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Abstract. Classical theories of formal semantics employ possible worlds
to model intensions and modality. If worlds are construed as correspond-
ing to ultrafilters in a lattice of propositions (maximal consistent sets of
propositions), then they pose serious problems of tractable representabil-
ity. Moreover, these theories cannot accommodate vagueness, which is a
pervasive feature of predication in natural language. It is also unclear
how they can be extended in a straightforward way to explain semantic
learning. A cognitively plausible account of interpretation should gener-
ate computationally tractable representations of meaning. It must also
deal with vagueness and semantic learning. A probabilistic Bayesian ap-
proach to natural language semantics provides a more promising ap-
proach to these issues. It can also cover epistemic states and inference,
in a tractable way. This framework offers the promise of a robust, wide
coverage treatment of natural language interpretation that integrates
meaning and information update.
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1 Introduction

Since [35] a mainstream view among formal semanticists has depended on pos-
sible worlds to model the meanings of natural language expressions. Montague
imported possible worlds into his model theory through his use of Kripke frame
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semantics ([27,28]) for modal logic. This approach to intensions and modality
is anticipated in [5]’s characterisation of intensions as functions from state de-
scriptions to extensions.

Possible worlds have played a central role in the characterisation of belief
([45]) and the related field of epistemic reasoning (see, for example [19]). Dy-
namic semantics ([17,18]), and, more recently, Inquisitive Semantics ([6,7]) use
possible worlds to incorporate epistemic elements into formal semantics. They
characterise sentence meanings as functions from discourse contexts to discourse
contexts. From this perspective speakers use sentences to communicate informa-
tion by modifying their hearers’ representation of a discourse context.!

There are, in fact, serious computational problems of representability for
worlds. Moreover, specifying intensions as functions from worlds to extensions
does not respect important fine-grained distinctions of meaning. I discuss these
issues in detail in [30, 31]. In Section 2 I summarise the representability problems
raised there, and argue that these must be solved in order to develop a cognitively
viable semantics for natural language.

It is possible to ”de-modalise” intensions by characterising them as com-
putable functions. This involves borrowing the difference between operational
and denotational meaning from the semantics of programming languages and
applying it to the meanings of natural language expressions ([30,31,12]). In
Section 3 I review this approach to representing intensions.

An operational treatment of intensions might solve the representability prob-
lem for (some) natural language meanings, and provide the basis for a fine-
grained semantics. However, it leaves the treatment of modality and epistemic
states untouched. At first glance it would seem that there is no alternative but to
invoke worlds to model possibilities, knowledge, and beliefs. But if we are forced
to reintroduce worlds to handle these concepts, then we have not solved the
representability problem, and so we have not grounded semantics on cognitively
viable foundations.

In Section 4 I suggest an approach to this question that avoids worlds. It
involves characterising both modality and epistemic states through probability
distributions over situations, rather than complete worlds. On his account prob-
abilities are assigned to possible, as well as to actual situations. However, it is
not necessary to represent or enumerate the complete class of possible situations,
which, as we argue in Section 2, is even more problematic than representing a
complete world, or the set of worlds. It is sufficient to specify those situations
to which probabilities are assigned, and the situations expressed by the condi-
tions on which a probability assignment depends. Large subclasses of probability
models can be efficiently represented, and tractability problems with computing
probability distributions or complex sampling spaces can frequently be over-
come by estimation and approximation. The probabiistic accounts of modality

1 It may be possible, at least in principle, to develop versions of Inquisitive Semantics
and Dynamic Semantics which do not rely on possible worlds. However, they are an
integral element of the current theories.



and epistemic states proposed in this Section constitute the main contribution
of the paper.

I offer an overview of some current related work in Section 5, and I briefly
compare these approaches to the framework proposed here.

Finally, in Section 6 I present some conclusions, and I briefly indicate several
problems to be addressed in future work on these questions.

2 A Repesentability Problem with Worlds

In Kripke frame semantics a model M = (D, W, F, R), where D is a non-empty
set of individuals, W is a non-empty set of worlds, F' is an interpretation function
that assigns intensions to the constants of a language, and R is an accessibility
relation on W. Formal semanticists have expanded M to include additional in-
dices representing elements of context, such as sets of points in time, and sets
of speakers. The elements of W are points at which a maximal consistent set of
propositions are satisfied.?

