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The early development of Artificial Intelligence (Al) in the latter half of the twentieth
century was marked by limited, hand-crafted systems and fluctuating perceptions of
the field’s potential. Early research explored a range of paradigms — including
symbolic, neural and probabilistic approaches — constrained by severe hardware and
data limitations. Key technological advances, such as the invention of microchips,
GPUs and later TPUs, significantly enhanced computational capacity, enabling
more complex Al experimentation. Concurrently, the proliferation of digital data
through the internet addressed longstanding bottlenecks in data availability. The
most transformative shift, however, came from architectural innovations in neural
networks, culminating in the deep learning revolution. This unfolded in two phases:
the emergence of Recurrent and Convolutional Neural Networks, followed by the
development of transformer-based models, which underpin today’s Large Language
Models (LLMs).

Introduction

During the early years of Artificial Intelligence, in the second half of the twentieth
century, Al systems consisted of small-scale prototypes with very limited coverage.
Many of their rules and architectural elements had to be hand-crafted. The field was
generally regarded as speculative, with limited prospects for marketable engineering
applications. It experienced alternating periods of hyperbolic optimism (Al
summers) and acute scepticism (Al winters). Work in Al was often precariously
perched on the margins of tech company research labs, and in the more remote parts
of academic computer science programs (for a brief history of Al see Lappin 2025).

In this period, AI researchers experimented with a diverse set of approaches.
These included symbolic systems (grammars, logics, constraint satisfaction provers,
frames, and scripts), neural networks, (perceptrons, and multilayer feedforward
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networks), and probabilistic methods (Bayesian networks, Ngrams, Hidden Markov
Models, and a variety of stochastic modelling procedures). Hardware limitations
were a major factor in limiting progress in AI. Computers in the 1950s and 1960s ran
on vacuum tubes, with data stored on magnetic tape, and programming done by
punch cards. The processing and memory capacities of these devices could not
support the rapid development and testing of large-scale systems.

The creation of more efficient computing hardware had a dramatic impact on Al.
Intel introduced the first microchip central processing unit (CPU), its 4004, in 1971.
In 1999, Nvidia released the first GPU processor, the GeForce 256. Unlike CPUs,
GPUs consist of multiple processing units that perform a large number of operations
in parallel. Google deployed its first tensor processing unit (TPU) in 2015, dedicated
to linear algebraic operations required for the machine learning of neural networks.

The absence of significant quantities of digital data was a second major obstacle
to progress in Al research. It was necessary to produce most of this data by hand,
often separately for each task. The emergence of the internet in the 1990s generated a
vast trove of digital data in a variety of modalities. Large quantities of text, visual
images, videos, and audio files became easily accessible online.

However, the most important breakthroughs that generated the dramatic rise of
current Al systems consisted of a series of radical architectural innovations in neural
networks, which produced the deep learning revolution. This revolution came in two
phases. The first yielded powerful Recurrent Neural Networks (RNNs), and
Convolutional Neural Networks (CNNs). The second produced transformers, which
drive Large Language Models (LLMs).

Deep Learning Models Phase 1

Early feedforward neural networks lacked a memory to retain information from
previous processing states for a sequence of input data. As a result, they were not able
to identify and keep track of long-distance relations among elements of these
sequences. The main subject-verb dependency in 1, and the left-right bracket
matching in 2, illustrate relations of this kind.

1. The candidates interviewed for the position at the university where my friend
teaches give a talk on their research.

2. (1 G G (84 (5)5)3)2 (6 (7 (8)s (9)9)7)e)1

Elman (1990) introduced Recurrent Neural Networks, which are sequential
processing systems with a memory that retains information from a previous state and
passes it forward to its successor. Figure 1 shows the architecture of a simple RNN.

While simple RNNSs are able to track certain long-distance relations, they do not
filter or control the information that is passed forward to successive states. They are
limited in their ability to recognize complex patterns in extended contexts.

Hochreiter and Schmidhuber (1997) constructed a more powerful RNN, the Long
Short Term Memory network (LSTM). Each of the processing units of an LSTM
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Figure 1. A simple Recurrent Neural Network (from Lappin 2021).
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Figure 2. An LSTM (from Olah 2015, with permission).
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applies three functions to its input, as filtering gates, to determine which information
is passed on to the next processing phase. The input data string is represented as a
vector, which is a sequence of real numbers. Figure 2 displays the structure of
an LSTM.

Convolutional Neural Networks (LeCun ef al. 2010) identify a feature map from
input data by recognizing subcomponents of these data. A pooling layer reduces the
dimensions of the features to produce a compressed map, and to render it stable
under small variations. Successive convolutional and pooling layers produce
increasingly higher-level representations of the objects in the data. A softmax
function generates a probability distribution over different possible classifications of
the vector. CNNs have achieved good results for applications in visual image
identification and speech recognition. Figure 3 illustrates the architecture of a CNN.

