poor to make a decision as to its resolution, as in the
following example:

(10) Unknown : <unclear> <pause>
Josephine: Why? [KCN, 5007]

After annotating the first sample, we decided to add a new category to the
above set. The sluices in the second sample were classified according to a set of
five categories, including the following:

Wh-anaphor The antecedent of the sluice is a wh-phrase.

(11) Larna: We’re gonna find poison apple and I know where that one is.
Charlotte: Where? [KD1, 2371]

The reliability of the annotation was evaluated using the kappa coefficient
(K) (Carletta 1996). The agreement on the coding of the first sample of sluices
was moderate (K = 52). Agreement on the annotation of the 2nd sample
was considerably higher although still not entirely convincing (K = 61). Two
of the coders had worked more extensively with the BNC dialogue transcripts
and, crucially, with the definition of the categories to be applied. Leaving the
“less expert” coder out of the coder pool increases agreement very significantly:
K = 70 in the first sample, and K = 71 in the second one.

The distribution of interpretations for each class of sluice is shown in Table
2. The distributions are presented as percentages of pairwise agreement (i.e.
agreement between pairs of coders), leaving aside the unclear cases. The res-
ults of the study show that the distribution of readings is significantly different
for each class of sluice.

First Sample Second Sample

dir rep cla dir rep cla wh-a

what 9 22 69 7 23 66 4
why 57 43 0 83 14 0 3
who 24 76 0 0 95 0 5
where 25 75 0 22 69 0 9
when 67 33 0 65 29 0 6
which N 12 88 0 20 80 0 0
which 4 96 0 — — — —
how 87 8 5 — — — —

Table 2: Distributions as pairwise agreement percentages

4 Applying Machine Learning

In (Fernández et al. 2004) we used the results of the corpus study described in
the previous section to identify a number of heuristic principles for assigning an
interpretation to bare sluice types. We formulated these principles as probability
weighted Horn clauses to achieve the most general and declarative expression
of these conditions. We then used the predicates in the antecedents of the
Horn clauses as features to manually annotate an input data set of sluices.
To evaluate the predictive power of these features in the sluice disambiguation
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task, we applied two machine learning algorithms to our data set: SLIPPER, a
rule-based learning algorithm, and TiMBL, a memory-based system.

4.1 Experimental Setup

The input data set was generated from all three-way agreement instances plus
those instances where there is agreement between the two more experienced
coders, leaving out cases classified as unclear. We reclassified 9 instances in
the first sample as wh-anaphor, and also included these data.5 The total data
set includes 351 datapoints. These were manually annotated according to the
set of features shown in Table 3.

Features Informal Description Values
sluice type of sluice what, why,...

mood mood of the antecedent utterance decl, n decl

polarity polarity of the antecedent utterance pos, neg, ?

quant presence of a quantified expression yes, no, ?

deictic presence of a deictic pronoun yes, no, ?

proper n presence of a proper name yes, no, ?

pro presence of a pronoun yes, no, ?

def desc presence of a definite description yes, no, ?

wh presence of a wh word yes, no, ?

overt presence of any other potential ant. expression yes, no, ?

Table 3: Features

We use a total of 10 features. All features are nominal. Except for the
sluice feature that indicates the sluice type, they are all boolean, i.e. they
can take as value either yes or no (decl, n decl for mood, and pos, neg for
polarity). The features mood, polarity and frag refer to syntactic and semantic
properties of the antecedent utterance as a whole. The remaining features, on
the other hand, focus on a particular lexical item or construction contained in
the utterance. They will take yes as a value if this element or construction exists
and, it matches the semantic restrictions imposed by the sluice type. Unknown
or irrelevant values are indicated by a question mark. This allows us to express,
for instance, that the presence of a proper name is irrelevant to determining
the interpretation of a where sluice, while it is crucial when the sluice type is
who. The feature overt takes no as value when there is no overt antecedent
expression. It takes yes when there is an antecedent expression not captured
by any other feature, and it is considered irrelevant (question mark value) when
there is an antecedent expression defined by another feature.

4.2 SLIPPER and TiMBL

In our first experiment we use a rule-based learning algorithm called SLIPPER
(for Simple Learner with Iterative Pruning to Produce Error Reduction) (Cohen
and Singer 1999). We performed a 10-fold cross-validation on the total data

5We reclassified those instances in the first sample that had motivated the introduction
of the wh-anaphor category for the second sample. Given that there were no disagreements
involving this category, this reclassification was straightforward.
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set, obtaining an average success rate of 85%. For the holdout method, we held
over 100 instances as a testing data, and used the remainder (251 datapoints)
for training. This yielded a success rate of 89%.

