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Abstract

Deep Neural Networks (DNNs) in general, and transformers in particular,
have revolutionised AI by achieving high levels of performance across a wide
range of tasks. However, they remain limited in their capacity to handle do-
main general real world reasoning. They also require large amounts of training
data to obtain reasonable learning outcomes. A number of researchers have
attempted to combine DNNs with symbolic representations and rule systems
to overcome these limitations. Hybrid models of this kind fall into two broad
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classes. The first includes DNNs in which symbolic representations and con-
straints are injected directly into the internal processing operations of the sys-
tem, or they are incorporated into the data on which it is trained. In the second
class, DNNs and symbolic reasoning systems operate autonomously, with the
independence of each sustained. DNNs extract features from the input, which
are made accessible to a symbolic rule system through an interface. I consider
several instances of each type of hybrid neuro-symbolic model, with applica-
tion to a number of AI tasks. The available evidence suggests that while the
first class of models has, in general, not yielded substantial improvements over
their non-hybrid counterpart systems, the second variety has produced more
hopeful results. I will briefly consider the implications of this contrast in the
architecture of hybrid models for future research in deep learning.

1 Some AI History: The Deep Learning Revolution
In the early years of AI both neural networks and symbolic systems were unable
to go beyond small scale models, which had to be adjusted, often by handcrafted
extensions, to new cases. This was, in large measure, the result of the hardware
limitations of the time, and the absence of digitalised data for training and testing.

Feed forward neural networks lacked memory for tracking long distance depen-
dency relations in input data. Symbolic systems did not incorporate learning pro-
cedures, and so their rules had to be devised by hand. Minsky ([16]) suggested that
hybrid systems, combining neural networks for lower level perceptual classification
and symbolic components for reasoning, were needed for progress in AI.

In the past three decades the emergence of powerful hardware (GPUs), the abun-
dance of online data, and radical innovations in the architecture of neural networks,
have produced the deep learning revolution. Transformers, which drive Large Lan-
guage Models (LLMs), consist entirely of blocks of attention heads. These are trained
independently of each other, and they can identify fine grained patterns in data
across distinct modalities (text, visual images, sound, etc.). They have equalled or
surpassed human performance over a wide variety of cognitively challenging tasks
that had resisted earlier AI systems. They define the state of the art for most AI
applications, and they have all but displaced symbolic systems.1

LLMs do not perform reliably on natural language inference (NLI) tasks, when
subject to adversarial testing ([21], [20]). They also do not do well on many real world
reasoning tasks ([12]). While transformers learn superficial patterns of inference
and they are sensitive to some lexical semantic content in arguments, they do not

1[10] provides a brief history of AI, and the factors that have generated the deep learning
revolution.
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acquire stable deep reasoning abilities. LLMs are notorious for hallucinating fluent
but fictional content, which undermines their reliability for question-answering, and
a variety of other applications. Transformers are computationally opaque, in large
measure because their activation and probability generating functions (such as ReLU
and softmax) are non-linear.2

2 Injective Hybrid Models
Some theorists have revived Minksy’s call for the development of hybrid neuro-
symbolic models ([14]). Proponents of neuro-symbolic models assert that they sig-
nificantly reduce training time by encoding information in symbolic features and
rule systems, which would require additional data to extract. They argue that these
models are more transparent than non-enriched DNNs, by virtue of the explain-
able nature of their symbolic content. They maintain that the symbolic component
of these models substantially improves their performance, relative to non-symbolic
DNNs, over a wide variety of tasks. In fact, the evidence for these claims is far from
clear, in at least one major class of neuro-symbolic models.

One way of constructing a hybrid framework is to inject symbolic representations
into the processing operations of a Deep Neural Network (DNN). This can be done
directly, by revising the architecture of the DNN to incorporate the biases of a
symbolic system into its computation, at di!erent levels of the network. Injection
can also be achieved indirectly, through training the DNN on a biased distribution
that a symbolic system generates (knowledge distillation). Symbolic markers, or
structures, can also be inserted into the data on which a DNN is trained.