Neural networks learn to determine weights for the elements of their input data,
which cause their processing units to ‘fire‘ (produce a specified value as output) when
these weights are above a given threshold. Training a neural network involves
assigning random values to their inputs, and then incrementally correcting these
against the data to which it is exposed. The error rate of the network’s output is
calculated as the gradient (angle) of a loss function. The learning cycles seek to
minimize the values of the loss function. They proceed down the slope of the function

https://doi.org/10.1017/51062798725100379 Published online by Cambridge University Press


https://doi.org/10.1017/S1062798725100379

4 Shalom Lappin

D = BICYCLE

. ) . FULLY
a"."o INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN CONNECTED SOFTMAX
N 2
FEATURE LEARNING CLASSIFICATION

Figure 3. A CNN (from Saha 2015, with permission).

by incremental correction, until a statistically estimated optimal point is reached.
This learning procedure is known as stochastic gradient descent.

This procedure is generally applied through backpropagation (introduced by
Rumelhart ez al. 1986), where one feeds the difference between the desired and the
actual weights of the network backwards along the connections among the units, to
calculate updates for the weights of the training inputs. Backpropagation can
encounter one of two serious difficulties when used in training RNNs, CNNs, and
feed-forward networks. If it is not constrained, the gradient of the loss function can
become vanishingly small, or it can explode into unmanageably large values.

RNNs and CNNs were the primary vehicles of the first generation in the deep
learning revolution. They greatly increased the accuracy and coverage of neural
networks. They provided the first set of Al systems that offered the prospect of
effective wide-coverage models that could be applied to a wide range of cognitively
interesting Al tasks. These included, among others, machine translation, text
understanding, text generation, information retrieval, image recognition, complex
object classification, image description, medical diagnostics, and expert risk
assessment.

Much of the power of Deep Neural Networks (DNNs) resides in the vector
representations of the data on which they are trained. These representations, known
as embeddings, express a variety of distributional relations among elements of these
data. In the case of words, they provide a conceptual map of the co-occurrence
patterns of the terms extracted from the training data. These patterns encode
semantic and syntactic relations among the expressions of the corpora. Multimodal
embeddings greatly expand the power and range of DNNs by permitting them to
track relations between linguistic expressions and non-linguistic environments.

Adding attention (Bahdanau et al. 2015) to DNNSs significantly improved their
ability to identify subtle patterns in data, and to recognize connections among the
elements of their input. An attention layer produces a dynamic context vector that is
updated with each new token of the input sequence. The vector effectively preserves
the information of each hidden state of the part of the DNN that encodes input data.
It assigns different weights to these states on the basis of their relations to the output
that the decoder produces. The attentional context vector learns to align the weights
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Figure 4. A bidirectional LSTM with an attention layer (from Bahdanau et al. 2015,
with permission).

of the encoded input with the elements of the decoded output. Figure 4 indicates the
structure of a bidirectional LSTM with an attention layer.

Embeddings and attention provide key elements of transformers, the DNNs that
have given rise to the current phase of the deep learning revolution.

Deep Learning Models Phase 2

Vaswani et al. (2017) introduce transformers. These are encoder—decoder DN N5 that
consist entirely of blocks of multi-head attention units, connected by normalization
and feedforward layers. An attention block computes self-attention weights for the
token of an input sequence, where self-attention is the relative importance of each
token in relation to the others. Each block of multi-head self-attention units in a
transformer can be dedicated to a different dimension of information concerning its
input. In this way, transformers can identify patterns and connections among the
elements of the data on which it is pre-trained, across a wide range of features. As a
result, transformers are generally more successful than RNNs and CNNs at
recognizing long distance relations among elements in input. Figure 5 shows the
architecture of a transformer.

Transformers are pretrained on large data sets from which they extract
embeddings. They can then be fine-tuned for specific applications by adding new
dedicated layers of attention heads, or by retraining some of its pre-trained layers.
This is a procedure for customizing the model to a particular domain and a set of
applications. Transformers can be efficiently trained because the blocks of attention
heads can be trained independently of each other, in parallel. Due to their
normalization layers and the fact that they retain information for input throughout
all phases of processing, they avoid the vanishing and the exploding gradient
problems that beset the earlier generation of DNNS.
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Figure 5. The architecture of a transformer (from Lappin 2021, based on Vaswani
et al. 2017).

Transformers can be trained on multi-modal data without revising their
architecture. Their attention heads can recognize connections among text, visual
images and sound in the same way as they do among the terms of purely linguistic
input. Transformers constitute a significant breakthrough in deep learning. They are
driving the large data models that have yielded the impressive results currently on
display in many areas of Al

Bender et al. (2021) and Chomsky et al. (2023) claim that the LLMs that
transformers sustain are little more than ‘stochastic parrots’ returning the data on
which they are pretrained. In fact, this assertion is incorrect. They identify
abnormalities in X-rays and predict new molecular structures for proteins, within the
medical domain. They learn complex new verbal commands in virtual environments.
They identify scenes in graphic images, and they produce accurate descriptions for
these scenes. They generate new computer code to solve difficult programming
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User  What is funny about this image? Describe it panel by panel.

GPT-4  The image shows a package for a "Lightning Cable" adapter with three panels.