There is a one to one correspondence between the elements of W and the
elements of the set of maximal consistent sets of propositions. [13,14,42] use
this correspondence to formally represent worlds as the set U of ultrafilters in
the prelattice of propositions. On this approach a proposition p holds at a world
w; iff p € u;, where u; € U. The question of how to represent W reduces to the
representability of U

To simplify the problem considerably, I assume that the the prelattice on
which the elements of U are defined encodes classical Boolean propositional logic.
This system is complete and decidable, and so minimal in expressive power. To
identify any u; € U we need to specify all and only the propositions that hold at
u;. As u; is an ultrafilter, for any p; € w;, all of the propositions that p; entails
are also in u;, and so it will be an infinite set. We can enumerate the elements of
an infinite set if there is an effective procedure (a finite set of rules, an algorithm,
a recursive definition, etc.) for recognising its members. It is not clear what an
effective procedure for enumerating the propositions of u; would consist in.

Simplifying further, let’s assume that we are able to generate u; from a
finite set P,, of propositions, where each p € P,, is in Conjunctive Normal
Form (CNF). A proposition in CNF is a conjunction of disjunctions of literals
(elementary propositional variables or their negations). The propositions in P,,
can be conjoined in a single formula p,,, that is itself in CNF. For p,, to hold
it is necessary to determine a distribution of truth-values for its literals that
renders the entire formula true. Determining the complexity of this satisfaction
problem is an instance of the kSAT problem, where k is the number of literals
in p,,. If 3 <k, then the satisfiability problem for p,, is, in the general case,
NP-complete, and so intractable.?

2 In fact [5,23,27] originally characterised worlds as maximal consistent sets of propo-
sitions.
3 See [39] for a discussion of the complexity properties of kSAT classes.



Given that this formula is intended to express the finite core of propositions
from which the entire ultrafilter u; is derived, it is not plausible to limit it to
two literals, and it is reasonable to allow it to contain a large number of distinct
elementary propositional constituents, each corresponding to a ”core” fact that
holds in u;. It will also be necessary to include law like statements expressing
regular relations among events that hold in a world (such as the laws of physics).
These will be expressed as conditionals A — B, which are encoded in a CNF
formula by disjunctions of the form —=A v B.

Therefore, even given the generous simplifying assumptions that we have
made concerning the enumeration of u;, specifying the ultrafilter of propositions
that corresponds to an individual world is, in general, a computationally in-
tractable problem. It follows that it is not possible to compute the set of worlds
W efficiently.

There are (at least) three ways in which one might try to evade this problem.
First, we could follow Montague in claiming that formal semantics is a branch of
mathematics rather than psychology. It involves the application of model theory,
or, on the perspective adopted here, algebraic, and specifically, lattice theoretic
methods, to develop formal models of meaning in natural languages. If this is
the case, questions of efficient computability and representability are not relevant
to the theoretical constructions that it employs. This move raises the obvious
question of what formal semantics is explaining. If it seeks to account for the way
in which people interpret the expressions of a natural language, then one cannot
simply discard issues of representation. To do so is to ignore the cognitive aspect
of meaning, which risks eliminating the empirical basis for assessing semantic
theories.

A weaker form of this approach acknowledges that using and interpreting
natural language is indeed a cognitive process, but it invokes the competence-
performance distinction to insulate formal semantic theory from computational
and processing concerns. On this view formal semantics offers a theory of se-
mantic competence, which underlies speakers’ linguistic performance.