Tree DNNs incorporate syntactic structure into a Deep Neural Network (DNN),
either directly through its architecture, or indirectly through knowledge distilla-
tion and training data. [19], [3], [23], [4], [22], [13], [7] consider LSTM-based Tree
DNNs. These have been applied to NLP tasks like sentiment analysis, NLI, and
the prediction of human sentence acceptability judgments. They have yielded small
improvements in performance, which do not provide strong motivation for inserting
trees, or syntactic and semantic markers into LSTMs.3

More recent work has incorporated syntactic tree structure into transformers like
BERT, and applied them to a broader range of tasks. [2] integrate tree structure
recognition into the attention head blocks of BERT and RoBERTa. They test dif-
ferent versions of these transformers on the GLUE benchmark tasks, which include
sentence acceptability assessment, paraphrase recognition, and NLI. The structure

2[9] discusses the strengths and the limitations of LLMs.
3See [8] for detailed discussion of these LSTM-based tree DNNs.
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Figure 1: Syntax-BERT, Bai et al. (2021)

of Bai et al.’s syntax enriched BERT is shown in Figure 1. For the overwhelming
majority of cases they report an accuracy gain of the tree enriched model, relative to
its non-tree counterpart, of between 1% and 2%. These results suggest that the con-
tribution of the implemented tree structure enrichment to BERT and RoBERTa’s
performance on the GLUE tasks is marginal.

[17] enrich BERT and RoBERTa with dependency tree graphs. They test them
on semantic role labelling, named entity recognition, and relation extraction. Figure
2 displays two versions of their tree graph enriched model. In the (a) variant the
graphs are fused with BERT at a late layer of the transformer. In the (b) version
they are injected into earlier layers. For in domain test sets the graph versions
of the models achieve F1 scores that are 1%-2% higher than their non-enriched
counterparts. In an out of domain test on semantic role labelling, the gain in F1
score was 2%-5%. These results are similar to those that [2] report for their syntactic
tree versions of BERT and RoBERTa.

[1] enrich a CNN by infusing handcrafted knowledge features for segmenting brain
aneurism images. They experiment with feature infusion at di!erent levels of the
network. They use Intersection over Union (IoU) as the metric to compare several
versions of the feature infused CNN with its non-enriched baseline. Let Mimage be
the image that the model identifies, and GTimage be the ground truth image. Then
IoU is defined as follows.

1. IoU = area(Mimage) → area(GTimage)
area(Mimage) ↑ area(GTimage)

1634



Neuro-Symbolic Models

 

Figure 2: Dependency Tree Graph BERT, Sachan et al. (2021)

Figure 3 displays [1]’s knowledge feature di!usion CNN. Their best model scored
an IoU of 0.9676, while the non-enriched CNN achieved 0.9158.

[11] modify the hidden units of a CNN to function as probabilistic logical oper-
ators. They train the network to extract rules for diagnosing diabetes on the basis
of data encoded as feature vectors. They compare alternative implementations of
their rule learning CNN with traditional machine learning methods used for medical
diagnosis. Their highest scoring model obtains an F1 score of 0.6875 on their test
set, while they report Random Forest as achieving the best traditional ML result
at 0.6380. Their best enriched CNN for Area Under the Curve (AUC) binary clas-
sification scores 0.8457, while Random Forest achieves 0.8342. Interestingly, they
do not provide a comparison between their logically enriched CNN and a baseline
version of the same model. [11]’s results are given in Table 1

Injective models provide small gains in performance relative to their unenriched
counterparts. These gains tend to diminish with additional training data for non-
enriched DNNs. The claim that injective models o!er greater transparency than
non-injective DNNs is open to question. In most cases injective DNNs remain non-
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Figure 3: Knowledge Feature Infusion CNN, Abdullah et al. 2023

 
Table 1: Lu et al. (2025) Results
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compositional in their output at each level, as they continue to use non-linear func-
tions like ReLU and softmax to generate output vectors.

Advocates of injective models tend to assume that humans acquire and represent
most knowledge as rule sets that are best modelled as algebraic systems (grammars,
logics, sets of constraints, etc.). It is far from obvious that this is the case for all
types of knowledge. It is entirely possible that humans encode many aspects of their
discriminatory classification knowledge in non-symbolic, distributed representations
of regularities, as [18] and [15], among others, suggest. It is also possible that, by
virtue of their design, DNNs are unable to easily integrate symbolic components into
their distributed representations of information, in a way that significantly improves
learning or inference.

3 Federative Hybrid Models

A federative hybrid model does not inject symbolic content into a DNN. It combines
a DNN with a symbolic reasoning module within a framework in which each of these
systems functions autonomously. The framework sustains the distinct computational
procedures that its two central components apply for representing information. In
one version of this architecture the DNN extracts features for an interface that labels
them, and feeds them to a logic based inference program. This approach seems closer
than an injection model to Minsky’s original proposal.