For the second experiment we used TiMBL, a memory-based learning al-
gorithm developed at Tilburg University (Daelemans et al. 2003). The results
obtained are similar to those for SLIPPER. In 10-fold cross-validation TiMBL
achieves an average success rate of 92%. Using the holdout method on the same
training and testing data sets as SLIPPER, yields a success rate of 88%. Table
4 shows a slightly revised version of the results reported in (Fernández et al.
2004).

SLIPPER TiMBL
Category Recall Prec. F1 Recall Prec. F1

direct 96.67 82.86 89.23 86.66 83.87 85.24
reprise 87.04 92.16 89.52 87.03 92.15 89.51
clarification 83.33 83.33 83.33 83.33 71.42 76.91
wh anaphor 80.00 100.00 88.89 100.00 100.00 100.00

Table 4: Accuracy Results

5 Automatic Feature Annotation

The results presented in (Fernández et al. 2004) were obtained using a manually
annotated data set. In this section we describe a procedure for automatically
assigning values to the features discussed above, and we report the results ob-
tained from applying SLIPPER and TiMBL to the automatically annotated
data set. In the next section, we compare all of these results with those of a
simple frequency-based heuristic that assigns to each sluice type the category
with the highest probability for that type.

5.1 The Automatic Annotation Procedure

In order to automate the overall task of assigning a sluice interpretation cat-
egory to bare wh-phrases in dialogue, we designed and implemented a procedure
to automatically annotate our data set with the features shown in Table 3.

The procedure employs string searching and pattern matching techniques
that exploit the SGML markup of the BNC. It relies crucially on the PoS in-
formation encoded in the corpus annotation. The BNC is annotated with a set
of 57 PoS codes, known as the C5 tagset, plus 4 codes for punctuation tags. A
list of these codes can be found in Burnard (2000). The ∼ 100 million words
of the BNC were automatically tagged using the CLAWS system developed
at Lancaster University (Garside 1987). The BNC PoS annotation process is
described in detail in Leech et al. (1994).

Our annotation algorithm consists of three basic steps: First, it finds the
antecedent utterance of each sluice in our sub-corpus. In the current version,
we take the antecedent utterance to be the last sentence in the previous turn.6

6For an explanation of how sentences and turns are defined in the BNC see the BNC web
site (http://www.hcu.ox.ac.uk/BNC/).
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Feature Value Recall Precision F1
mood decl 88.69 91.35 90.00

n decl 72.60 62.35 67.09

polarity pos 83.27 91.45 87.17
neg 82.35 43.75 57.14
? 68.83 62.35 65.43

quant yes 60.00 31.58 41.38
no 55.51 82.93 66.50
? 66.28 38.26 48.51

deictic yes 74.29 86.67 80.00
no 97.87 93.88 95.83
? 97.66 100.00 98.81

proper n yes 82.61 90.48 86.36
no 95.56 91.49 93.48
? 100.00 100.00 100.00

pro yes 85.71 77.78 81.55
no 66.67 87.50 75.68
? 96.92 95.09 96.00

def desc yes 78.46 69.86 73.91
no 82.08 79.82 80.93
? 93.89 100.00 96.85

wh yes 66.67 100.00 80.00
no 100.00 98.23 99.11

overt yes 45.00 60.00 51.43
no 85.25 73.24 78.79
? 84.21 90.72 87.34

Table 5: Results - Automatic Feature Annotation

Second, the features are given values independently of the sluice type, using
PoS information. For instance, the presence of a tag <NP0> triggers a yes value
for the feature proper n, while the tag <XX0>, which is assigned to the negative
particle ‘not’ or ‘n’t’, (partially) determines the value of the feature polarity.

Finally, the feature values are filtered according to the sluice type. A feature
like pro, for example, is not relevant to disambiguate a why sluice. Why sluices
will therefore assign a question mark ? value for this feature. The wh feature,
on the other hand, will get a yes value if there is a wh-word in the antecedent
utterance and this matches the sluice type to be disambiguated.