[40] seems to suggest a move of this kind in distinguishing between seman-
tic and psychological facts. But this is simply a version of the competence-
performance distinction applied to semantics. Interestingly, this distinction is
not generally regarded as granting immunity from the requirement of tractable
representation in other areas of linguistic representation. So, for example, if a
class of grammars (more precisely, the languages that they generate) is shown
to be intractable for the recognition/parsing task, it is generally regarded as
unsuitable for encoding the syntax of a natural language. Consequently, the full

4 One might seek to treat propositions as unstructured, and worlds as ontologically
primitive. It is unclear how either move could alleviate the representability problem.
Literals are unstructured in the sense that they are elementary propositional variable
or their negations. To banish the additional logical structure necessary to construct
propositions in CNF would deprive propositions of any content at all. Taking worlds
as primitive begs the question of how we identify and distinguish them. The conclu-
sion that there is a one-to-one correspondence between a world and the ultrafilter of
propositions that hold in it seems inescapable.



class of Context Sensitive Grammars, which, in some cases, require exponen-
tial time to decide membership in a context sensitive language, is regarded as
too powerful to model NL syntax. Instead, the weaker subclass of Mildly Con-
text Sensitive Grammars, for which the recognition problem is polynomial, is
preferred. Consistency requires that tractability of representation also apply to
semantic theories, even when these are taken to be abstract models of linguistic
competence.

The difficulty here is that unless one provides an explicit account of the way in
which competence drives processing and behaviour, then the distinction becomes
vacuous. The notion of competence remains devoid of explanatory content.® We
cannot simply set aside questions of effective computability if we are interested
in semantic theories that are grounded on sound cognitive foundations.

A second strategy for dealing with the representability problem for possible
worlds is to invoke the method of stratification. This technique stratifies a class
of intractable problems into subclasses in order to identify the largest subsets
of tractable tasks within the larger set.5 So, for example, work on the tractable
subclasses of kSAT problems is an active area of research. Similarly, first-order
logic is undecidable (the set of its theorems is recursively enumerable, but the set
of its non-theorems is not). However, many efficient theorem provers have been
developed for subsets of first-order logic that are tractably decidable. We could
focus on identifying the largest subsets of each u; € U that can be tractably
specified.

The problem with using stratification here is that, by definition, a world
is (corresponds to) a maximal set of consistent propositions, an ultrafilter in a
prelattice. If we specify only a proper subset of such an ultrafilter (a non-maximal
filter), then it is not a world in the intended sense. It is no longer identified by all
and only the propositions that hold at that world. In fact, in principle, several
distinct worlds could share the same set of efficiently representable subsets of
propositions, in which case they would not be efficiently distinguishable.”

Note that one cannot avoid this problem by claiming that, in principle, a
”clever” algorithm could be devised to identify the ultrafilter of propositions that
corresponds to a world. Unless one specifies such a procedure and shows that
it efficiently identifies the set of worlds needed for a semantic theory, asserting

® See [33] for a detailed critical discussion of the difficulties raised by using the
competence-performance distinction to protect syntactic theories from responsibil-
ity for handling a wide range of observed phenomena concerning speakers’ syntactic
judgments.

See [8] on stratification of classes of grammars as a way of dealing with complexity
in the context of computational learning theory for natural language grammars.
[44] seems to have partial worlds in mind when he characterises worlds as elements
in a partition of logical space, where such partitions are dependent on context.
The problem with Stalnaker’s suggestion is that he does not provide procedures
for identifying partitions in logical space or their elements. In the absence of these
it is not clear how such worlds/possibilities are to be represented or enumerated.
Therefore, it does not offer a solution to the representability problem.
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the mere possibility that one might be devised adds nothing of substance to the
discussion.

Finally, a third approach to the problem of representability is to substitute
possible situations for possible worlds. As situations are partial worlds, one may
think that they are easier to represent. This is indeed be the case for individual
situations, which are non-maximal, and for certain sets of situations.® However,
it is not the case for the complete set of possible situations.’

For any given u; corresponding to a world w;, a situation s; C u;. The set
of situations S; for w; is P(u;), the power set of u;. As |u;| = Vg, by Cantor’s
theorem on the cardinality of power sets, |S;| is uncountably infinite. Therefore
S; is not recursively enumerable. The set of all possible situations S = |JS;,
and S inherits non-recursive enumerability from its constituent S;s. The repre-
sentability problem for the set of possible situations is, then, even more severe
than the one that we encounter for the set of possible worlds.