[5] present a Feed Forward Neural-Symbolic Learner (FFNSL) for image clas-
sification. It consists of a DNN for extracting features from images, an interface
component that assigns labels to these features, and a logic based system, an Induc-
tive Logic Program (ILP), that learns rules from these labelled features. They test
variants of this model on a suite of image classification tasks in which knowledge of
a game, or a problem, are necessary for the correct solution. They use distributional
shifts of training and test data (through image rotation) to ascertain the robustness
of the system under variation. The architecture of FFNSL is given in Figure 4.

FFNSL models exhibit significant gains over non-symbolic ML and DNN base-
lines. They require significantly less training data to achieve high accuracy in com-
plex image classification tasks. They remain stable over higher levels of distribu-
tional shift in the images of both training and test data. They generate transparent
rule-based hypotheses. [5] test FFNSL on a series of image recognition tasks which
require di!erent sorts of knowledge. One of these tasks is the identification of valid
sudoko grids in 4 X 4 and 9 X 9 squares. The graphs in Figure 5 show the accuracy
of FFNSL for this task, relative to baselines systems without ILP enrichment, over
training size (320 vs 32000 samples) and percentage of distributional shift in the
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Figure 4: FFNSL, Cunnington et al. 2023

 

Figure 5: FFNSL Accuracy for Sudoku Grid Identification, Cunnington et al. (2023)

training and test sets.
[6] propose another instance of a federative hybrid model. They consider three

well known NP-hard optimisation problems: Graph Colouring, Knapsack, and Trav-
elling Salesman. The first and third problems involve finding an optimal solution
for adjacent colour distribution, and non-redundant routes, respectively, through the
nodes of a graph. The second requires satisfying a weight constraint for the largest
number of items placed in a knapsack. As the number of nodes in the graph, or
items to be placed in the knapsack, grows, the complexity of the problem increases
exponentially, in a way that renders the task NP-hard.
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Figure 6: Results for NP-Hard Optimisation Problems, Duchnowski et al. (2025)

[6] experiment with two LLMs, GPT 4o and Llama 3.1 70B Instruct, as well
as several greedy algorithms, on di!erent versions of these problems. The main
distinction in these versions is between textbook specifications of the problems, and
informal natural language formulations. They find that the LLMs perform more
successfully on the textbook specifications than on the informal versions.

Their federative model consists of the LLM feeding an optimisation task to a
Python Integer Linear Program encoder, which applies a Gurobi optimisation solver
to the problem. They find that the GPT 4o hybrid model significantly outperforms
its non-enriched counterpart on both textbook and natural language versions of the
problems. Figure 6 shows the results for the models that [6] test on the textbook
versions of the three problems. GPT 4o ILP Python and Llama ILP Python are the
hybrid systems calling the Gurobi solver.

There are two significant limitations worth noting in [6]’s reported experiments.
First, they do not test their models against a human baseline. Therefore, it is not
clear how any of their models compare with human performance on these prob-
lems. It is important to know how both the Gurobi solver enriched models, and
their non-enriched counterparts, reflect or diverge from human abilities for NP-hard
optimisation tasks.

Second, [6] test only two LLMs, GPT 4o and Llama 3.1 70B. While GPT 4o ILP
Python does well on the three tasks Llama ILP Python does not. Is this because
of its size, or its architecture? More experimental data for additional LLMs, and
a larger variety of optimisation problems, are required before we can draw firm
conclusions on the capacity of LLMs, symbolically augmented or not, to handle this
type of task.
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4 Conclusions and Future Research

This overview of two approaches to constructing hybrid neuro-symbolic models sug-
gests several preliminary conclusions. First, the injection of symbolic features or
rule-based biases directly into a DNN does not seem to significantly improve its
performance, relative to a non-enriched version of the same model. Second, this
limitation of injective DNNs may be due to the di!erence in the way DNNs and
symbolic systems represent patterns of regularity. Third, federative neuro-symbolic
models sustain the internal integrity and autonomy of both types of processing sys-
tem. Finally, they appear to o!er a more e!ective way of combining the strengths
of each framework.

Further research on both injective and federative models is required to ascertain
the extent to which the final conclusion, which is still a conjecture, actually holds.
More extensive comparisons of injective and non-injective state of the art transform-
ers, over a wider variety of tasks, is needed to obtain a better sense of the limits of
this approach. Similarly, federative models in which current transformers are used
as the DNN, with testing against the unenriched transformers, will help to clarify
the prospects of this version of neuro-symbolic machine learning. At this point, fed-
erative models may present the most e"cient way of augmenting the reasoning and
inference capacities of DNNs. They also suggest a route to greater transparency in
DNN driven machine learning.
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