Panel t A smartphone with a VGA connector (a large, blue, 15-pin connector typically used for computer monitors)
plugged into its charging port.

Panel 2: The package for the "Lightning Cable" ad with a pi of aVGA onit.

Panel 3: A close-up of the VGA connector with a small Lightning connector (used for charging iPhones and other
Apple devices) at the end.

The humor in this image comes from the absurdity of plugging a large, outdated VGA connector into a small,
modern smartphone charging port.

Figure 6. ChatGPT-4 interprets a sequence of images (from OpenAl 2023, arXiv.org
non-exclusive license to distribute).

problems, and they create novel proofs of mathematical theorems. The inferences
that sustain these achievements cannot be reduced to simple variations of previously
encountered regularities in data.

Figure 6 exhibits ChatGPT-4’s ability to interpret a sequence of photographic
images and to identify the source of the humour in the main photograph in the
left panel.

Problems with LLMs

It is important to recognize that transformers are designed to generate the next token
in a sequence on the basis of the tokens encountered up to that point, or from the
elements of the token’s left and right context. They do not attend to the factual
content of their input, and they have no way of doing so. LLMs frequently produce
fluent, plausible text, which is entirely fictional. LLM ‘hallucination’ can create
serious difficulties. In one instance, a lawyer in the US who relied on ChatGPT-3 to
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find legal precedents unknowingly went to court with a set of fabricated cases to
support his argument (Weiser 2023). Devising effective procedures for verifying
LLM output remains one of the major challenges posed by contemporary Al systems
(see Lappin 2024, 2025, on LLM hallucination and the problem of verification).

LLMs have created, or intensified, a variety of significant problems, which pose
important issues of public policy (Lappin 2025). As a partial list, consider the
following. Pre-training LLMs requires very large amounts of energy and water. Chip
production is also energy-intensive, and it produces toxic chemical waste. The servers
used to run the online systems that use LLMs, and to store the data needed for these
applications, occupy substantial tracts of land. The demands for energy and open
land are causing serious environmental problems. These sorts of difficulties are not
often associated with the Al revolution in public discourse.

It is primarily large tech companies that have the funds and computing resources
to develop and train LLMs. They have achieved quasi-monopoly status in
controlling the design and development of Al systems. Universities, public scientific
research institutes and small start-ups are becoming clients of the tech companies, in
fine-tuning and applying their deep learning models. Consequently, many problems
in basic science and engineering that motivated earlier work in Al are being
marginalized. In particular, some of the questions about the nature of learning and
cognition are no longer in the focus of Al research. Most tech companies are not
prioritizing the development of smaller, less computationally intensive models,
which can identify significant patterns with much less training data. This sort of
research demands long-term investment, and so it does not yield rapidly marketable
results.

The capacity of LLMs to produce deep fakes in text, visual and audio modalities
facilitates disinformation, identity theft, and a variety of other sorts of harm. Al-
powered bots are pumping out false content on social media in the service of
extremists, trolls and malign government actors. This stream of digital deception is
undermining trust in foundational institutions, such as fair elections and public-
health measures. It is also used to propagate racism, misogyny, and other forms of
hate speech.

Assessment systems powered by AI models incorporate a variety of ethnic,
religious, class, and gender biases in credit and hiring decisions, as well as
recommendations for medical treatment. These models can cause serious
discrimination against people from the populations against which the bias is
encoded.

The prospect of large-scale automation through expert Al systems, and Al-
supported robotics, across a wide spectrum of skilled and unskilled professions,
raises the possibility of large-scale unemployment. In previous technological
revolutions, job loss due to transformation in one industry was offset by the
emergence of new areas of production and service. If Al-based models automate a
large enough range of industries, a balancing demand for labour in emerging
industries might not be available. This could generate major economic and social
dislocation.
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Conclusions

The early period of Al saw the proliferation of diverse approaches to learning and
representation tasks (feedforward neural networks, rule-based symbolic frameworks,
and statistically driven models). Hardware and digital data limitations prevented
most of these approaches from developing successful wide-coverage systems.
Hardware innovation and radical changes in neural-network architecture gave rise to
the deep learning revolution, which came in two phases.

The first phase saw the emergence of powerful RNNs and CNNs. In the second
phase these systems increasingly gave way to transformers, which consist entirely of
blocks of attention heads. The LLMs that they sustain have achieved striking
improvements in performance and coverage across a wide spectrum of applications.
A central element of this progress is the capacity of transformers to transfer high-
accuracy learning to new tasks and domains, with minimal additional training. These
models can apply their pretraining to new tasks through small-scale fine-tuning.
They retain the same architecture over a large range of tasks. This avoids the need for
task-specific redesign, or extensive training for each new application.

The deep learning revolution has produced powerful Al systems that are yielding
substantial benefits in many different domains, from health care, through natural
language processing, to music and the fine arts. However, it has also produced a
series of pressing environmental, social and economic problems that require urgent
responses. These issues should be the focus of informed public discussion. In many
cases, effective regulation of these systems, and the large tech companies that
produce and market them, is essential to derive social benefit from them.
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