It may be possible to avoid this difficulty if we do not invoke the entire
set of possible situations, but limit ourselves to subsets that we can specify
effectively as we require them for particular analyses. This is, in effect, a form of
stratification. But as situations are not maximal in the way that worlds are, it
might be a viable method when applied to situations. In order for this method
to work, it is necessary to show that we do, in fact, have effective procedures
for representing the situations that we need for our theories. I will explore this
approach in greater detail in Section 4.

3 Operational and Denotational Meaning

In the formal characterisation of programming languages it is common to distin-
guish between the operational and the denotational semantics of a program.'°
Operational meaning corresponds (roughly) to the sequence of state transitions
that occur when a program is executed. It can be identified with the compu-
tational process through which the program produces an output for a specified
input. The denotational meaning of a program is the mathematical object that
represents the output which it generates for a given input. The operational and
denotational meanings of the constituents of a program can be understood com-
positionally in terms of the contributions that they make to determining the state
transitions performed by the program, and the value that it yields, respectively.

We can illustrate this distinction with two simple examples. First, it is pos-
sible to construct a theorem prover for first-order logic using either semantic
tableaux or resolution.'' Both theorem provers use proof by contradiction, but

8 See [2] for the basic ideas of situation semantics.

9 [21, 29, 26], for example, use the set of possible situations instead of the set of possible
worlds to develop intensional semantic analyses.

10 See, for example, [46] on these two types of meaning for expressions in programming
languages.

11 Qee [4] for tableaux and resolution theorem provers implemented in Prolog, and
applied as part of a computational semantic system for natural language.



they employ alternative formal methods, and they are implemented as differ-
ent computational procedures. They exhibit distinct efficiency and complexity
properties. Consider the two predicates TheoremT ableaux, which is true of the
elements of the set of classical first-order theorems that a tableaux theorem
prover produces, and TheoremResolution that is true of the members of the set
of classical first-order theorems that a resolution prover identifies. The predicates
are intensionally distinct, but they are provably equivalent in their extensions.

The second example involves two functions from fundamental frequencies
to the letters indicating musical notes and half tones. The first takes as its
arguments the pitch frequency waves of the electronic sensor in a chromatic
tuner. The second has as its domain the pitch frequency graphs of a spectro-
gram. Assume that both functions can recognise notes and half tones in the
same range of octaves, to the same level of accuracy. Again, their operational
semantics are distinct, but they are denotationally equivalent. The pairs of cor-
responding classifier predicates for these functions, (AchromTuner, ASpecGram,)s
<A#ChromTuner7 A#SpecGram>, ) <GChromTunera GSpecGram>a are intension-
ally distinct but denotationally equivalent. Both classifiers in a pair select the
same set of notes, each through a different method.

We can apply this distinction to natural languages by taking the operational
meaning of an expression to be the computational process through which speak-
ers compute its extension, and its denotational meaning to be the extension that
it generates for a given argument. We identify the intension of an expression with
its operational meaning. This view of intension avoids the intractability of rep-
resentation problem that arises with possible worlds.

It is also allows us to solve the difficulty of fine-grained intensionality (some-
times referred to as hyperintensionality). This issue arises because logically
equivalent expressions are not, in general, inter-substituable in all contexts in
a way that preserves the truth-value of the matrix sentence in which the ex-
pressions are exchanged. But if logically equivalent expressions have the same
denotations in all possible worlds and intensions are functions from worlds to
denotations, then these expressions are identical in intension. The following ex-
ample illustrates the problem.

(1) aa fACBand BC A, then A=B. &
b. A prime number is divisible only by itself and 1.

(2) a. Mary believes that if A C B and B C A, then A= B. &
b. Mary believes that a prime number is divisible only by itself and 1.

(1)a and b are both mathematical truths, but they are not inter-substitutable
in the complement of Mary believes that in (2). However, if we identify intensions
with operational meaning, then (1)a and b are intensionally distinct. (1)a is a
theorem of set theory, while (1)b is a theorem of number theory. Their proofs are
entirely different, and so they encode distinct objects of belief. The operational



notion of intension permits us to individuate objects of propositional attitude
with the necessary degree of fine-grained meaning.'?