Our algorithm achieves 86% success rate with respect to the manual feature
annotation. Table 5 shows the recall, precision and f-measure percentages ob-
tained for the value of each feature. It can be seen that the features with lower
scores are those that don’t have a trivial PoS correlate. This is the case for
quant (which would inlcude any potentially quantified expression, from indef-
inite pronouns, to definite descriptions and temporal and locative expressions)
and overt, as well as mood and polarity. Features like deicitic, proper n
and wh, on the other hand, obtain highly accurate results.
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5.2 SLIPPER and TiMBL again

Finally, we ran our machine learning algorithms again, but this time we used
as input the automatically annotated data set. With the holdout method, both
SLIPPER and TiMBL yielded a success rate of 79%, achieving very similar
accuracy results for each category. In a 10-fold cross-validation TiMBL remains
constant (79% average success rate), while SLIPPER drops 4% points (75%).
Recall, precision, and f-measure percentages are given in Table 6.

SLIPPER TiMBL
Category Recall Prec. F1 Recall Prec. F1

direct 83.33 71.43 76.92 83.33 71.42 76.91
reprise 77.78 85.71 81.55 77.77 85.71 81.54
clarification 100.00 60.00 75.00 100.00 60.00 75.00
wh anaphor 60.00 100.00 75.00 60.00 100.00 75.00

Table 6: Results - Automatically Annotated Data Set

6 A Simple Frequency-Based Heuristic

In section 3 we showed that distinct sluice types correspond to radically dif-
ferent distributions of sluice interpretations. In this section we consider a dis-
ambiguation heuristic that simply assigns to each sluice type the most prob-
able reading, where the probability value of a reading is determined directly
by its relative frequency. Following the distribution patterns reported in Table
2, our frequency-based heuristic specifies the following reading for each sluice
type: what-clarification, why-direct, who-reprise, where-reprise, when-
direct, which-reprise, whichN-reprise.

This heuristic performs surprisingly well, achieving a success rate of 74%.
The accuracy results for each category are shown in Table 7. Using our ma-
chine learning algorithms on a data set manually annotated with the appropri-
ate features we are able to improve this result 18% points using TiMBL and
11% points with SLIPPER. Using the automatic feature annotation as input,
TiMBL achieves 5% points over the frequency-based result, and SLIPPER 1%.
In the case of clarification, however, one gets better results assigning a
clarification reading to all what sluices than using automatically annotated
features to disambiguate between readings. This indicates that we should aim
for a better identification of the context on which a clarification reading
depends.

Category Recall Precision F1

direct 72.64 67.54 70.00
reprise 79.31 80.50 79.90
clarification 100.00 64.86 78.69
wh anaphor 0.00 0.00 0.00

Table 7: Simple Frequency-Based Heuristic

The fact that our frequency-based heuristic achieves a relatively high de-
gree of success indicates that the raw unconditional probability values for the
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possible sluice readings of sluice types are a good rough guide for predicting
sluice interpretation. We improve these results significantly by conditioning
classification on a set of features. This effectively gives us conditional prob-
abilities for sluice readings. The performance of these conditional probabilities
depends upon the accuracy of the feature annotation. When feature accuracy
declines under automatic annotation, the conditional probabilities converge on
the raw probabilities These comparative results suggest that future work should
seek to improve the accuracy of our feature annotation procedure through error
analysis.

7 Conclusions and Future Work

We have formulated the problem of identifying the correct reading of a sluice in
dialogue as the task of devising a reliable procedure for classifying it according
to a set of possible interpretations.

We have presented a small set of features for annotating a dialogue corpus
from which we can extract reasonably reliable methods for assigning interpret-
ational classifications to wh-fragment questions through machine learning tech-
niques. They can be identified by an automatic procedure that relies solely
on the PoS marking of the corpus. When we compared the results of our two
machine learning systems to a simple probabilistic classification algorithm that
uses the frequency counts associated with each sluice-type, we found that, al-
though the algorithm performs surprisingly well, machine learning applied to
our features yields a substantial improvement in success of classification.

Besides refining our automatic feature annotation method to achieve a more
accurate basis for wh-fragment classification, we are currently extending the
approach presented here to other kinds of non-sentential utterances in dialogue.
The results obtained so far in the classification of a wider range of fragments,
although still preliminary, are certainly encouraging. In the next phase of our
research we aim at integrating the fragment classification procedures into our
dialogue interpretation system.
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