This solution to the issue of hyperintensionality is a secondary consequence
of the operational account of intensions. Its primary motivation is to avoid the
representability problem posed by possible worlds. [38] and [36] suggest related
solutions, which retain possible worlds. See [30] for discussion of these proposals.

We have eliminated the dependence of intensions on possible worlds, and with
it the representability problem for meanings, to the extent that the interpretation
of an expression can be expressed as a procedure for computing its denotation.
However, this only takes us part of the way to solving the cognitive plausibility
problem for natural language semantics. We still need to develop an approach
to modality and epistemic states which does not require possible worlds.

4 Modality and Epistemic States

Consider the following modal statements.

(3) a. Necessarily if A C B and B C A, then A = B.
b. Possibly interest rates will rise in the next quarter.
c. It is likely that the Social Democrats will win the next election in Sweden.

In possible worlds semantics modal operators are construed as generalised
quantifiers (GQs) on worlds. Necessity is a universal quantifier, possibility an
existential quantifier, while likely is a variant of the second-order GQ most.'?
Let a, 8,7 be the propositions to which the modal adverbs necessarily, possibly
and likely apply in (3)a-c, respectively. The truth conditions of the sentences in
(3) would be given by (something like) the following.

(@) & Dol = ¢ iff Vg o] = .
b. |08 M = ¢ iff wew 8] = .
c. ||Likely || = t iff for an appropriately defined W’ C W,
{w; € W' ||y||Mwi =t}| > ¢, where € is a parametric cardinality value
that is greater than 50% of W'.

12 [11], Chapter 6 proposes an account of modality and propositional attitudes which
dispenses with possible worlds, within the framework of Type Theory with Records,
an intensional theory of types as judgements classifying situations. Some of Cooper’s
suggestions run parallel to the account proposed here. However, it is not clear how
TTR solves the problem of complexity in representing the full set of record types.
Moreover, it is not obvious that type membership in TTR is decidable.

[25] presents a treatment of modalised degree modifiers that posits an ordering of
possible worlds for similarity to a normative world. [22] discuss problems with this
account and offer an alternative, which uses epistemically possible worlds. Given
their reliance on a classical notion of possible world, neither theory avoids the rep-
resentability problem.
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On an alternative approach, we can reformulate modal statements as types
of probability judgments. As a prelude it will be useful to review some basic
ideas of probability theory.'* A probability model M consists of a sample space
of events with all possible outcomes given, and a probability distribution over
these outcomes, specified by a function p. So, for example, a model of the throws
of a die assigns probabilities to each of its six sides landing up. If the die is not
biased towards one or more sides, the probability function will assign equal
probability to each of these outcomes, with the values of the sides summing to
1.

Probability theorists often refer to the set of possible outcomes in a sample
space as possible worlds. In fact this is misleading. Unlike worlds in Kripke
frame semantics, outcomes are non-maximal. They are more naturally described
as situations, which can be as large or as small as required by the sample space of
a model. Therefore, in specifying a sample space it is not necessary to distribute
probability over the set of all possible situations. In fact one need not even
represent all possible situations of a particular type. One estimates the likelihood
of an event of a particular type on the basis of observed occurrences of events,
either of this type, or of others that might condition it. If we are working with
Bayesian models, then we compute the posterior probability of an event A (the
hypothesis) given observed events B (the evidence) with Bayes’ Rule, where

p(B) #0.

p(B|A)p(4)
p(B)

Computing the full set of such joint probability assignments is, in the general
case, intractable. However, there are efficient ways of estimating or approximat-
ing them within a Bayesian network.'® It is, then, possible to efficiently represent
a large subset of probability models, and to compute probability distributions
for the possible events in their sample spaces.

Returning to the modal statements in 3, we can construct the following alter-
natives to 4, where M is a probability model, and p is the probability function
in M.

(5) p(A|B) =

(6) a. |Necessarily o||MP = t iff for all models M’ € R, pep(a) = 1, where
R is a suitably restricted subset of probability models.
b. ||Possibly B||M» =t iff p(8) > 0.
c. ||Likely ~||M* =t iff p(y) > €, where € is a parametric probability value
that is greater than 0.5.

(6)a expresses universal necessity. Notice that to demonstrate this necessity
it is sufficient to prove that assuming a probability model M’ € R in which
p(a) # 1 produces a contradiction. If we are limiting ourselves to an appropriate

14 See [20] for a particularly clear introduction to probability theory, that is relevant
to some of the issues discussed here.
15 See [41, 37,20, 24] on Bayesian networks.



class of probability assertions and models, an efficient theorem prover may be
available for such a result.!® (6)b identifies possibility in a model with non-nil
probability of occurrence. (6)c characterises likelihood in a model with a high
degree of probability. These probabilistic characterisations of the modal adverbs
necessarily, possibly and likely do seem to identify core aspects of their meanings
in many of their common uses.'”

In general we may use stratification to identify classes of probability models
that can be efficiently represented, and we might invoke approximation tech-
niques to estimate at least some of the others which are not. This is in contrast
to individual worlds and sets of worlds. The maximality of worlds and the ab-
sence of any apparent procedure for generating their representations seem to
exclude the application of these methods to possible worlds of the kind that
figure in the formal semantics of natural language.

Let’s consider how we might extend the probability-based approach proposed
here for modality to epistemic states. Within a possible worlds framework knowl-
edge and belief have traditionally been characterised along the following lines.
Let Wg be the set of worlds (understood as ultrafilters of propositions) compat-
ible with an agent a’s beliefs. Take F'z to be a possibly non-maximal filter such
that Fp C (| Wg, where for every proposition ¢ € Fg, a regards ¢ as true. Let
Wactual D€ the actual world. a’s knowledge is contained in Fx C Fg N Wactual-

As an alternative to this account we can use a probability model to encode an
agent’s beliefs. The probability distribution that this model contains expresses
the agent’s epistemic commitments concerning the likelihood of situations and
events. One way of articulating the structure of causal dependencies implicit in
these beliefs is to use a Bayesian network as a model of belief.!?

6 1 am grateful to Robin Cooper for correcting a mistake in an earlier version of
(6)a. One might be tempted to think that (6)a expresses a metaphysical concept of
necessity, while (6)b,c correspond to epistemic modalities. In fact this is not the case.
(6)a characterises necessity as a generalised quantifier over a suitably restricted set of
probability models, each of which specifies a probability distribution over a number
of events. These distributions constitute an agents’ perception of the likelihood of
certain events in the world. Therefore (6)a is not less of an epistemic specification
of modality than (6)b,c.

In order for this approach to modality to succeed, it will be necessary to develop
accounts of the full class of modal expressions, including auxiliary verbs, other modal
adverbs, and a variety of modal modifiers within the framework presented here. This
is an important task for future work, but it is well beyond the scope of this paper. My
objective here is programatic. I wish to show the viability of a probabilistic view of
modality as an alternative to the traditional possible worlds treatment. Therefore,
I have limited myself to the modal expressions that have been highlighted in the
classical theories.

[19] presents a version of this view.

[34] considers the connection between conditional statements of the form A — B and
the conditional probability p(B|A). While this is an important issue, it is tangential
to my concerns here. I am seeking a way of characterising epistemic states that does
not invoke possible worlds.
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Formally a Bayesian network is a Directed Acyclic Graph (DAG) whose nodes
are random variables, each of whose values is the probability of one of the set of
possible states that the variable denotes. Its directed edges express dependency
relations among the variables. When the values of all the variables are speci-
fied, the graph describes a complete joint probability distribution (JPD) for its
random variables.

The Bayesian network given in Fig 1, from [43], contains only boolean random
variables, whose values are T (true) and F (false). In general, a discrete random
variable X may have values Xi,...,X,, for any n > 1. Random variables may
also be continuous.

The values of the instances of a variable depend directly only on the value of
the variable of its parent. The dependency of a variable V on a non-parent ances-
tor variable A is mediated through a sequence of dependencies on the variables
in the the path from V to A.

The only observable event for the network in Fig 1 is if the weather is cloudy
or not, and the variable whose probability value we seek to determine is the
likelihood of the grass being wet. We do not know the values of the random
variables corresponding to rain, and to the sprinkler being on. Both of these
events depend on whether the weather is cloudy, and both will influence the
probability of the grass being wet. Sample conditional probabilities are given
for each variable at each node of the network. The probability of the event C
(cloudy) corresponding to the variable at the root of the graph is not conditioned,
and its T and F instances are given equal likelihood.

We can compute the marginal probability of the grass being wet (W = T)
by marginalising out the probabilities of the other variables on which W condi-
tionally depends, either directly, or through intermediate variables. As we have
seen, this involves summing across all the joint probabilities of their instances.

(1) p(W=T)=%, .p(W=T,S=s,R=r,C=c)

As we have a complete JPD for the variables of this network, it is straightfor-
ward to compute p(W = T') using the chain rule for joint probabilities, together
with the independence assumptions encoded in the network, which gives us (8).

&) p(W =T)=3%, .p(W=T|S=sR=r)pS =slC=c)pR=r|C=
)p(C =c)

In principle we could model an agent’s beliefs as a single integrated Bayesian
network. This would be inefficient, as it would be problematic to determine the
dependencies among all of the random variables representing event types that
the agent has beliefs about, in a way that sustains consistency. Moreover, the
complexity involved in determining the conditional probabilities for the instances
of each variable in such a global network would be daunting. It is more com-
putationally manageable, and more epistemically plausible to construct local
Bayesian networks to encode an agent’s a’s beliefs about a particular domain of
situations. A complete collection of beliefs for a will consist of a set of such local
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Fig. 1. Example of a Bayesian Network ([43])

networks, where each element of this set expresses a’s beliefs about a specified
class of events.

Two graphs G; and G are isomorphic iff they contain the same number of
vertices, and there is a bijection from the vertices of G; to the vertices of G
and vice versa, such that the same number of edges connect each vertex v; to
G; and v; to G;, through identical corresponding paths.?’ For isomorphic DAGs
this condition entails that the edges going into v; and coming from it are of the
same directionality as the edges going into and coming out of v;, and vice versa.

Let’s say that two subgraphs of two Bayesian networks match iff they are
isomorphic, and the random variables at their corresponding vertices range over
the same event instances, with the same probability values. Let BN be the

20 [1] presents an algorithm for solving the graph isomorphism problem in quasi-
polynomial time. An error was discovered in Babai’s proof for this result. He sub-
sequently repaired the proof in 2017, and posted the fix on his personal website at
http://people.cs.uchicago.edu/~laci/.



Bayesian network that expresses a’s beliefs about a given event domain. Take
BNEg to be the Bayesian network that codifies the actual probabilities and causal
dependencies that hold for these events.

We can identify a’s knowledge for this domain as the maximal subgraph BN
of BNp that matches a subgraph in BNg, and which satisfies additional condi-
tions C. These conditions will enforce constraints like the requirement that the
beliefs encoded in BNpg are warranted by appropriate evidence. Notice that on
this characterisation of knowledge, if a knows ¢, then a believes ¢, but of course
the converse does not hold. C' can be formulated to permit justified true belief
to count as knowledge, or it can be strengthened to block this implication.?!

By characterising knowledge and belief in terms of Bayesian networks we
avoid the representability problem that traditional analyses inherit from possible
worlds. The proposed account offers two additional advantages. First, it exhibits
the acquisition of beliefs as a dynamic process driven by continual updates in an
epistemic agent’s observations. This flow of new information generates revised
probability distributions over the instances of the random variables in a network.
Belief revision has to be handled by a task specific update function in a classical
worlds based model of belief. It is intrinsic to Bayesian networks.

Second, a Bayesian network generates causal inferences directly, through the
dependencies that it encodes in its paths. In a traditional worlds model of epis-
temic states, inference depends on an epistemic logic, whose rules are added to
the model. By contrast, in a Bayesian network BN inference follows from the
probability theory that BN instantiates. The network is both a dynamic model
of belief, and a system that supports epistemic inference.

5 Related Work

[47] propose a theory in which probability is distributed over the set of possible
worlds. The probability of a sentence is the sum of the probability values of
the worlds in which it is true. If these worlds are construed as maximal in the
sense discussed here, then this proposal runs into the representability problem
for worlds.

[9,10] develop a compositional semantics within a probabilistic type theory
(ProbTTR). On their approach the probability of a sentence is a judgment on
the likelihood that a given situation is of a particular type, specified in terms
of ProbTTR. They also sketch a Bayesian treatment of semantic learning. It is
not entirely clear how probabilities for sentences are computed in their system.
They do not offer an explicit treatment of vagueness or probabilistic inference.
It is also not obvious that their type theory is relevant to a viable compositional
probabilistic semantics.

[16, 32] propose a probabilistic view of natural language semantics and prag-
matics. They take probability to be distributed over partial worlds. They do
not make entirely clear the relationship between partial and complete worlds.

21 The claim that knowledge is justified true belief has been controversial at least since
[15].



They also do not address the complexity issues involved in specifying worlds,
partial or complete, as well as probability models. They implement probabilis-
tic treatments of a scalar adjective, tall, and the sorities paradox for nouns like
heap in the functional probabilistic programming language Church. Their anal-
yses require a considerable amount of lexically specified content, and detailed
information concerning speakers’ and hearers’ contextual knowledge. While their
analyses offer thoughtful and promising suggestions on how to treat meaning in
probabilistic terms, It is not obvious how their approach can be generalised to a
robustly wide coverage model of combinatorial semantics and interpretation for
natural language.

In addition, the Goodman-Lassiter account models vagueness by positing
the existence of a univocal speaker’s meaning that hearers estimate through dis-
tributing probability among alternative possible readings. They posit a boundary
cut off point parameter for graded modifiers, where the value of this parameter
is determined in context.

The approach that I am suggesting here is not forced to assume such an in-
accessible boundary point for predicates. It allows us to interpret the probability
value of a sentence as the likelihood that a competent speaker would endorse an
assertion, given certain conditions (hypotheses). Therefore, predication remains
intrinsically vague. It consists in applying a classifier to new instances on the ba-
sis of supervised training. We are not obliged to posit a contextually dependent
cut off boundary for graded predicates.

[3] propose a compositional Bayesian semantics of natural language that im-
plements this approach in a functional probabilistic programming language. It
generates probability models that satisfy a set of specified constraints, and it
uses Markov Chain Monte Carlo sampling to estimate the likelihood of a sen-
tence being true in these models. It also sketches an account of semantic learning.

6 Conclusions and Future Work

I have argued that the tradition of formal semantics which uses possible worlds
to model intensions, modality, and epistemic states is not built on cognitively
viable foundations. Possible worlds of the kind posited in Kripke frame semantics
are not tractably representable. Therefore, theories that rely on such a frame-
work cannot explain the processes through which speakers actually interpret
the expressions of a natural language. They also do not provide computation-
ally manageable accounts of the ways in which epistemic agents reason about
modality, knowledge and beliefs.

We have seen that by adapting the distinction between operational and deno-
tation semantics from programming languages to natural language it is possible
to develop a fine-grained treatment of intensions that dispenses with possible
worlds. The intension of an expression is its operational meaning. Two expres-
sions can have different intensions but provably equivalent denotations.

We replace Kripke frame semantics with probability models in order to in-
terpret modal expressions, and we use Bayesian networks to encode knowledge,



belief, and inference. While probability distributions, and Bayesian networks in
particular, pose tractability problems, stratification, estimation, and approxi-
mation techniques allow us to effectively represent significant subclasses of these
models. Therefore they offer a computationally realistic basis for handling epis-
temic states and inference.

If the approach that I have suggested here is to offer an interesting alternative
to possible worlds semantics, then it will have to integrate the operational view of
intensions into the probabilistic treatment of knowledge and belief. Specifically,
it must explain how intensions are acquired by the sort of learning processes
that are expressed in Bayesian networks.

In addition, it must develop a wide coverage system that combines a compo-
sitional semantics with a procedure for generating probability models in which
it is possible to sample a large number of predicates. [3] provide an initial proto-
type for this system. Much work remains to be done on both the compositional
semantics and the model testing components in order to create a robust Bayesian
framework for natural language interpretation.
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